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CONNECTED COMPONENTS OF THE MODULI SPACE OF

L-PARAMETERS

SEAN COTNER

Abstract. Recently, in order to formulate a categorical version of the local Langlands correspon-
dence, several authors have constructed moduli spaces of Z[1/p]-valued L-parameters for p-adic
groups. The connected components of these spaces over various Z[1/p]-algebras R are conjecturally
related to blocks in categories of R-representations of p-adic groups. Dat-Helm-Kurinczuk-Moss
described the components when R is an algebraically closed field and gave a conjectural description
when R = Z[1/p]. In this paper, we prove a strong form of this conjecture applicable to any integral

domain R over Z[1/p].

1. Introduction

Let p be a prime number, let F be a nonarchimedean local field of residue characteristic p, and
let G be a connected reductive group over F . Since its inception, one of the primary goals in the
Langlands program has been to understand the smooth C-representations of G(F ). Recently, in
order to study congruences of smooth representations, there has been considerable interest in the
category RepR(G(F )) of R-representations, where R is any commutative ring, e.g., R = Zℓ; see
[Vig23] for a recent and extensive guide to the literature. We will only consider the case that p is
invertible in R, and to avoid rationality issues we will assume further that R is a Z[1/p]-algebra.

When studying any category of representations, a fundamental issue is to understand the blocks,
i.e., the indecomposable direct factors. If R = C, the blocks of RepR(G(F )) were determined by
Bernstein [Ber84] in terms of (super)cuspidal support. If R = Fℓ, ℓ 6= p, it is expected that a
similar block decomposition holds, and there has been a good deal of recent work in this direction,
for instance [SS16], [DS22], [Cui23]. When R = W (Fℓ) for ℓ 6= p and G = GLn, Helm established
a similar block decomposition in [Hel16a], [Hel16b], [Hel20]. Understanding these blocks for inner
forms of GLn has led to new results on the Jacquet–Langlands correspondence in [SS19].

This paper concerns the “dual side” of this question. To describe it, let WF be the Weil group
of F , which acts on the Langlands dual Ĝ over Z[1/p]. Recently, [DHKM20] and [Zhu21] have

constructed a space Z1(W 0
F , Ĝ) consisting (roughly) of 1-cocycles ϕ : WF → Ĝ over Z[1/p], or,

equivalently, L-homomorphisms Lϕ : WF → LG := Ĝ ⋊WF .
1 Recent categorical versions of the

local Langlands correspondence as in [Hel21], [BZCHN23], [Zhu21], and [FS21] suggest that there

should be a fully faithful embedding of RepR(G(F )) into QCoh([Z1(W 0
F , Ĝ)/Ĝ]R). The latter

category breaks up into a product indexed by the components of Z1(W 0
F , Ĝ)R, so one expects that

each block of RepR(G(F )) can be associated to such a component.

Focusing on a single prime, i.e., taking R = Fℓ or Zℓ for ℓ 6= p, the connected components of
Z1(W 0

F , Ĝ)R were determined in [DHKM20, 4.8] in terms of restriction to prime-to-ℓ inertia. On
the other end of the spectrum, instead of considering a single prime ℓ 6= p, one can consider all
primes other than p at the same time by taking R = Z[1/p]. Representations of finite p-groups do

1Because of the incompatibility of the ℓ-adic and ℓ′-adic topologies for ℓ 6= ℓ′, it is not totally clear how to make
this definition functorially. In the approach of [DHKM20], which we recall in Section 2, this is achieved by replacing
WF by a dense subgroup W 0

F with “discretized inertia”.
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2 SEAN COTNER

not deform away from characteristic p, so restriction to the wild inertia subgroup PF is a natural
discrete invariant of Z1(W 0

F , Ĝ)Z[1/p]. In fact, [DHKM20, §4.1] exhibits a decomposition

Z1(W 0
F , Ĝ)Z[1/p] =

∐

φ∈Φ
α∈Σ(φ)

Z1(W 0
F , Ĝ)φ,α, (1)

where membership of a cocycle ϕ in Z1(W 0
F , Ĝ)φ,α is determined by the restriction φ of ϕ to PF

and a map α from WF to the component group of a twisted centralizer of Lφ in LG. We will recall
the precise definitions in a self-contained way in Section 4.1.

Conjecture 1.1. [DHKM20, 4.3], [Dat22, 3.10] Each Z[1/p]-scheme Z1(W 0
F , Ĝ)φ,α is connected.

Theorem 1.2. Conjecture 1.1 is true.

Conjecture 1.1 was previously proved in [DHKM20, 4.30] when Z(Ĝ) is smooth, which corre-
sponds to the condition that G has fundamental group (in the sense of Borovoi) with no torsion
of order prime to p. This handles the case that G is semisimple and simply connected, as well as
some other groups like G = GLn or GSp2n, but it says very little if, for instance, G is of adjoint
type. Indeed, when G = PGLn for an integer n which is divisible by at least two distinct primes,
this condition does not hold for any p.

Roughly, Conjecture 1.1 describes the way in which components of Z1(W 0
F , Ĝ)C conspire to

connect modulo the primes ℓ 6= p. In fact, it can equivalently be phrased as the statement that
if two C-valued cocycles ϕ,ψ have the same restriction to PF and the same invariant α as above,
then there is a sequence of primes ℓ1, . . . , ℓn 6= p and a sequence ϕ = ϕ0, ϕ1, . . . , ϕn = ψ such that
the components containing ϕi and ϕi+1 in Z1(W 0

F , Ĝ)C meet modulo ℓi+1 for all 0 ≤ i ≤ n − 1.
Under this interpretation, we note the similarity to [SS19, Thm. B].

As stated above, the cases R = Z[1/p] and R = Fℓ are in a sense at opposite extremes. We will
interpolate between them by considering an arbitrary integral domain R over Z[1/p]. For simplicity,
let us assume for now that R = Z[D−1] for some multiplicatively closed subset D ⊂ Z. Reasoning

as in the case R = Z[1/p] suggests that there should be a discrete invariant of Z1(W 0
F , Ĝ)Z[D−1]

coming from restriction to the maximal “pro-D” subgroup of the inertia subgroup IF . Because of
topological issues alluded to above, this does not literally make sense, but nonetheless we construct
in Section 4 a decomposition

Z1(W 0
F , Ĝ)

Z[D−1] =
∐

φD∈ΦD

αD∈Σ(φD)

Z1(W 0
F , Ĝ)φD ,αD

(2)

where, informally, ΦD is a set of cocycles from the maximal pro-D subgroup of IF to Ĝ and Σ(φD)

comes from the failure of the centralizer of LφD in Ĝ to be connected. The following theorem,
which is slightly generalized in Theorem 4.4, is our main result.

Theorem 1.3. Every summand in (2) is connected.

In [Dat22, §4.5], one finds detailed conjectures on the blocks of RepZ[1/p](G(F )) suggested by

Conjecture 1.1. In particular, the components of Z1(W 0
F , Ĝ)Z[1/p] are expected to be in one-to-

one correspondence with the so-called “stable blocks” of RepZ[1/p](G(F )), and there are precise

expectations about the decomposition of each stable block into blocks. These conjectures have been
partially confirmed for the subcategory of Z[1/p]-representations of depth 0 in [DL22], following
the works [Lan18], [Lan21] which prove similar results for Zℓ-representations of depth 0. It seems
reasonable to expect that the conjectures of [Dat22, §4.5] can be extended to Rep

Z[D−1](G(F )) for

any D. However, there are subtleties even when R = Zℓ, as noted in [Dat22, §4.7]. Thus we leave
precise conjectures to the reader.
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Our proof of Theorem 1.3 is similar in several respects to the proof sketched in [Dat22, §5.4] in the
case R = Z[1/p] and the action of IF preserves a pinning, but the details are somewhat different.
In fact, to remain as self-contained as possible (and since they do not significantly simplify the
argument), we do not rely on any previously-established connectedness results. Let us outline the
proof in the case that R = Z[1/p] and the action of WF is inner, assumptions which allow us to
avoid some technical complications while retaining the key features of the problem.

(1) (Section 4) Reduce to proving connectedness of Z1(W 0
F /PF , Ĝ)Z[1/p] when the WF -action

on Ĝ is tame and preserves a Borel pair. (Since R = Z[1/p] in this outline, this reduction
was already made in [DHKM20].)

(2) (Section 5.1) Analyze the behavior of Z1(W 0
F/PF , Ĝ)Z[1/p] under certain homomorphisms

Ĝ→ Ĥ to reduce to the case that Ĝ is semisimple and simply connected.
(3) (Section 5.2) Define a map Σ: Z1(W 0

F /PF , Ĝ) → Ĝ//Ĝ which, roughly, records the eigenval-

ues of a generator of tame inertia. Using “purity” of Z1(W 0
F /PF , Ĝ), reduce to the claims

that (imΣ)
Z[1/p] is connected, and for every field k the fibers of Σk are connected.

(4) (Section 5.3) Using the theory of complete reducibility and theorems of Steinberg, show

that Σ
−1

(x) is connected for every field k and every x ∈ (imΣ)(k).
(5) (Section 5.4, Appendix A) Prove that (imΣ)Z[1/p] is connected.

Step (5) is the most interesting one. In Section 5.2, we write down connected closed subschemes
Cw of (imΣ)

Z[1/p] indexed by elements w of the Weyl groupW0 such that (imΣ)
Z[1/p] =

⋃
w∈W0

Cw.

This shows π0((imΣ)Z[1/p]) =W0/∼, where ∼ is the equivalence relation generated by the relations

w ∼ w′ if Cw∩Cw′ 6= ∅. If there is a field k of characteristic 6= p such that the action mapWF → Ĝad
k

lifts to a map WF → Ĝk, then we exhibit a single element which lies in every Cw(k), thus proving

(5). In fact, this assumption is satisfied whenever the center Z(Ĝ) is of order divisible by at most
one prime 6= p, which holds in all simple types other than A. In type A, this argument can fail:
Example 5.11 shows that when Ĝ = SL6 and p = 7, there are two elements w,w′ ∈ W0 such that
Cw ∩ Cw′ = ∅. This leads to more work in type A, which is handled in Appendix A.

To aid the reader, steps (4) and (5) are described in the special case Ĝ = SL2 in Section 2.
Section 3 contains recollections from the literature, as well as a few basic lemmas and a proof of
the twisted Chevalley–Steinberg isomorphism over a general base scheme.

1.1. Notation. Throughout this paper, let F be a nonarchimedean local field with residue field of
order q, a power of the prime p. Let WF be the Weil group of F , let K be a number field, let D
be a saturated multiplicatively closed subset of Z, and let Ĝ be a split reductive OK [D−1]-group
scheme (in the sense of [SGA3III new, XIX, 2.7], i.e., with connected fibers) equipped with an action

of WF which factors through a finite quotient W and preserves a Borel pair (B̂, T̂ ). The definitions

and notation surroundingW 0
F and Z1(W 0

F , Ĝ) are given in Section 2 and retained past that section.
Throughout, if R is a ring, let DR denote the set of integers which are invertible in R. If p is a
prime ideal of R, let k(p) denote the residue field of R at p. If H is a reductive R-group scheme,
then Z(H) denotes the center of H. If σ is an automorphism of H, then we will use σh to denote
the image of an element h ∈ H(R) under σ.

1.2. Acknowledgements. I thank Robert Cass, Stephen DeBacker, and Alex Hazeltine for con-
versations which helped to clarify the ideas of this paper. I also thank the attendees of the Harish-
Chandra seminar at the University of Michigan for allowing me to give a series of talks on this
work and for asking many pertinent questions.
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2. An example

We begin by sketching the proof of Theorem 1.2 in the case Ĝ = SL2, along the lines that we will
use to prove the general case. This section is not logically necessary for the rest of the paper; we
include it only in the hope that it will help orient the reader for the general argument. There are
several features of SL2 which simplify the argument in this case, among which are that the group
of outer automorphisms is trivial, the order of the center is only divisible by one prime, and the
exponential map is defined on nilpotent matrices in arbitrary characteristic.

For completeness, we briefly recall the construction of Z1(W 0
F , Ĝ) from [DHKM20]. Naive ap-

proaches run into thorny topological issues, and a major insight is that it is useful to introduce the
subgroup W 0

F ⊂WF with discretized inertia. Explicitly, there is a short exact sequence

1 → PF →WF →WF/PF → 1

where PF is the subgroup of wild inertia. Let Fr and s be lifts of Frobenius and a topological
generator of tame inertia, respectively, and let (WF /PF )

0 be the discrete subgroup of WF /PF

generated by Fr and s. We define W 0
F to be the preimage of (WF /PF )

0 in WF , and we topologize
W 0

F by declaring that PF is open with its usual profinite topology.

We retain the notation of Section 1.1. Let Z1(W 0
F , Ĝ) be the moduli space of 1-cocycles W 0

F →

Ĝ(R) with open kernel, where R ranges over OK [1/p]-algebras. By [DHKM20, 4.1], this is a locally
finite type syntomic OK [1/p]-scheme which, when restricted to Zℓ ⊗ OK -algebras for any ℓ 6= p,
parameterizes ℓ-adically continuous L-parameters from WF .

By the reduction to tame parameters of [DHKM20, §4.1], it is fine to assume that the action of
WF on SL2 is tame and only consider Z1(W 0

F /PF ,SL2). Because the group of outer automorphisms

of SL2 is trivial, Fr and s act by Ad(g) and Ad(t) for some g, t ∈ T̂ (OK [1/p]). These are required
to satisfy gtg−1 = tqz for some central element z ∈ Z(SL2)(OK [1/p]). Moreover, if q is even then
we may and do pass from t to −1 · t if necessary to assume z = 1.

Let Σ: Z1(W 0
F /PF ,SL2) → A1 be the map given by sending a cocycle ϕ to tr(ϕ(s)t). The

strategy of the proof of Theorem 1.2 is to show that Σ has connected fibers and that (imΣ)Z[1/p] is

connected, and then use simple point-set topology to show that Z1(W 0
F /PF ,SL2) is connected. We

will punt the point-set topology arguments (which are precisely the same for SL2 as for all other
groups) to the coming sections and only handle properties of Σ in this section.

Claim 2.1. Σ has geometrically connected fibers.

Proof. Let k be an algebraically closed field, and let x ∈ (imΣ)(k) be a point. By definition, there

is some 1-cocycle ϕ : W 0
F /PF → Ĝ(k) such that ϕ(s)t has eigenvalues α,α−1. Let ϕ(s)t = t′(1+N)

be the Jordan decomposition of ϕ(s)t, where N is nilpotent, and define a map ϕ− : A1
k → Σ

−1
(x)

functorially via ϕc(Fr) = ϕ(Fr) and ϕc(s) = t′(1+ cN)t−1 for c ∈ A1
k. The fact that ϕc is a cocycle

for each c can be checked directly using the defining relation FrsFr−1 = sq. Note that ϕ1 = ϕ and
that ϕ0(s)t is semisimple.

Define Σ: Z1(W 0
F /PF ,SL2) → SL2 by Σ(ϕ) = ϕ(s)t, and note that tr−1(x) contains a unique

semisimple conjugacy class C: if x = α+ α−1 for some α ∈ k×, then this is the conjugacy class of
diag(α,α−1). By the previous paragraph, it suffices to show that Σ−1(C) is connected, and indeed
it is enough to show that Σ−1(diag(α,α−1)) is connected. However, using the defining relation for a
cocycle, one checks that Σ−1(diag(α,α−1)) is isomorphic to the centralizer of diag(αq, α−q), which
is either isomorphic to Gm or SL2 and in either case is connected. �

Claim 2.2. (imΣ)
Z[1/p] is connected.
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Proof. If k is a field and ϕ is a cocycleW 0
F/PF → SL2(k), then the relation Lϕ(Fr) Lϕ(s) Lϕ(Fr)−1 =

Lϕ(s)q means ϕ(Fr)g(ϕ(s)t)z−1 = (ϕ(s)t)q . This restricts the possible eigenvalues of ϕ(s)t consid-
erably: to see this, let {α, β} be the set of eigenvalues of ϕ(s)t. If z = 1, then {α, β} = {αq, βq},
and hence α, β ∈ µq−1(k) ∪ µq+1(k). If z = −1, then {α, β} = {−αq,−βq}, so α, β ∈ µ2(q−1)(k) ∪
µ2(q+1)(k). Moreover, if k is not of characteristic 2, then α, β 6∈ µq−1(k) ∪ µq+1(k). These are,
however, the only restrictions; for any α as above, it is straightforward to show that there is an
L-parameter ϕ : W 0

F /PF → SL2(k) such that ϕ(s) = diag(α,α−1).

If z = 1, then by the above paragraph, Σ factors (set-theoretically, at least) through a surjective
map to the schematic image Y1 of the map µq−1 ∪ µq+1 → A1 given by α 7→ α + α−1. The
scheme (Y1)Z[1/p] is connected: indeed, since µq−1 and µq+1 meet at 1, it suffices to note that any

multiplicative type Z[1/p]-group scheme which is finite of order prime to p is connected. Next,
suppose z = −1, so q is odd. If n ≥ 1, let µ′2n be the nontrivial translate of the subgroup scheme
µn in µ2n over Z[1/p]. Again, the previous paragraph shows that Σ factors (set-theoretically)
through a surjective map to the schematic image Y−1 of the map µ′2(q−1) ∪ µ

′
2(q+1) → A1 given by

α 7→ α + α−1. Over Q or Fℓ for ℓ 6= 2, the schemes µ′2(q−1) and µ′2(q+1) do not meet, but they

do meet over F2 at the element 1. Moreover, µ′2(q−1) and µ′2(q+1) are both connected. Thus we

conclude as before that Y−1 is connected. �

3. Preliminaries

3.1. Pure schemes. We will use the notion of purity for a scheme morphism X → S from [RG71,
3.3.3]. The precise definition is not important in this paper, but we summarize some useful prop-
erties in the following lemma.

Lemma 3.1. Let R be a ring, and let X be a flat finitely presented R-scheme.

(1) If X is R-pure and R′ is an R-algebra, then XR′ is R′-pure.
(2) If R is noetherian, then X is R-pure if and only if, for every R-algebra A which is a DVR,

the scheme XA is A-pure.
(3) If R is a field, then X is R-pure.
(4) If R is a complete DVR with uniformizer π and X is affine, then X is R-pure if and only

if the coordinate ring R[X] is π-adically separated.
(5) If R is a DVR with fraction field K and residue field k and X is R-pure, then the Zariski

closure of every irreducible component of XK meets Xk.

Proof. (1) is proved in [RG71, 3.3.7]. (3) and (5) follow immediately from the definition in [RG71,
3.3.3]. For (4), note that R[X] is countably generated, so by [Kap52, Thm. 12] it is a direct sum
of rank 1 R-modules. In particular, R[X] is π-adically separated if and only if it is R-free, so the
result follows from [RG71, 3.3.5]. Finally, (2) is proved in [Cot23a, 2.2]. �

The main point of purity for our purposes is that moduli spaces of L-parameters are pure.

Lemma 3.2. Let K be a number field, and let H be a split reductive group scheme over OK [1/p]
equipped with a finite action of WF . The scheme Z1(W 0

F ,H) is flat and OK [1/p]-pure.

Proof. By Lemma 3.1(1), (2), and (3), we need only show that Z1(W 0
F ,H)Zℓ⊗OK

is Zℓ⊗OK-pure for

every prime number ℓ 6= p. Every connected component of Z1(W 0
F ,H)Zℓ⊗OK

is flat, finite type, and
affine by [DHKM20, 4.1], and the same reference shows that the coordinate ring of each component
is ℓ-adically separated. (Strictly speaking, [DHKM20, 4.1] only applies as written when K = Q,
but the proof never uses this assumption.) Thus Lemma 3.1(4) shows the result. �

To make reductions later, we need two elementary results about purity which are mainly topo-
logical in nature.
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Lemma 3.3. Let R be an integral domain, let p ∈ SpecR, and let X and Y be finitely presented
R-schemes such that Y is flat and R-pure. Let f : X → Y be an R-morphism, and suppose

(1) fk(p) : Xk(p) → Yk(p) is surjective,
(2) X is connected.

Then Y is connected.

Proof. By standard limit arguments, we may and do assume R is noetherian. Since Y is flat, each
component of Y has nonempty Frac(R)-fiber. By purity and Lemma 3.1(5), it follows that each
component has nonempty k(p)-fiber. Thus it suffices to show that any two closed points y1, y2 of
Yk(p) are contained in the same component of Y . By (1), there exist points x1, x2 of Xk(p) lifting
y1, y2. By (2), there is a sequence x1 = s1, η1, s2, . . . , ηn, sn = x2 in X such that si+1 specializes
ηi and ηi+1 for all i. The sequence y1 = f(s1), f(η1), . . . , f(sn) = y2 provides a chain in Y which
shows that y1 and y2 lie in the same component. �

Lemma 3.4. Let R be an integral domain, and let f : X → Y be a surjective morphism of finitely
presented R-schemes such that X is R-pure, Y is R-finite, and f−1(y) is connected for all y ∈ Y .
Then the map π0(f) : π0(X) → π0(Y ) is bijective.

The main point making this lemma nontrival is that f is not necessarily flat; the conclusion does
not hold if, for example, Y is not assumed finite or X is not assumed pure.

Proof. It is enough to consider the case of noetherian R. First, π0(f) is clearly surjective. To see
injectivity, let C be a connected component of Y . If K = Frac(R), let CK = {x1, . . . , xn}, and note

that {xi} → SpecR is surjective by finiteness. Each {xi} is connected, and since C is connected,

we have C =
⋃n

i=1 {xi}. Thus it suffices to show that f−1({xi}) is connected for all i.

By finiteness of Y , the fiber f−1(xi) is a connected component of XK for all i. If Xi denotes the
Zariski closure of f−1(xi) in X, then Xi is connected for all i. We have

f−1({xi}) = Xi ∪
⋃

q∈SpecR

f−1({xi}k(q)).

By hypothesis, each f−1({xi}k(q)) is connected, and by Lemma 3.1(5), the fiber (Xi)k(q) is nonempty.

Thus (Xi)k(q) meets f−1({xi}k(q)), and it follows that f−1({xi}) is connected. �

3.2. Complete reducibility. Recall [CGP15, §2.1] that if H is a reductive group over a field k
and λ : Gm → H is a cocharacter, then there are subgroups PH(λ), ZH(λ) ⊂ H defined by

PH(λ) = {h ∈ H : lim
t→0

λ(t)hλ(t)−1 exists} and ZH(λ) = {h ∈ H : Ad(h)λ = λ}.

If H is connected, then PH(λ) is a parabolic subgroup of H and ZH(λ) is a Levi of PH(λ).

If Γ is a group, then a homomorphism f : Γ → H(k) is completely reducible if for every cocharacter
λ : Gm → H such that f factors through PH(λ), there is some cocharacter µ : Gm → H such that
PH(λ) = PH(µ) and f factors through ZH(µ). The following three results are well-known.

Theorem 3.5. [BMR05, 3.7] If Γ is finitely generated, then f : Γ → H(k) is completely reducible
if and only if the H-orbit of f in Homk-gp(Γ,H) is closed.

Proof. A surjection from a finitely generated free group to Γ induces an H-equivariant closed
embedding Homk-gp(Γ,H) → Hn, so the result follows from [BMR05, 3.7]. �

Theorem 3.6. [BMR05, 3.10] If f : Γ → H(k) is completely reducible and N ⊂ Γ is a normal
subgroup, then f |N is also completely reducible.

We recall that an automorphism σ of H0 is quasi-semisimple if it preserves a Borel pair of H0.
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Lemma 3.7. If f : Z → H(k) is a homomorphism, then f is completely reducible if and only if the
conjugation action of f(1) on H0 is quasi-semisimple.

Proof. This follows from [Spr06, Prop. 1]. �

3.3. A twisted Chevalley–Steinberg isomorphism. Let R be a ring, and let H be a reductive
R-group scheme. Let σ be an R-automorphism of H which preserves a Borel pair (B,T ). There is
an action of H on itself defined by h ·σ h

′ := h ·h′ · σh−1, which we call σ-twisted conjugacy. Denote
the resulting GIT quotient by H//σH, and let χσ : H → H//σH be the natural map. Equivalently,
one can view H//σH as the quotient (H⋉σ)//H, whereH acts by conjugation, and one can consider
χσ as the natural map H ⋉ σ → (H ⋉ σ)//H; this is the perspective we will take in Section 5.2.

Let W0 be the subgroup of σ-fixed points of the Weyl group of T in H, and let A = T/(1−σ)T .
Let W0 act on A as follows: if w0 ∈ W0 and n0 is a lift of w0 in NH(T ) (valued in some fppf R-

algebra), then define w0 · t = n0t (
σn0)

−1. Restricting χσ to T induces a map j : A/W0 → H//σH.

In [Spr06, Thm. 1] and [XZ19, 4.2.3], it is shown that j is an isomorphism if R is a field; in [Lee15,
4.1], this is shown if σ is the identity; in (the proof of) [DHKM20, 6.6], this is shown provided that
R is a Dedekind domain. The aim of this section is to explain a formal way to extend these results
to general R, akin to the arguments of [Lee15].

Proposition 3.8. If H is a split reductive Z-group scheme and σ is a pinning-preserving auto-
morphism of H, then the natural map j : A/W0 → H//σH is an isomorphism.

Proof. The argument of [DHKM20, 6.6] can be read verbatim with the tuple (H,B, T, σ,W0) in
place of (CĜ(φ)

0, Bφ, Tφ, β, (Ω
◦
φ)

Adβ), and Z in place of the base ring O
K̃e

[ 1
pN

Ĝ

] (with notation as

in loc. cit.). �

The following lemma is a straightforward generalization of (the proof of) [Lee15, 4.2], and pre-
sumably well-known, but we give an argument for want of a reference.

Lemma 3.9. Let R be a noetherian ring, let H be a flat affine R-group scheme, and let X be a flat
affine R-scheme with an action of H. The formation of the GIT quotient X//H := SpecR[X]H

commutes with arbitrary base change if and only if, for every prime ideal p ∈ SpecR, the base
change map X//H ⊗R k(p) → Xk(p)//Hk(p) is an isomorphism.

Proof. Suppose X = SpecC, and let α : C → R[H] ⊗R C be the homomorphism corresponding to
the action map, so CH = ker(α− 1). For each p ∈ SpecR, observe the commutative diagram

CH ⊗R k(p) C ⊗R k(p) im(α− 1)⊗R k(p) 0

(C ⊗R k(p))
Hk(p) C ⊗R k(p) im(αk(p) − 1) 0

which shows, by our hypothesis and the five lemma, that the map im(α−1)⊗Rk(p) → im(αk(p)−1)
is an isomorphism. Moreover, if i : im(α− 1) → R[H]⊗R C is the natural inclusion, then there is
a commutative diagram

im(α− 1)⊗R k(p) R[H]⊗R C ⊗R k(p) coker(i)⊗R k(p) 0

im(αk(p) − 1) (k(p))[H] ⊗k(p) Ck(p) coker(ik(p)) 0

which shows, again by the five lemma, that coker(i) ⊗R k(p) → coker(ik(p)) is an isomorphism. It

follows that i ⊗R k(p) is injective, and hence TorR1 (coker(i), k(p)) = 0. Thus coker(i) is R-flat, so
the natural map CH ⊗R R

′ → (C ⊗R R
′)HR′ is an isomorphism for all R′, as desired. �
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Theorem 3.10. Let X be a scheme, let H be a reductive X-group scheme admitting a Borel pair
(B,T ), and let σ be an X-automorphism of H preserving (B,T ). The natural map j : A/W0 →
H//σH is an isomorphism. The formation of each of A/W0 and H//σH commutes with arbitrary
base change.

Proof. Since the formation of GIT quotients commutes with flat base change, we may pass to fppf
covers of X at will. In particular, by [SGA3III new, XXII, 2.3], we may assume that X = SpecR
is affine and G is split, and by [SGA3III new, XXIV, 1.3] we may write σ = Ad(t) ◦ σ1, where
σ1 preserves the pinning and t ∈ T (R). The map H → H given by h 7→ ht is an isomorphism
which intertwines σ-twisted conjugacy and σ1-twisted conjugacy and thus induces an isomorphism
H//σH → H//σ1H. There is a similar isomorphism for A/W0, and thus we may and do pass from
σ to σ1 to assume that σ preserves a pinning.

By [SGA3III new, XXV, 1.1], there is a tuple (H,B,T,σ) consisting of a split reductive Z-group
scheme H, a Borel subgroup scheme B ⊂ H, a maximal torus T ⊂ B, and a pinning-preserving
automorphism σ of H such that (H,B,T,σ)⊗R ∼= (H,B, T, σ). Let A denote the group scheme
of σ-coinvariants of T. For every ring R′, there is a commutative diagram

Z[G]G,σ ⊗R′ Z[A]W0 ⊗R′

R′[GR′ ]GR′ ,σR′ R′[AR′ ]W0 .

By Proposition 3.8, the top and right arrows are isomorphisms, so to prove the theorem it is enough
to show that the bottom arrow is an isomorphism for all R′. By Lemma 3.9, we need only check
this when R′ = Z/p for some prime number p. This case is [Spr06, Thm. 1]. �

4. Reduction to tame parameters

In this section, we will describe the decomposition (2) promised in the introduction, and we will
show that each summand in this decomposition is equivalent to a scheme of “tame” cocycles. We
retain the notation of the introduction, letting R be a Z[1/p]-algebra and letting D be the set of
integers which are invertible in R. Let D′ be the multiplicatively closed subset of Z generated by
the prime numbers not in D. For the basic definitions associated with Z1(W 0

F , Ĝ), see Section 2.

4.1. Motivation. Our construction may initially appear strange, so we begin with two special
cases, both of which appear in [DHKM20]. Consider first the case D = {±pn : n ≥ 0}, which will

give rise to the decomposition (1). There is a restriction map rP : Z1(W 0
F , Ĝ) → Z1(PF , Ĝ), and it is

shown in [DHKM20, 3.1] that this is a discrete invariant: in other words, there is a decomposition

Z1(W 0
F , Ĝ)Z[1/p] =

∐

φ∈Φ

Ĝ · r−1
P (φ)

for some set of sections Φ ⊂ Z1(PF , Ĝ)(Z[1/p]). Given φ ∈ Φ, there is a closed subgroup scheme

ZLG(φ) = {(g,w) ∈ LG : (g,w) Lφ(w−1pw)(g,w)−1 = Lφ(p)∀p ∈ PF },

and if ϕ extends φ then ϕ factors through ZLG(φ). This gives rise to an induced homomorphism

αϕ : W
0
F → π0(ZLG(φ)). Again αϕ is a discrete invariant of r−1

P (φ): if Σ(φ) is the set of such αϕ,

then there is a decomposition

Z1(W 0
F , Ĝ)Z[1/p] =

∐

φ∈Φ
α∈Σ(φ)

Ĝ · r−1
P (φ)α,
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where r−1
P (φ)α is the clopen subscheme of r−1

P (φ) consisting of those cocycles ϕ such that αϕ = α.

This is (1). The content of “tame reduction” in this case is that each r−1
P (φ)α is isomorphic to

a scheme of tame cocycles Z1(W 0
F /PF , ZLG(φ)

0)Z[1/p], where ZLG(φ)
0 is equipped with a finite

WF -action preserving a Borel pair.2 This reduces one to understanding spaces of tame cocycles.

Next consider the other extreme case D = {n : ℓ ∤ n}, where ℓ is a fixed prime, and let us assume
for simplicity that R = Fℓ; the case R = Zℓ is similar. Now [DHKM20, 4.1] shows that if A is an

Fℓ-algebra, then Z1(W 0
F , Ĝ)Fℓ

(A) parameterizes continuous 1-cocycles WF → Ĝ(A), where Ĝ(A)

is equipped with the discrete topology. Thus there is a natural restriction map rℓ : Z1(W 0
F , Ĝ)Fℓ

→

Z1
cts(I

ℓ
F , Ĝ)Fℓ

, where IℓF denotes the maximal closed subgroup of IF of pro-order prime to ℓ. Using
a similar argument to the above, one shows that there is a decomposition

Z1(W 0
F , Ĝ)Fℓ

=
∐

φℓ∈Φℓ

αℓ∈Σ(φℓ)

ĜFℓ
· (rℓ)−1(φℓ)αℓ ,

where Φℓ is a set of continuous cocycles IℓF → Ĝ(Fℓ) and Σ(φℓ) is a set of component group maps

W 0
F → π0(ZLG(φ

ℓ). Here the content of “tame reduction” is that for each nonempty (rℓ)−1(φℓ)αℓ ,

there is an isomorphism (rℓ)−1(φℓ)αℓ
∼= Z1(WF/I

ℓ
F , ZLG(φ

ℓ)0)Fℓ
. Again, this reduces one to study-

ing spaces of cocycles which one might call “ℓ′-tame”.

For more general R, to obtain a similar decomposition, we will consider a reduction map rD
which, informally, records the restriction of a cocycle ϕ to the maximal pro-D subgroup of IF . To
see how to formulate this precisely, let us reframe the previous case: for simplicity, assume thatWF

acts trivially on Ĝ and consider a continuous homomorphism f : WF/PF → Ĝ(Qℓ). If f(s) = tu

is the Jordan decomposition in Ĝ(Qℓ), then t is of some finite order n = ℓcd, where ℓ ∤ d. The
restriction of f to IF/PF is determined by c and tℓ

c
, so there is a restriction map

Hom(WF , Ĝ(Qℓ)) → lim−→
c,d

Hom(〈sℓ
c

〉/〈sℓ
cd〉, Ĝ(Qℓ))

given by sending f to the map sℓ
cm 7→ tℓ

cm, under which the image of f determines f |Iℓ
F
.

Because each quotient 〈sℓ
c
〉/〈sℓ

cd〉 is finite, the above discussion suggests an algebraic way to
formulate a restriction map rℓ, which can be defined without reference to the profinite group WF .
In this form, the generalization to rD is simple, although a modicum of care is needed since the
Jordan decomposition need not exist over general rings. After defining rD, our version of tame
reduction reduces one to studying spaces of “D-tame” cocycles.

4.2. Constructions. We now begin by defining rD. Let UĜ be the unipotent scheme of Ĝ, as

defined in [Cot22, §4] to be the schematic closure of the unipotent variety of ĜQ. We note that

this definition is not completely standard when Ĝ is not simply connected, but it is determined by
the conditions that UĜ is Z-flat and UĜ(k) is the set of unipotent elements of Ĝ(k) for every field
k. We warn the reader that the fibers of UĜ over Z are not generally reduced.

Lemma 4.1. If N ∈ D, then the N th power map [N ] : (UĜ)Z[D−1] → (UĜ)Z[D−1] is a Ĝ-equivariant
isomorphism.

Proof. Equivariance is clear. By the fibral isomorphism criterion [EGA, IV4, 17.9.5], it suffices to
show that for every field k over Z[D−1], the map [N ]k is an isomorphism. If char k = 0, then this
is clear from the existence of the exponential map. If char k = p > 0, then there is some n such

2Crucially, even if the WF -action on Ĝ is defined over Z[1/p] and preserves a pinning, we do not know whether
we can ensure the same for the WF -action on ZLG(φ)

0. This justifies working in the generality we do.
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that [pn]k kills (UĜ)k: to see this, we can reduce to Ĝ = GLn, in which case UĜ is reduced and we
reduce to the fact that UGLn

(k) is killed by pn. If M is such that NM ≡ 1 (mod pn), then [NM ]k
is the identity on UĜ and thus [N ]k is an isomorphism, as desired. �

Lemma 4.2. Let P be an open subgroup of PF which is normal in W 0
F . There is an integer

n = nP such that sn acts trivially on PF /P and for every Z[1/p]-algebra R and every cocycle

ϕ : W 0
F → Ĝ(R), the power Lϕ(s)n lies in UĜ(R).

Proof. By [DHKM20, 2.2], there is some n such that for every field k over Z[1/p] and every ϕ : W 0
F →

Ĝ(k), the power Lϕ(s)n lies in UĜ(k). Thus, since Z
1(W 0

F , Ĝ)Q is reduced [DHKM20, 4.1], the map

πn : Z
1(W 0

F , Ĝ)Z[1/p] → Ĝ given by ϕ 7→ Lϕ(s)n factors through UĜ generically. By Lemma 3.2,
the source is flat and thus πn factors through UĜ. Since PF /P is finite, we may pass to a multiple
of n to assume sn acts trivially on PF /P . �

If P is an open subgroup of PF which is normal in W 0
F and n ≥ 1 is such that sn acts trivially

on PF /P , let I
0
F,n,P denote the subgroup of I0F generated by sn and P . Let I0F,n = I0F,n,PF

. If n is

as in Lemma 4.2, write n = ab for a ∈ D and b ∈ D′. Define a Z[D−1]-morphism

rn,P,D : Z1(W 0
F /P, Ĝ)Z[D−1] → Z1(I0F,b/I

0
F,n,P , Ĝ)Z[D−1]

as follows: if R is a Z[D−1]-algebra and ϕ : W 0
F/P → Ĝ(R) is a cocycle, note that Lϕ(s)ab is

unipotent, so by Lemma 4.1 there is a unique element u ∈ UĜ(R) whose ath power is Lϕ(s)n.

Since [a] is a Ĝ-equivariant automorphism of UĜ, it follows that u commutes with Lϕ(p) for

all p ∈ PF and with Lϕ(s)b. Thus we may define ϕP,D = rn,P,D(ϕ) via ϕn,P,D|PF
= ϕ|PF

and
LϕP,D(s

b) = u−1 · Lϕ(s)b.

Since I0F,b/I
0
F,n,P is a finite group of order in D for any n, [DHKM20, A.9] shows that there is a

set ΦP,n ⊂ Z1(I0F,b/I
0
F,n,P , Ĝ(Z[D−1])) such that

Z1(I0F,b/I
0
F,n,P , Ĝ)Z[D−1] =

∐

φn∈ΦP,n

ĜZ[D−1] · φn,

where ĜZ[D−1] · φn denotes the orbit of φn, isomorphic to ĜZ[D−1]/ZĜ
Z[D−1]

(φn). In particu-

lar, if P ′ ⊂ P and n | n′ = a′b′, where n′ = nP ′ as in Lemma 4.2, then the natural map

Z1(I0F,b/I
0
F,n,P , Ĝ)Z[D−1] → Z1(I0F,b′/I

0
F,n′,P ′ , Ĝ)Z[D−1] is a clopen embedding, and the maps rn,P,D

and rn′,P ′,D are compatible in the obvious sense. Therefore we may define

rD := lim
−→
n,P

rn,P,D : Z1(W 0
F , Ĝ)Z[D−1] → XD := lim

−→
n,P

Z1(I0F,b/I
0
F,n,P , Ĝ)Z[D−1]

because Z1(W 0
F , Ĝ) = lim

−→P
Z1(W 0

F /P, Ĝ).

If R is a Z[D−1]-algebra and φD ∈ XD(R), we define

ZLGR
(φD) = {(g,w) ∈ LGR : (g,w) · LφD · (g,w)−1 = LφD ◦ Ad(w)}

and ZĜR
(φD) = ZLGR

(φD) ∩ ĜR. A key observation is that, if ϕ : W 0
F → Ĝ(R) is a cocycle such

that ϕ(I0F ) is finite, then
Lϕ factors through ZLGR

(rD(ϕ)).

Theorem 4.3. There is a set ΦD ⊂ XD(Z[D
−1]) such that

XD =
∐

φD∈ΦD

Ĝ · φD

For each φD ∈ ΦD, the centralizer ZĜ
Z[D−1]

(φD) is a smooth affine Z[D−1]-group scheme with split

reductive identity component and constant component group.
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Proof. The points not already observed above follow from [DHKM20, A.12, A.13] as in [DHKM20,

3.1]; the key point is that, if φD is represented by a cocycle φn : I
0
F,b/I

0
F,n,P → Ĝ(Z[D−1]), then

ZLG(φD) = ZLG(φn). �

By Theorem 4.3, for every φD ∈ ΦD there is an exact sequence

1 → π0(ZĜ(φD)) → π̃0(φD) := π0(ZLG(φD)) →W.

If R is a Z[D−1]-algebra and ϕ : W 0
F → Ĝ(R) restricts to φD, then there is an induced homo-

morphism αϕ : W
0
F → π̃0(φD), and we see that the image of αϕ in lim−→n,P

Hom(I0F,b/IF,n,P , π̃0(φD))

agrees with the element induced by φD. Moreover, the composition W 0
F → π̃0(φD) → W is the nat-

ural projection map. Let Σ(φD) be the set of homomorphisms αD satisfying these two conditions.
By Theorem 4.3, there is a disjoint union decomposition

Z1(W 0
F , Ĝ)Z[D−1] =

∐

φD∈ΦD

αD∈Σ(φD)

Ĝ×Z
Ĝ
(φD) r−1

D (φD)αD
,

where by definition r−1
D (φD)αD

is the closed subscheme of Z1(W 0
F , Ĝ)Z[D−1] consisting of those cocy-

cles ϕ with rD(ϕ) = φD and αϕ = αD. We call the pair (φD, αD) admissible if Z1(W 0
F , Ĝ)φD ,αD

:=

Ĝ×Z
Ĝ
(φD) r−1

D (φD)αD
is nonempty. Note that, in view of this decomposition and [DHKM20, 4.1],

each Z1(W 0
F , Ĝ)φD ,αD

is syntomic.

We can now state the main theorem of this paper, which was stated imprecisely and in a slightly
weaker form in Theorem 1.3.

Theorem 4.4. Let φD ∈ ΦD and αD ∈ Σ(φD) be admissible, and let R be an integral domain over

Z[1/p] with DR = D. Then Z1(W 0
F , Ĝ)φD ,αD

⊗Z[D−1] R is connected.

Note that the statement of Theorem 4.4 is general enough that it applies to R = Zℓ and R = Fℓ

for any prime ℓ 6= p, so it recovers [DHKM20, 4.8] as a special case. The first step which allows
us to analyze r−1

D (φD)αD
is a “reduction to tame parameters” as in [DHKM20], the main input for

which is provided by the following theorem.

Theorem 4.5. If φD ∈ ΦD and αD ∈ Σ(φD) are admissible, then there is a 1-cocycle ϕ : W 0
F →

Ĝ(Z[D−1]) with rD(ϕ) = φD and αϕ = αD such that Lϕ(W 0
F ) is finite and AdLϕ preserves a Borel

pair of ZĜ(φD)
0.

Proof. Let (B,T ) be a Borel pair of ZĜ(φD)
0 which is defined over Z[D−1]. Let T be the normalizer

of (B,T ) in ZĜ(ϕD), and note that T 0 = T and T has component group π̃0(φD). Thus αD gives

rise to a natural action of WF on T . Let P ⊂ PF be open and normal in W 0
F such that φD|P is

trivial, and let n = ab be an integer as in Lemma 4.2, where a ∈ D and b ∈ D′. Thus φD is realized
as a 1-cocycle I0F,b/I

0
F,n,P → Ĝ(Z[D−1]). We may form the scheme Z1

αD
(W 0

F /I
0
F,b, T ) of 1-cocycles,

which is a diagonalizable group scheme by the same argument as [DHKM20, 3.6(1)]. Similarly,

let Σ(W 0
F ,T )φD ,αD

be the scheme of those ϕ ∈ Z1(W 0
F , Ĝ)φD ,αD

such that Lϕ(W 0
F ) ⊂ T . It is

straightforward to check that Σ(W 0
F ,T )φD ,αD

is a pseudo-torsor for Z1
αD

(W 0
F /I

0
F,b, T ) in the sense

of [Sta, Tag 0497], so by the discussion following [DHKM20, 3.6] it suffices to show that there is a
faithfully flat Z[D−1]-algebra R such that Σ(W 0

F ,T )φD ,αD
admits an R-point with finite image.

If Z1(W 0
F , Ĝ)φD,αD

is nonempty, then by flatness it contains a Q-point ϕ. The last paragraph
of the section Lifting this point to characteristic 0 in the proof of [DHKM20, 3.6] shows that there
exists such a ϕ with finite image, and by passing to a conjugate we may and do assume AdLϕ

preserves (B,T ). Using the fact that Q = lim−→N
Z[1/N ], we may and do assume that ϕ factors

through Ĝ(Z[D−1, 1/N ]) for some N . Let K be a number field such that Lϕ factors through

https://stacks.math.columbia.edu/tag/0497
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Ĝ(OK [D−1, 1/N ]), and let λ be a prime of OK not dividing any element of D; it is enough to
show now that, after possibly extending K, the L-homomorphism Lϕ can be conjugated to factor

through Ĝ(OKλ
). Since Lϕ has finite (hence bounded) image, this follows from [Cot23b, 1.3]. �

In general, if R is a Z[D−1]-algebra, let Z1(W 0
F /PF , Ĝ)rD=1

R denote the clopen subscheme of

Z1(W 0
F /PF , Ĝ)R consisting of those ϕ satisfying rD(ϕ) = 1. For given admissible φD and αD,

choose ϕ : W 0
F → Ĝ(Z[D−1]) as in Theorem 4.5. The map ρ 7→ ρ · ϕ gives an isomorphism

Z1
ϕ(W

0
F /PF , ZĜ(φD)

0)rD=1
R

∼
−→ r−1

D (φD)αD
⊗Z[D−1] R.

Note that the action of WF on ZĜ(φD)
0 induced by ϕ is D-tame in the following sense.

Definition 4.6. The action of WF on Ĝ is D-tame if it is trivial on I0F,b for some b ∈ D′.

Thus Theorem 1.3 reduces to the following a priori weaker statement.

Theorem 4.7. Suppose that the action of WF on Ĝ is D-tame and preserves a Borel pair. If R is
an integral domain over Z[1/p] and DR = D, then Z1(W 0

F /PF , Ĝ)rD=1
R is connected.

5. Proof of Theorem 1.3

For the rest of this paper, we keep the notation of Section 1.1 and assume that the action of WF

on Ĝ is D-pure in the sense of Definition 4.6. Moreover, let R be an integral domain over Z[1/p]
such that DR = D, and let D′ be as in Section 4. As we have shown in the previous section, to
prove Theorem 1.3 (or the slightly stronger Theorem 4.4), it is enough to prove Theorem 4.7.

5.1. Reduction to the simply connected case. The goal of this section is to reduce Theorem 4.7
to the case that Ĝ is semisimple and simply connected. In fact, for completeness we prove slightly
more than is necessary. We begin by establishing Theorem 4.7 in the case that Ĝ is a torus; the
case R = Z[1/p] is established in [Dat22, 3.14] by a completely similar argument.

Lemma 5.1. Let T̂ be a torus over R equipped with a finite D-tame action of W 0
F /PF . The scheme

Z1(W 0
F /PF , T̂ )

rD=1
R is connected.

Proof. Let n be an integer as in Lemma 4.2, where P = PF , and let b be the largest factor of n
lying in D′. Thus Z1(W 0

F /PF , T̂ )
rD=1
R is the kernel of the map T̂R × T̂R → T̂R × T̂R given by

(Φ0,Σ0) 7→ (Φ0 ·
FrΣ0 ·

sqΦ0
−1 ·

(
q−1∏

i=0

siΣ0

)−1

,

b−1∏

i=0

siΣ0).

By [SGA3II, IX, 6.8], this is a diagonalizable R-group scheme, so it is enough to show that its
character group has torsion order in D′. If the action of s is trivial, then this is clear because
Z1(W 0

F /PF , T̂ )
rD=1
R is a closed R-subgroup scheme of T̂ × T̂ [b] which surjects onto the first factor

of T̂ . If instead the map Ls : t 7→ t(st)−1 is an isogeny, then the map mb : t 7→
∏b−1

i=0
sit is trivial.

Indeed, since the action is D-tame, sb acts trivially on T̂ , so the homomorphism mb : T̂ → T̂ factors
through the finite ker(Ls), hence is trivial. Thus the map Z1(W 0

F /PF , T̂ )
rD=1
R → T̂R given by

ϕ 7→ ϕ(s) is an isogeny with kernel ker(Lsq), which is of order in D′ by [DM18, 1.2(1)].

In general, the isogeny T̂ → T̂s × T̂ /T̂ s is of degree in D′ by [DM18, 1.2(3)]. Thus the map

Z1(W 0
F /PF , T̂ )

rD=1
R → Z1(W 0

F /PF , T̂s)
rD=1
R × Z1(W 0

F/PF , T̂ /T̂
s)rD=1

R

has finite kernel and cokernel of order in D′ and the lemma follows. �

Lemma 5.2. Let ℓ be prime, and let f : H → H ′ be an isogeny of connected reductive Fℓ-groups
which is equivariant with respect to finite actions of a finitely generated group Γ. If f is of ℓ-power
degree, then the pushforward f∗ : Z

1(Γ,H) → Z1(Γ,H ′) is a homeomorphism.
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Proof. Since Γ is finitely generated, its actions on H and H ′ are both defined over some finite field
Fℓn . Note that ker f is finite and connected, so, after possibly increasing n, there is an isogeny
h : H ′ → H such that g ◦ f is equal to the relative Frobenius F : H → H(ℓn) ∼= H. Note that g is
automatically Γ-equivariant because f and F both are. Moreover, the pushforward F∗ is equal to
the relative Frobenius of Z1(Γ,H): one can see this by embedding Z1(Γ,H) into Hn via a surjection
from a free group to Γ. Thus F∗ is a homeomorphism, and a symmetric argument with g in place
of f shows that f∗ is a homeomorphism. �

Lemma 5.3. Let f : Ĝ′ → Ĝ be a homomorphism of reductive OK [D−1]-group schemes which is
equivariant with respect to finite D-tame actions of WF /PF . If f induces an isogeny of derived

groups, then f∗ : Z
1(W 0

F/PF , Ĝ
′)rD=1
R → Z1(W 0

F /PF , Ĝ)
rD=1
R is surjective on π0.

Proof. First suppose that f is an isogeny. Let n be the degree of f , and factor n =
∏m

i=1 ℓ
ki
i , where

ℓi 6= ℓj for i 6= j. There is a unique factorization

f =

(
Ĝ′ = Ĝm

fm
−−→ Ĝm−1

fm−1
−−−→ · · ·

f1
−→ Ĝ0 = Ĝ

)
,

where fi is of degree ℓkii . Note that the action of WF on Ĝ extends uniquely to actions on Ĝi for
all i by canonicity, and each fi is WF -equivariant.

For each 1 ≤ i ≤ m, there is a pushforward (fi)∗ : Z
1(W 0

F/PF , Ĝi)
rD=1 → Z1(W 0

F /PF , Ĝi−1)
rD=1.

If ℓi ∈ D′, the map ((fi)∗)OK/ℓi is a homeomorphism by Lemma 5.2, and hence (fi)∗ is surjective
on π0 by Lemma 3.2.

Next suppose ℓi ∈ D. We claim that if k is an algebraically closed field over R, then ((fi)∗)k is
surjective. We first reduce to the case that k is of positive characteristic. Note that by standard limit
arguments, there is a saturated multiplicatively closed subset D1 ⊂ D such that D1 contains only

finitely many primes, the action of WF on Ĝ is defined over OK [D−1
1 ], and Z1(W 0

F/PF , Ĝ)
rD1

=1

R =

Z1(W 0
F /PF , Ĝ)rD=1

R . If char k = 0, then to show that ((fi)∗)k is surjective it follows from a standard
constructibility argument that it is enough to show that ((fi)∗)OK/ℓ′ is surjective for all ℓ′ 6∈ D1.

So suppose that k is of characteristic ℓ′.

By Lemma 4.2 and the definitions, any cocycle ϕi−1 ∈ Z1(W 0
F /PF , Ĝi−1)

rD=1(k) satisfies Lϕ(s)b =

1 for some b ∈ D′. If Nb is the smallest normal subgroup of WF/PF containing sb, then ϕ induces

a cocycle WF /Nb → Ĝi−1(k) and the obstruction to lifting ϕi−1 to Z1(W 0
F /PF , Ĝi)

rD=1(k) lies in
H2(WF/Nb, ker(fi)(k)). By the Hochschild–Serre spectral sequence, there is an exact sequence

H1(WF /IF ,H
1(IF /Nb, ker(fi)(k))) → H2(WF /Nb, ker(fi)(k)) → H2(IF /Nb, ker(fi)(k))

WF /IF

Since IF /Nb is finite of order coprime to the order of ker(fi)(k), we see that the outer terms of
this exact sequence vanish and hence the middle term vanishes as well. So we see that ((fi)∗)k is
surjective, and by the above it follows that (fi)∗ is surjective. We have shown each (fi)∗ is surjective
on π0 and thus f∗ is surjective on π0.

Now let Z (resp. Z ′) be the maximal central torus of Ĝ (resp. Ĝ′), and let D(Ĝ) (resp. D(Ĝ′)) be

its derived group. The multiplication morphism m : Z × D(Ĝ) → Ĝ (resp. m′ : Z ′ × D(Ĝ′) → Ĝ′)
is a central isogeny by [SGA3III new, XXII, 6.2.4]. There is a commutative diagram

Z ′ × D(Ĝ′) Z × D(Ĝ)

Ĝ′ Ĝ

f̃

m′ m

f
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and we have shown above that m′
∗ and m∗ are both surjective on π0. Moreover, Z1(W 0

F /PF , Z)

and Z1(W 0
F /PF , Z

′) are both connected by Lemma 5.1, and f̃ : D(Ĝ′) → D(Ĝ) is an isogeny, so f̃∗
is also surjective on π0. Thus f∗ is surjective on π0, as desired. �

5.2. A map to the adjoint quotient. As in Section 3.3, denote the GIT quotient (Ĝ⋊ s)//Ĝ by

Ĝ//sĜ, and let χs : Ĝ⋊ s→ Ĝ//sĜ be the natural map. Let W0 be the subgroup of s-fixed points

of the Weyl group of T̂ in Ĝ, and let A = T̂ /(1− s)T̂ . There is a natural map T̂ → Ĝ//sĜ given by

t 7→ χs(t⋊ s), and Theorem 3.10 shows that the induced map A/W0 → Ĝ//sĜ is an isomorphism.

Define an OK [D−1]-morphism Σ: Z1(W 0
F /PF , Ĝ) → Ĝ⋊ s by ϕ 7→ Lϕ(s). Define Σ = χs ◦ Σ.

There are maps Ĝ ⋊ s → Ĝ ⋊ sq given by the qth power map and Fr, and these induce

Fr−1[q] : Ĝ//sĜ → Ĝ//sĜ. Let BĜ = (Ĝ//sĜ)Fr
−1[q]. Moreover, let BĜ[D

′] denote the closed
subscheme of (BĜ)OK [D−1] consisting of those sections x satisfying [b]x = χs(1) for some b ∈ D′.

Define ΣD′ and ΣD′ to be the restrictions of Σ and Σ to Z1(W 0
F /PF , Ĝ)rD=1, and note that ΣD′

factors through BĜ[D
′]. In fact, Z1(W 0

F /PF , Ĝ)rD=1 = Σ
−1

(BĜ[D
′]).

For each w ∈ W0, let Aw be the subscheme of A consisting of those a such that
(
Fr−1

a
)q

=

na (sn)−1, where n is a lift of w in NĜ(T̂ ). Let Aw[D
′] denote the closed subscheme of Aw consisting

of those a such that χs(a
b) = χs(1) for some b ∈ D′.

Lemma 5.4. Each (Aw[D
′])R is finite and connected, and the natural map

⋃
w∈W0

Aw[D
′]R →

BĜ[D
′]R is surjective.

Proof. Note that Aw[D
′] is a torsor for the multiplicative type OK [D−1]-group scheme A′

w[D
′]

consisting of those a ∈ A such that ab = 1 for some b ∈ D′ and
(
Fr−1

a
)q

= wa. Since each A′
w is a

multiplicative type group scheme, to show that Aw is finite and connected it suffices to show that
A′

w(Q) contains no elements of order in D. But this is clear.

By Theorem 3.10, the natural map (A/W0)
Fr−1[q] → BĜ is an isomorphism. Moreover, the map⋃

w∈W0
Aw[D

′] → (A/W0)
Fr−1[q][D′] is clearly surjective. �

As we will see in Section 5.4, the map of Lemma 5.4 is the key to showing that (imΣD′)R is
connected and thereby (using the results of this section) to proving Theorem 4.7.

Lemma 5.5. For every algebraically closed field k of characteristic 6= p, every w ∈W0, and every
a ∈ Aw[D

′](k), there is some ϕ ∈ Z1(W 0
F /PF , Ĝ(k)) such that Σ(ϕ) = χs(a).

Proof. Note that AFr−1
w
(k) is, equivalently, the set of a ∈ A(k) such that aq = wFra · n

(
sqn
)−1

.

Lifting a arbitrarily to t0 ∈ T̂ (k), we find that there is some t′ ∈ T̂ (k) such that

q−1∏

i=0

sit0 =
wFrt0 · n

(
sqn
)−1

· t′
(s
t′
)−1

.

Now (1 − s)T̂ = (1 − sq)T̂ : indeed, clearly (1 − sq)T̂ ⊂ (1 − s)T̂ , so these are equal for di-

mension reasons because (1 − sq)T̂ = (Fr − Frs)Fr−1T̂ . Moreover, (1 − s)T̂ is clearly W0-stable.

In particular, there is some t′′ ∈ T̂ (k) such that
w(

t′′
(
sqt′′

)−1
)

= t′ (st′)
−1

. We thus define

ϕ ∈ Z1(W 0
F/PF , Ĝ(k)) by ϕ(Fr) = nt′′ and ϕ(s) = t0. �

Lemma 5.6. The map Σ factors through a surjective map to BĜ. Moreover, the schematic image

imΣ is finite flat. Completely similar claims hold for ΣD′ and imΣD′ with BĜ[D
′] in place of BĜ.
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Proof. Since Z1(W 0
F /PF , Ĝ) is flat over the Dedekind domain OK [1/p], it is clear that imΣ is also

flat. The fact that Σ factors through BĜ follows directly from the fact that

Lϕ(Fr) Lϕ(s) Lϕ(Fr)−1 = Lϕ(s)q

for ϕ ∈ Z1(W 0
F /PF , Ĝ). Moreover, the set-theoretic image of Σ is equal to BĜ by Lemma 5.4 and

Lemma 5.5. Finiteness of BĜ, and hence imΣ, thus follows from Lemma 5.4. The surjectivity of

Σ follows from Lemma 5.4 and Lemma 5.5. The claims for ΣD′ are immediate consequences. �

Lemma 5.7. Suppose that for every field k over OK [D−1] and every x ∈ (imΣD′)(k), the preimage

Σ
−1

(x) is connected. Then the map π0(Z
1(W 0

F/PF , Ĝ)rD=1
R ) → π0((imΣD′)R) is bijective.

Proof. This follows from Lemma 5.6, Lemma 3.2, and Lemma 3.4. �

Remark 5.8. If Ĝ is semisimple and simply connected and the action of WF on Ĝ is unramified,
then [Sho23, 3.6] and [DHKM20, 4.1] combine with fppf descent to show that BĜ is flat with étale

generic fiber, so in this case we have imΣ = BĜ. In fact, [Sho23, 3.8] suggests that this equality
holds even for ramified actions. Since we do not need this refined result, we have not attempted to
prove it. For Ĝ which are not simply connected, it is not clear that BĜ is flat.

5.3. Deformation to quasi-semisimple inertia. In this section, we use the results of Section 3.2
to show that every L-homomorphism Lϕ : W 0

F /PF → LG(k) can be deformed to a cocycle such that
Lϕ(s) has quasi-semisimple action on Ĝ, and use this to deduce a connectedness claim.

Lemma 5.9. Let k be a field, let x ∈ (Ĝ//sĜ)(k) be a point, and let C ⊂ χ−1
s (x) be the unique

closed Ĝ-orbit. The inclusion Σ−1(C) → Σ
−1

(x) induces a surjection on π0.

Proof. We may and do assume k = k. Let Lϕ ∈ Σ
−1

(x)(k). By Theorem 3.5 and the Hilbert-

Mumford criterion, there is a cocharacter λ : Gm → Ĝ such that Lψ := limt→0 Ad(λ(t)) ◦
Lϕ exists

and is completely reducible. By Theorem 3.6, the restriction Lψ|I0
F
/PF

is completely reducible, so

Lemma 3.7 shows that Lψ(s) ∈ C(k), so we have produced a morphism f : A1 → Σ
−1

(x) with
f(1) = Lϕ and f(0) ∈ Σ−1(C)(k). �

Lemma 5.10. Let k be a field over OK [D−1], and let x ∈ (imΣD′)(k). If Ĝ is semisimple and

|π1(Ĝ)| ∈ D, then Σ
−1

(x) is connected.

Proof. By Lemma 5.9, it is enough to show that X = Σ−1(C) is connected. Note that Σ restricts

to a surjective k-morphism X → C. There is a natural map [q] : C → Ĝ ⋊ sq given by the qth

power, whose scheme-theoretic image we call C [q]. Being a surjective morphism of homogeneous
spaces for Ĝ, the map C → C [q] is flat. Let H denote the fiber product

H Ĝ× C [q]

C C [q] × C [q]

(g,t)7→(gtg−1, t)

∆◦[q]

so H is a “universal twisted centralizer” over C, and the diagram shows that H → C is flat.
Moreover, there is an action map α : H ×C Σ−1(C) → Σ−1(C) given by α(h, ϕ)(Fr) = hϕ(Fr) and

α(h, ϕ)(s) = ϕ(s), which makes Σ|X into an H-torsor over C. By [Ste68, 9.11], since |π1(Ĝ)| ∈ D
and each t ∈ C(k) is quasi-semisimple of (finite) order in D′, it follows that H has connected fibers

over C. Since C is a single Ĝ-orbit, it is in particular connected, and thus X is connected. �
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5.4. Connectedness of the scheme of eigenvalues. In this section, we complete the proof of
Theorem 4.7 by showing that (imΣD′)R is connected. We retain the notation of Section 5.2.

By Lemma 5.5 and Lemma 5.4, we have a surjection |
⋃

w∈W0
Aw[D

′]R| → |(imΣD′)R|, where
each Aw[D

′]R is finite and connected. The image of each Aw[D
′]R in (A/W0)R is closed, so we

see π0((imΣD′)R) = W0/∼, where ∼ is the equivalence relation generated by the relation w ∼ w′

whenever the images of Aw[D
′]R and Aw′ [D′]R in (A/W0)R intersect. In this section, we will

show that w ∼ w′ for all w,w′ ∈ W0, and thus (imΣD′)R is connected. In fact, we will see that

Aw[D
′]R ∩ Aw′ [D′]R 6= ∅ for all w,w′ ∈ W0 whenever Z(Ĝ) is non-smooth at at most one prime

in D′. However, this can fail for simple groups in type A by the following example, so this case is
worked out separately in Appendix A.

Example 5.11. Let Ĝ = SL6, let q = 7, and let α be a primitive 36th root of unity. Let Fr act
trivially on Ĝ, and let s act as Ad(t), where t = diag(α,α, α, α, α, α−5). If w = (1 2 3 4 5 6), we
claim that A1 ∩ Aw = ∅. Indeed, if k is a field then any element (γ1, . . . , γ6) of A′

1(k) ∩ A
′
w(k) is

required to satisfy γ6i = α−6 for all i and also γi = γj for all i, j. This is not possible for any field
k because there is no 6th root of α−6 in µ6(k) (as 6 is not a power of char k).

Write s = Ad(t) ◦ s0 and Fr = Ad(t′) ◦ F0, where t, t
′ ∈ T̂ (OK [D−1]) and s0 and F0 preserve

a pinning (B̂, T̂ , {Xα}); this is possible by [SGA3III new, XXIV, 1.3]. The relation FrsFr−1 = sq

implies Ad

(
Frt · t′ ·

(
sq t′
)−1

)
= Ad

(∏q−1
i=0

sit
)
, so Frt ·t′ ·

(
sqt′
)−1

=
(∏q−1

i=0
sit
)
·z for some central

element z. In particular, [Frt] · [t−q] = [z], where we use [x] to denote the image of x in A. Since the

action is D-tame, we have tb ∈ Z(Ĝ)(OK [D−1]) for some b ∈ D′. Writing tb = z0z1 as a product of
central elements, where z0 has order in D and z1 has order in D′, we may pass to a translate of t
by a bth root of z−1

0 to assume that [z] is of finite order in D′.

Lemma 5.12. With notation as above, we have Aw = [t]−1·
{
a ∈ A :

(
Fr−1

a
)q

(wa)−1 =
[
Fr−1

z−1
]}

.

Proof. Let A′
w =

{
a ∈ A :

(
Fr−1

a
)q

(wa)−1 =
[
Fr−1

z−1
]}

. We need only check the equality Aw =

[t]−1 · A′
w of generically étale flat closed subschemes of A on Q-points. By [DM94, 1.15], we may

choose some n ∈ NĜ(T̂ )(Q) lifting w which is fixed by s0. We have then n (sn)−1 = ntn−1t−1 =
wt · t−1, so if a ∈ Aw(Q) then

Fr−1

([t]a)q = [t] ·
[
Fr−1

z−1
]
· wa · [wt] · [t−1].

This shows [t]a ∈ A′
w(Q). Moreover, the calculation can be run in reverse to show that if a′ ∈ A′

w(Q)
then [t]−1a′ ∈ Aw(Q). �

Lemma 5.12 shows in particular that ∼ only depends on D, z, and th e action of WF on A.

Proposition 5.13. If Ĝ is semisimple and simply connected, then (imΣD′)R is connected.

Proof. By [SGA3III new, XXIV, 5.3, 5.5], there is a unique direct product decomposition Ĝ ∼=∏
i∈I Ĝi for semisimple OK [D−1]-group schemes Ĝi with absolutely simple fibers. The action of

WF on Ĝ permutes the Ĝi, soWF acts on I and we may write I =
∐k

j=1 Ij where each Ij is a single

WF -orbit. If ĜIj :=
∏

i∈Ij
Ĝi, then we have Z1(W 0

F /PF , Ĝ)rD=1 ∼=
∏k

j=1 Z
1(W 0

F /PF , ĜIj )
rD=1.

Since each Z1(W 0
F /PF , ĜIj )

rD=1 admits a section over OK [D−1] (namely, the trivial cocycle), we

may thus reduce from Ĝ to ĜIj to assume that WF permutes the simple factors of Ĝ transitively.

In particular, the simple factors of Ĝ are pairwise isomorphic.

Supppose that the center of Ĝ is smooth over OK [(D∪{ℓ})−1] for some prime ℓ ∈ D′, so [z] is of ℓ-
power order. If m is a maximal ideal of R containing ℓ, then Lemma 5.12 shows t−1 ∈ Aw[D

′](R/m)
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for all w ∈ W0, so W0/∼ is a singleton. On the other hand, if |Z(Ĝ)| is divisible by at least two

primes inD′, then the simple factors of Ĝ are all isomorphic to SLn for some n, and thus Lemma A.7
shows that π0((imΣD′)R) ∼=W0/∼ is a singleton, as desired. �

Proof of Theorem 4.7. By Lemma 5.3, we may and do pass from Ĝ to the universal cover of the
derived group D(Ĝ) to assume that Ĝ is semisimple and simply connected. By Lemma 5.7 and

Lemma 5.10, the natural map π0(Z
1(W 0

F/PF , Ĝ)R) → π0((imΣ)R) is bijective. By Proposition 5.13,

the scheme (imΣD′)R is connected, so we are done. �

Remark 5.14. The proof of Proposition 5.13 (and thus Theorem 4.4) can be made uniform for Ĝ

such that Z(Ĝ)OK [(D∪{ℓ})−1] is smooth for some ℓ 6∈ D, and hence (by splitting into simple factors) if

Ĝ has no simple factors of type A. In the reduction from Theorem 4.4 to Theorem 4.7, one replaces
Ĝ by the identity component Ĝ′ of the group of fixed points of the action of a finite group of order
in D on Ĝ, and it may happen that Ĝ′ has simple factors of type A. However, if Z(Ĝ)OK [(D∪{ℓ})−1]

is smooth for some ℓ 6∈ D, then [DHKM20, 3.11] or [Cot22, 3.2, 5.5] can be used to show that

Z(Ĝ′)OK [(D∪{ℓ})−1] is also smooth, so a trick using z-extensions and an analogue of [DHKM20, 4.27]
over R (akin to the argument in Section 5.1) would allow one to prove Conjecture 1.1 uniformly
away from type A.

Appendix A. Type A

In this section, we retain the notation of Section 5, especially 5.4. We will assume that Ĝ ∼= SLm
n

and that W 0
F /PF permutes the simple factors of Ĝ transitively. Further, T̂ is the diagonal torus

and B̂ is the upper-triangular Borel. Our aim is to show that w ∼ w′ for all w,w′ ∈W0, which will
involve constructing a sequence w = w0, w1, . . . , wN = w′ such that Awi

∩ Awi+1 6= ∅ for all i. We
begin with the first nontrivial example, illustrating part of our algorithm for constructing wi.

Example A.1. We retain the notation and definitions of Example 5.11. Although Aw ∩ A1 = ∅,
we will show that w ∼ 1. Let w′ = (1 2 3)(4 5 6), and let β = α6. Because a 6th root of unity
in F2 is automatically a 3rd root of unity, a short calculation using Lemma 5.12 shows that the
element t−1 diag(1, β, β2, β3, β4, β5) lies in (Aw ∩ Aw′)(F2). (In fact, Aw and Aw′ only intersect
modulo 2.) If w′′ = (1 2 3), then in fact (Aw′ ∩Aw′′)(Q) 6= ∅: this follows from a general argument
using Lemma A.3 (in the case a = 1 and σw = w for all w), but one can explicitly compute that
t−1 diag(α11, α−1, α23, α, α, α) lies in this intersection. Moreover, 1 ∈ (Aw′′ ∩A1)(Q). This gives a
chain which proves w ∼ 1 in this case.

Example A.1 gives the model for our argument below: break apart n-cycles by specializing
modulo a well-chosen prime, then cut off individual cycles by finding intersections over Q. In order
to deal with actions of W 0

F /PF which are more complicated than the one in Example A.1, the
general argument requires more notation, which we now begin to introduce.

Let I1, . . . , Ia be the s-orbits on {1, . . . ,m}. Since W 0
F/PF permutes the simple factors of Ĝ

transitively, it follows that Fr permutes the Ii transitively. By reordering the Ii, we may and do
assume that Fr sends each Ii+1 to Ii, where we write Ia+1 = I1. We first note that we may reduce
to the case a = 1.

Lemma A.2. Let Fa denote the unramified extension of F of degree a. The natural restriction
map r : Z1(W 0

F , Ĝ) → Z1(W 0
Fa
, ĜI1) is smooth with geometrically connected fibers.

Proof. The proof of [DHKM20, 5.13] can be read directly with only very minor adaptations to show

that r is isomorphic to the projection map of Z1(W 0
Fa
, ĜI1)× Ĝa−1

I1
onto its first factor, where ĜI1

is the product of the factors of Ĝ with index in I1. �
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Note that sm induces an automorphism of each factor of Ĝ; we denote its image in the group of
outer automorphisms of SLn by ǫ(s), and note that it is independent of the choice of factor. The
relation FrsFr−1 = sq implies that ǫ(s) = ǫ(s)q, so ǫ(s) is trivial if q is even. If S denotes the diagonal
torus of SLn, then ǫ(s) induces an automorphism of S by identifying S as the group of coinvariants of

Sm under the permutation action induced by s. We have A = T̂ /(1−s)T̂ = S/(1−ǫ(s))S. Similarly,
Fr induces an automorphism of S, and we denote its image in the group of outer automorphisms
by ǫ(Fr). When the context makes it unambiguous, we will also use ǫ(s) and ǫ(Fr) to denote their
images under the canonical isomorphism Out(SLn) ∼= {±1}.

The action of Fr on S is given by (β1, . . . , βn) 7→
(
β
ǫ(Fr)
Fr(1), . . . , β

ǫ(Fr)
Fr(n)

)
, where we use Fr here and

below to (abusively) denote the involution of {1, . . . , n} induced by ǫ(Fr). Similarly, we will use s
to denote the permutation induced by ǫ(s). If t = (γj)

n
j=1 ∈ S(A) for a ring A, and σ ∈ Sn is a

permutation, then by definition σt := (γσ−1(j))
n
j=1.

Keeping the notation preceding Lemma 5.12, we have s = Ad(t) ◦ s0 and Fr = Ad(t′) ◦F0, where

t, t′ ∈ T̂ (OK [D−1]) and s0 and F0 preserve a pinning (B̂, T̂ , {Xα}), and we have

Frt · t′ ·
(
sq
t′
)−1

=

(
q−1∏

i=0

sit

)
· z

for a central element z. Note that the map Z(Ĝ)s → Z(Ĝ)s given by t 7→ Frt · t−q has kernel of
order dividing qa − ǫ(Fr), as one can see by a straightforward calculation. Thus, after possibly

extending K, we may and do alter t by an element of Z(Ĝ)s(OK [D−1]) to assume that every prime
dividing the order of z divides qa− ǫ(Fr). Similarly, since the action of WF is D-tame, we may and
do assume that z has order in D′.

If w ∈W0, we define Sw to be the closed subscheme of S consisting of those sections t such that(
Fr−1

t
)q

· (wt)−1 =
[
Fr−1

z−1
]
. By Lemma 5.12, if Sw[b] ∩ Sw′[b] 6= ∅ for some b ∈ D′, then w ∼ w′.

In fact, it is enough to show Sw ∩ Sw′ admits a torsion point: suppose k is a field over R and
t ∈ Sw(k) ∩ Sw′(k) is of order n = ab for a ∈ D, b ∈ D′. Let c ∈ D be such that ac ≡ 1 (mod n0),
and note (

Fr−1

tac
)q

· (wtac)−1 =
[
Fr−1

z−1
]ac

=
[
Fr−1

z−1
]
,

so tac ∈ Sw[b](k) ∩ Sw′[b](k). For convenience, if w ∈W0 we will write σw := Frw ∈W0.

Having set up the necessary notation, we are now ready to begin proving that w ∼ w′ for all
w,w′ ∈W0. By symmetry, we need only show that w ∼ Fr for all w ∈W0.

Lemma A.3. Let w,w′ ∈ W0 be such that σw commutes with σw′. If Sσ−1
w σw′ is a torus, then

Sw[b] ∩ Sw′ [b] 6= ∅ for some b ∈ D′.

Proof. Define a map f : S → S by f(t) = tq · (σwt)−1. Let k be an algebraically closed field over R
and note (ker f)(k) has no p-torsion, so f is an isogeny. If A is an R-algebra and t ∈ S(A) is fixed
by σ−1

w σw′ , then we have

σ−1
w σw′ f(t) =

σ−1
w σw′

(
tq · (σwt)−1

)
= f(t)

since σw commutes with σ−1
w′ σw = w−1w′. Thus f induces an isogeny of tori Sσ−1

w σw′ → Sσ−1
w σw′ .

In particular, since Z(SLn) ⊂ Sσ−1
w σw′ , it follows that there exists a torsion element t ∈ Sσ−1

w σw′ (k)

such that t ∈ Sw(k). But
wt = w′

t, so also t ∈ Sw′(k), and thus w ∼ w′. �

Lemma A.3 is not enough to prove w ∼ w′ for all w,w′ ∈ W0, but it is enough to show this for
“most” w and w′, as we now explain. We will say σ ∈ Sn is an s-cycle if either σ is a cycle or there
is a cycle c ∈ Sn such that c and ǫ(s)c are disjoint and σ = c · ǫ(s)c. If σ ∈ Sn is fixed by ǫ(s), then
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there is a unique decomposition σ = c1 · · · cr of σ into disjoint s-cycles c1, . . . , cr. If σ is an s-cycle,
then we define its length to be the number of i such that σ(i) 6= i.

Lemma A.4. If σw is not a single s-cycle of length n, then Sw[b] ∩ SFr[b] 6= ∅ for some b ∈ D′.

Proof. First, let σw = c1 · · · cr be the decomposition of w into disjoint s-cycles of length > 1, so
either r ≥ 2 or r = 1 and c1 is of length < n. Note w ∼ Frc1 by Lemma A.3, since Sσ is a torus for
any permutation σ in Sn which has a fixed point. Thus we may assume that r = 1. In this case,
another application of Lemma A.3 shows that w ∼ Fr, as desired. �

Thus we must show that if w ∈ W0 is a single s-cycle of length n, then there is some w′ ∈ W0

which is not a single s-cycle of length n such that w ∼ w′. We begin with an elementary lemma
for which we do not know a reference.

Lemma A.5. Let n0, e, q ≥ 1 be integers such that every prime number dividing n0 divides q − 1.

(1)
∑n0e−1

i=0 qi ≡ 0 (mod n0),

(2)
∑n0e−1

i=0 (n0e− 1− i)qi ≡ 0 (mod n′0), where n
′
0 = n0 for n0 odd and n′0 = n0/2 for n0 even.

Proof. We may and do assume e = 1 and n0 = ℓa for some prime number ℓ and some a ≥ 1. Write
q = ℓcd+ 1, where ℓ ∤ d. For (1), note that

ℓa−1∑

i=0

qi =
(ℓcd+ 1)ℓ

a

− 1

ℓcd
.

It is elementary to check that if x ≡ y (mod ℓc), then xℓ
a
≡ yℓ

a
(mod ℓa+c), so the displayed

equation implies (1). Note that the sum in (2) is equal to the value at X = ℓcd of

d

dx

1− (1 +X)ℓ
a

X
=

−ℓaX(1 +X)ℓ
a−1 + (1 +X)ℓ

a

− 1

X2
=

ℓa∑

i=2

((
ℓa

i

)
− ℓa

(
ℓa − 1

i− 1

))
Xi−2.

Modulo ℓa, this sum is equal to qℓ
a
−(1+ℓa+cd)

q2
. Standard estimates using Legendre’s formula show

that qℓ
a
≡ 1 + ℓa+cd (mod ℓa+2c) if ℓ 6= 2, and qℓ

a
≡ 1 + ℓa+cd (mod ℓa+2c−1) if ℓ = 2. This

immediately yields (2). �

An element of S is identified with a tuple (γj) with 1 ≤ j ≤ n such that
∏n

j=1 γj = 1. Note in

particular that
[
Fr−1

z−1
]
is identified with an nth root of unity α. Note that a tuple (γj) lies in

Sw if and only if

γσ−1
w (j) = γ

ǫ(Fr)q
j α−1

for all j.

Lemma A.6. Suppose w is an s-cycle of length n. There is some w′ ∈ W0 which is a product of
disjoint s-cycles of length < n such that Sw[b] ∩ Sw′[b] 6= ∅ for some b ∈ D′.

Proof. If n is divisible by at most one prime in D′, then this follows from the argument of Proposi-
tion 5.13, so we will assume that n is divisible by at least two primes in D′. Let n′ equal n if w is a
single cycle of length n, and n/2 if w is a product of two disjoint s-conjugate cycles whose lengths
add to n (so in particular n is even and 2 ∈ D′). Let ℓ be a prime number in D′ dividing n′, and
write n′ = ℓcd for some d such that ℓ ∤ d. Define w′ ∈ W0 as follows: σw′σiw(1) is equal to σ

i+1
w (1)

if d ∤ i+ 1, and σi+1−d
w (1) if d | i+ 1. If n′ = n, then this determines w′; otherwise, we also require

that σw′σiw(n) is equal to σ
i+1
w (n) if d ∤ i+ 1, and σi+1−d

w (n) if d | i+ 1.

If n′ = n, then we find

σw′ = (1σw(1) · · · σ
d−1
w (1))(σdw(1) · · · ) · · · (σ

(ℓc−1)d
w (1) · · · σn−1

w (1)).
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If n′ = n/2, then we have

σw′ = (1σw(1) · · · σ
d−1
w (1)) · · ·(σ(ℓ

c−1)d
w (1) · · · σn

′−1
w (1))·

·(n · · · σd−1
w (n)) · · · (σ(ℓ

c−1)d
w (n) · · · σn

′−1
w (n)).

We will show that, if one of the conditions

(1) n′ = n is odd,
(2) n′ = n and 2 ∈ D,
(3) n′ = n and ℓ = 2 ∈ D′,
(4) n′ = n/2 is even and ℓ = 2 ∈ D′,
(5) n′ = n/2 is odd and ℓ 6∈ D ∪ {2},

holds, then w′ ∈W0 and (Sw ∩Sw′)(Fℓ) 6= ∅, and thus w ∼ w′. This is enough to prove the lemma:
if n′ = n/2, then 2 ∈ D′ and this follows from (4) and (5) because n is divisible by at least two
primes in D′ by assumption. If n′ = n is odd, then this follows from (1). If n′ = n is even, then
this follows from (2) and (3) except possibly if ℓ = 2 ∈ D′ and n/2 is odd, in which case we can
pass from w to w′ to reduce to the already-established case n′ = n/2.

We begin by showing w′ ∈ W0. If ǫ(s) = 1, then this is trivial, so suppose ǫ(s) = −1. In this
case, it follows that n is even, since any permutation of {1, . . . , 2m+1} fixed by the flip fixes m+1.
Moreover, 2 ∈ D′. We have

ǫ(s)σw′σiw(1) =

{
σi+1
w (n) if d ∤ i+ 1,

σi+1−d
w (n) if d | i+ 1.

On the other hand, if n′ = n then ǫ(s)(1) = n = σ
n/2
w (1) and thus

σw′σiw(ǫ(s)(1)) =

{
σi+1
w (n) if d ∤ i+ 1 + n

2 ,

σi+1−d
w (n) if d | i+ 1 + n

2 .

If ℓ = 2, then d | n
2 , so we find ǫ(s)σw′ = σw′ǫ(s), i.e., σw′ ∈ W0, and thus w′ ∈ W0 since Fr ∈ W0.

Thus for the rest of this proof, we will assume ℓ = 2 whenever ǫ(s) = −1 and n′ = n. If instead
n′ = n/2, then the definitions immediately imply ǫ(s)σw′ = σw′ǫ(s) without restriction on ℓ.

To show w ∼ w′, suppose first that n′ = n. If either n is odd or 2 ∈ D, then we choose ℓ ∈ D′

arbitrarily; if n is even and 2 ∈ D′, then we take ℓ = 2. By the congruences of Lemma A.5,

there is an element t = (γj) of Sw(Fℓ) determined by γ
σ−j
w (1)

=
∏j−1

i=0 α
−(ǫ(Fr)q)i for all j. The key

observation is now that γ
σj
w(1)

= γ
σj+d
w (1)

in Fℓ for all j: indeed, unraveling, we must show that
∏d−1

i=0 α
ǫ(Fr)qi = 1 in Fℓ. This follows from Lemma A.5(1), using the facts that α is a gcd(d, n0)th

root of unity in Fℓ and that ǫ(Fr)q ≡ 1 (mod ℓ′) for every prime ℓ′ dividing gcd(d, n0). This shows
t ∈ Sw′(Fℓ). Since t is torsion, we find w ∼ w′.

Next, suppose n′ = n/2. In this case, n is even and 2 ∈ D′. If either ℓ = 2, or n′ is odd and
ℓ 6∈ D ∪ {2}, then we let t = (γj) be the element of Sw(Fℓ) determined by γ

σ−j
w (1)

= γ
σ−j
w (n)

=
∏j−1

i=0 α
−(ǫ(Fr)q)i for all j ≥ 0. Again, the congruences of Lemma A.5 imply that this is well-defined,

and the same argument as before implies t ∈ Sw′(Fℓ), allowing us to conclude. �

Lemma A.7. Suppose Ĝ ∼= SLm
n , where WF permutes the simple factors transitively. Then w ∼ w′

for all w,w′ ∈W0.

Proof. It follows from Lemma A.6 and Lemma A.4 that w ∼ Fr for all w ∈W0, as desired. �



CONNECTED COMPONENTS OF THE MODULI SPACE OF L-PARAMETERS 21

References

[Ber84] J. N. Bernstein. Le “centre” de Bernstein. In P. Deligne, editor, Representations of reductive groups
over a local field, Travaux en Cours, pages 1–32. Hermann, Paris, 1984.
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