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Quantum state teleportation is commonly used in designs for large-scale fault-tolerant quantum computers.
Using Quantinuum’s H2 trapped-ion quantum processor, we implement the first demonstration of a fault-tolerant
state teleportation circuit for a quantum error correction code - in particular, the planar topological [[7, 1, 3]]
color code, or Steane code. The circuits use up to 30 trapped ions at the physical layer qubits and employ real-
time quantum error correction - decoding mid-circuit measurement of syndromes and implementing corrections
during the protocol. We conduct experiments on several variations of logical teleportation circuits using both
transversal gates and lattice surgery protocols. Among the many measurements we report on, we measure the
logical process fidelity of the transversal teleportation circuit to be 0.975±0.002 and the logical process fidelity
of the lattice surgery teleportation circuit to be 0.851 ± 0.009. Additionally, we run a teleportation circuit that
is equivalent to Knill-style quantum error correction and measure the process fidelity to be 0.989± 0.002.

The quantum teleportation protocol was first discovered
by Bennett et al. [1] and was experimentally demonstrated
shortly thereafter [2–6]. By pre-distributing an entangled pair
of qubits to two registers, a third qubit can be teleported be-
tween the registers via transferring two bits of classical in-
formation. This protocol was immediately recognized as an
enabler for quantum computing or quantum networks, where
qubits need to interact in non-local geometries but moving
them is challenging or slow. By distributing entangled pairs
throughout a quantum computer, qubits can, in principle, be
transmitted at the same speed as classical information. As
it is strongly believed that fault tolerance will be needed for
large quantum computations, it is ultimately at the logical
level [7, 8] where teleportation becomes truly enabling.

In this work, we demonstrate the maturity of the H-series
trapped-ion quantum processors by performing the first fault-
tolerant version of the state teleportation circuit using a quan-
tum error correction (QEC) code (i.e., a quantum code with
distance of three or greater). We demonstrate four logical
variants of the teleportation protocol using up to 30 trapped-
ion qubits and real-time QEC and contrast the results with the
teleportation of physical qubits. Two of the logical variants
use lattice surgery to implement logical gates, which, to the
best of our knowledge, are the first demonstrations of lattice
surgery performed on a QEC code. These experiments used
Quantinuum’s H2 trapped-ion quantum processor [9], which
currently operates with 32 physical qubits. We give more
hardware details throughout the text and in Appendix A.

I. EXPERIMENTAL DESIGNS

In the teleportation protocol, the task is to send a state |ψ⟩
from one qubit register to another. We refer to the qubit ini-
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tially encoding |ψ⟩ as qubit one. To begin, an entangled Bell-
pair, (|00⟩+ |11⟩)/

√
2, is created as a quantum resource state

to facilitate the protocol, and we refer to these qubits as qubits
two and three (see Fig. 2). In the next step, a joint measure-
ment of qubits one and two is made by first entangling them
and then performing individual measurements on them, effec-
tively measuringX⊗X andZ⊗Z. This measurement “disas-
sembles” |ψ⟩ and yields two bits of classical information. The
joint measurement (or Bell measurement) reveals no local in-
formation about |ψ⟩, preventing a wave-function collapse, and
only reveals global information about the bit and phase pari-
ties between the measured qubits. The two bits of classical
information are then used to choose appropriate single qubit
operations to reassemble |ψ⟩ in the unmeasured qubit three.
So the state of qubit one is teleported into qubit three via the
transfer of two classical bits.

This section describes the three distinct groups of teleporta-
tion experiments we performed: (1) a physical-level protocol,
(2) a logical-level protocol using transversal gates, and (3) a
logical-level protocol using lattice surgery gates.

A. Physical-level Experiment

We establish a performance baseline by first characterizing
the teleportation protocol implemented at the physical level.
To do so, we constructed circuits consisting of four indepen-
dent teleportation circuits running in parallel. Four copies
were run to average the performance across the four gating
and measurement zones in the H2 trap [9]; therefore, the phys-
ical teleportation circuits used 12 qubits.

The teleportation circuit was benchmarked by sending an
informationally complete set of states through the circuit and
measuring the probability of finding the correct state at the
output. The six eigenstates of the single-qubit Pauli operators
were used as inputs: |ψ⟩ ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |+i⟩ , |−i⟩}.
The average state fidelity of the teleportation over this set is
Fa = 1

6

∑
ψ pψ , where pψ is the probability of finding the

ar
X

iv
:2

40
4.

16
72

8v
1 

 [
qu

an
t-

ph
] 

 2
5 

A
pr

 2
02

4

mailto:ciaran.ryan-anderson@quantinuum.com
mailto:natalie.brown@quantinuum.com


2

Physical 0 QEC 1 QEC MXXMZZ MZZ

10 3

10 2

10 1

In
fid

el
ity

State teleportation
Process infidelity
Average state infidelity

|0
|1
| +
|
| + i
| i

FIG. 1: The measured infidelities of teleportation protocol.
All six eigenstates of the three Pauli operators were used as
inputs to the gadget, with each state’s infidelity as denoted by
the individual colors. The informationally complete set of
states is sufficient to estimate the average state infidelity,
1− Fa (clear box around individual infidelities) and process
infidelity 1− Fp (grey box).

BELL STATE MEAS.

BELL STATE PREP.

|ψ⟩1 H

|0⟩2 H

|0⟩3 X Z |ψ⟩3

FIG. 2: The general circuit for the teleportation circuit. The
highlighted sub-circuit labeled “Bell state prep” creates the
entangled Bell-pair |00⟩+ |11⟩.

correct state as the output. This quantity determines the pro-
cess fidelity using Fp = ((d + 1)Fa − 1)/d [10], where, the
dimension, d = 2 for teleportation of a single qubit. Note,
this method of fidelity estimation does not distinguish differ-
ent sources of error (e.g., SPAM versus gate and memory er-
rors). In this work, we are focused on the different teleporta-
tion protocols studied and their overall fidelity. We leave it to
future work to analyze component-level performance on the
physical and logical level [11].

We measure the process fidelity of the physical-level exper-
iment to be 0.9895+3

−3, with details in Fig. 1 and Tables I,II.
We note that the state fidelities of the physical-level exper-
iment are lower for the −1 eigenstates compared to the +1
states. This could be due to a known bias of the device at the
physical level in measuring |0⟩ with slightly higher fidelity
than |1⟩ [12], but a careful investigation is beyond the scope
of this work.

|ψ⟩ Physical 0 QEC 1 QEC MXXMZZ MZZ

|0⟩ 0.9949+2
−2 0.999+1

−1 0.990+2
−2 0.950+4

−4 0.957+3
−3

|1⟩ 0.9932+3
−3 0.9987+9

−9 0.988+4
−4 0.943+7

−7 0.953+6
−6

|+⟩ 0.9941+8
−8 0.991+2

−2 0.983+3
−3 0.88+1

−1 0.925+8
−8

|−⟩ 0.9928+3
−3 0.990+3

−3 0.983+4
−4 0.91+2

−2 0.93+1
−1

|+i⟩ 0.9923+3
−3 0.991+2

−2 0.975+4
−4 0.87+2

−2 0.90+2
−2

|−i⟩ 0.9907+3
−3 0.985+4

−4 0.983+5
−5 0.86+2

−2 0.88+2
−2

Fa 0.9930+2
−2 0.992+1

−1 0.984+1
−1 0.901+6

−6 0.925+5
−5

Fp 0.9895+3
−3 0.989+2

−2 0.975+2
−2 0.851+9

−9 0.887+7
−7

Fa,QED NA 0.9997+2
−4 0.9999+1

−3 0.974+3
−3 0.995+1

−1

Fp,QED NA 0.9996+3
−5 0.9998+2

−5 0.962+5
−5 0.992+1

−1

TABLE I: The measured fidelities of teleportation protocol.
All six eigenstates of the three Pauli operators were used as
inputs to the gadget, with each state’s fidelity denoted as Fs.
The informationally complete set of states is sufficient to
estimate the average state fidelity Fa and process fidelity Fp.
The results obtained by analyzing the data as a QED code are
labeled with a QED subscript.

B. Logical-level Experiments: Transversal Circuits

This section describes two equivalent logical teleportation
protocols composed entirely of transversal gates. In bench-
marking transversal logical operations, a natural question
arises – whether or not to include QEC gadgets[15]. It is not
entirely uncommon to hear claims in the emerging field of ex-
perimental QEC that transversal circuits do not require QEC
gadgets to achieve fault tolerance, but in the context of large-
scale, real-world devices, this claim is oversimplified and de-
serves further nuance.

The claim stems from technical definitions of fault-
tolerance [16] and a requirement that circuit components not
allow a single fault to spread into multiple faults. Transver-
sal gates trivially satisfy this property. Since two composed
transversal operations can generate another transversal oper-
ation, one might conclude there is no limit to how large a
transversal circuit can be, maintaining fault tolerance with-
out using QEC gadgets. However, simple probabilistic noise
accumulation in a series of transversal operations will eventu-
ally overwhelm any code and introduce logical errors, setting
a natural limit to the number of transversal operations that can
be done without QEC gadgets. The situation is compounded
when the logical circuit connectivity becomes more complex,
as this can lead to faults cascading so that what was originally
a correctable fault becomes uncorrectable.

When a quantum computer’s transversal operations have er-
ror rates above or near the threshold, we suggest it is prudent
for benchmarking experiments to include QEC gadgets. Our
logical CNOTs operate near the pseudo-threshold (our phys-
ical CNOT error is O(10−3)). We include QEC gadgets in
some of these circuits and look at circuits without QEC gad-
gets to gain information about the logical error budget.
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FIG. 3: The logical-level circuit for the teleportation circuit. The gadget labeled “QEC” is a full QEC round with up to two
rounds of adaptive syndrome extraction [13, 14], and the box is dashed to highlight that it is omitted in some experiments. The
sub-circuit labeled Bell state prep. shows where the entangled Bell-pair is created, which we consider a resource state. The
gadgets labeled “Syn” are each a round of flagged syndrome extraction used to post-select Bell state preparations without
non-trivial syndrome measurements.

The teleportation circuit utilizing transversal CNOTs is il-
lustrated in Fig. 3. The circuit is encoded with the [[7, 1, 3]]
QEC code, or Steane code [17], which has been used in many
demonstrations of logically encoded circuits [8, 18–20], in-
cluding our previous work [13, 21]. Refs. [13, 21] detail all
the techniques and subroutines relevant to this section, and
here we provide a brief overview of them.

The logical-level teleportation circuit is analogous to the
physical-level circuit. What is different is the underlying
physical implementation necessary for encoding and perform-
ing quantum error correction. First, logical qubits two and
three are prepared in |0⟩L using a fault-tolerant encoding cir-
cuit, which includes a single non-destructive logical Z mea-
surement per logical qubit to verify proper preparation of the
state (we use the L subscript for logical states and overlines
for logical operators) [13, 21, 22]. Transversal Hadamard
and CNOT gates are then applied to qubits two and three to
create the Bell-pair [21]. Then, qubits two and three un-
dergo a simple round of syndrome extraction using flagged
circuitry [13], measuring each of the six syndromes once. As
illustrated in Fig. 3, the syndrome extraction gadgets imple-
mented on qubits two and three occur before either of those
qubits interact with the qubit initially storing |ψ⟩L; therefore,
the syndrome extraction gadgets are considered part of the re-
source Bell-state preparation.

We take advantage of the resource state construction by
noting that, in large-scale fault-tolerant architectures, it is
scalable to use post-selection to create resource states such
as magic states or Bell pairs. Such architectures assume
large devices will have capacity to prepare resource states
ahead of time and in parallel, allowing well-prepared re-
source states to be available for the computation when they are
needed [16, 23–26]. In this work, well-prepared Bell states are
post-selected using both the verification measurement in the
encoding circuit and the syndrome measurements after the en-
tangling operation. The scheme does not eliminate all errors
from the Bell pair; for example, a weight-three fault resulting
in a logical operator being applied would go undetected.

Note, this logical Bell resource-state preparation method
was first developed for this work for use in the logical tele-

portation protocols and was then analyzed as an individual
component in Ref. [27]. A description of the performance of
this logical Bell state preparation component can be found in
the reference.

After the Bell state is prepared, logical qubit one is initial-
ized to |0⟩L using the encoding circuit [13, 22]. In contrast to
the preparation of the Bell-state resource, the encoding circuit
for logical qubit one uses up to three rounds of a repeat-until-
success protocol [13], at which point the circuit proceeds re-
gardless of the outcome of the verification step. That is, we do
not post-select on the preparation of logical qubit one. After
preparing |0⟩L, a transversal single-qubit Clifford operation,
natively admitted by the Steane code, can prepare one of the
six states, {|0⟩L , |1⟩L , |+⟩L , |−⟩L , |+i⟩L , |−i⟩L}.

We implemented two variants of the logical circuit depicted
in Fig. 3. These variants differ only by the presence/absence
of a full QEC gadget on logical qubit one. Given the impor-
tance of QEC gadgets in large-scale fault-tolerant computa-
tion, we consider the benchmarking with the QEC gadget in-
cluded as important. However, examining the circuit without
the QEC gadget offers insight into the logical error contri-
butions of the teleportation protocol. Note, we call the pro-
tocol that includes one QEC gadget on logical qubit one as
“1QEC” and the protocol without the QEC gadget as “0QEC.”
Interestingly, the entire 0QEC experiment can be viewed as
the implementing a QEC gadget as originally proposed by
Knill [26, 28].

In the 1QEC experiment, the QEC gadget implemented is
the full conditional adaptive syndrome extraction circuitry de-
scribed in Ref. [13]. The extracted syndromes are processed in
real-time using a look-up table decoder. Active error correc-
tion is then applied, which involves physically applying Pauli
corrections (instead of Pauli frame tracking).

Next, we perform the Bell measurement on qubits one and
two. All the data qubits in logical qubits one and two are
measured destructively during the Bell measurement. These
measurements are used to reconstruct syndrome information,
decode, and correct the logical outcomes. The corrected out-
comes are then used to update the Pauli frame of qubit three,
equivalent to conditionally applying the classically controlled
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Pauli gates on qubit three.
To measure the probability of finding the correct state in

logical qubit three (i.e., determine the state fidelity), we ap-
ply a single-qubit transversal gate to measure in a particular
basis, destructively measure all data qubits, reconstruct syn-
dromes, decode, and apply corrections to the final logical out-
come (see [13] for details).

For clarity, we emphasize that real-time decoding occurs
four times in this circuit. During the QEC gadget and the
three destructive logical measurements, the decoder measures
syndromes and determines corrections.

We estimate the process fidelities of these circuits to be
0.975+2

−2 when a QEC gadget is included on logical qubit one
and 0.989+1

−1) when the QEC gadget is omitted. This result
suggests the QEC gadget is one of the noisier components of
the circuit, consistent with previous measurements [13, 21].
There was also a difference in the total number of physical
qubits used in each experiment, with the included QEC gad-
get version using 30 physical qubits (10 for each code block)
and the version without a QEC gadget requiring 28 (10 for
each code block in the Bell state, and for the other code block,
7 data qubits and an additional verification ancilla for the en-
coding circuit).

We further re-evaluated the data considering the framework
of quantum error detection (QED). In this analysis, in addition
to post-selecting on Bell-state preparation, we also post-select
based on non-trivial syndrome information obtained from the
QEC gadget and the outcomes of destructive logical measure-
ments. This approach offers data for work studying QED
distance-two codes to compare against the performance of
QEC codes when viewed through the lens of QED. Moreover,
this analysis sheds additional light on the underlying noise
model by indicating the rate at which noise induces pure log-
ical errors, which are undetectable and uncorrectable, during
computation. Establishing an upper bound on performance, if
error rates derived from re-assessing the data as a QEC code
are notably high, this signals a potential need to revisit the ex-
perimental setup. When processing the data as a QED code,
we find process fidelities of 0.9996+3

−5 for 0QEC and 0.9998+2
−5

for 1QEC. Further details are given in Fig. 1 and Appendix B.

C. Logical Experiment: Lattice surgery

Transversal operations are not the only methods for per-
forming logical gates. In this section, we demonstrate the
flexibility of the quantum charge-coupled device (QCCD) ar-
chitecture [29] by looking at equivalent logical teleportation
circuits built from a color-code lattice-surgery gate set [30].
Lattice surgery is a strategy for implementing logical gates
that require only 2D nearest-neighbor interactions, making it
especially useful for architectures whose qubit locations are
fixed in a 2D space [30, 31]. The gate set of lattice surgery
is made up of the joint measurements of logical Pauli opera-
tors. These joint operators are measured when merging code
blocks together into a joint code block by measuring stabiliz-
ers between and within the original code blocks [30, 31]. Un-
like their transversal counterparts, lattice surgery protocols in-

herently require some form of syndrome measurements, with
fault-tolerant implementation requiring a full QEC gadget.
Since QEC gadgets are done with the logical gate implemen-
tation, direct comparisons with transversal gate sets are com-
plicated. Lattice surgery circuits have previously been demon-
strated in ion-traps [32] using d = 2 quantum error detecting
surface codes, and we build on this work by demonstrating
these techniques on a d = 3 quantum error-correcting color
code.

An analogous logical teleportation circuit using lattice
surgery techniques can be seen in Fig. 4. Some methods
used here are identical to those used in the transversal cir-
cuits, such as the initialization protocols of all three logical
qubits, transversal Hadamard gates, decoding, and destructive
measurements.

The Bell-state preparation uses lattice-surgery gate sets.
After qubits two and three have been initialized, a joint X2X3

logical operator is measured (Fig. 8 in appendix Sec. C).
This measurement scheme includes an additional physical flag
qubit to catch higher-weight hook errors [13, 33, 34]. Af-
ter the measurement of the joint logical operator, we perform
one round of syndrome extraction using flagged checks (also
used in the “Syn” gate in Fig. 3). We again treat the Bell
state as a resource state and post-select on the same criteria as
the transversal implementation (encoding verification failing
and any non-trivial syndromes) and any non-trivial measure-
ment from the flag qubit in the X2X3 joint logical measure-
ment. For this experiment, we only post-select on the Bell-
state preparation. We decode the syndrome information in
real-time, using the same decoder as the other experiments,
and keep track of corrections on qubit three via a Pauli frame.

The circuit proceeds by measuring a second joint logi-
cal operator Z1Z2, again using a flag circuit (Fig. 9 in ap-
pendix Sec. C). We then perform a full QEC gadget with
both the flagged and conditional unflagged syndrome mea-
surements. If the logical measurement flag or any syndromes
in the QEC gadget are non-trivial, we repeat the measurement
of Z1Z2, followed by the “Syn” gadget syndrome measure-
ments (Fig. 3). We treat this second measurement round as
ideal and continue with the circuit. If the first round of mea-
surements of Z1Z2 and the full QEC gadget yield trivial flags
and syndromes, the second round of measurements is skipped.
The rest of the circuit involves transversal Hadamard gates,
destructive measurements, decoding, and conditional correc-
tions tracked via a Pauli frame, all of which are handled in the
same way as in the transversal teleportation circuits.

The lattice-surgery circuit, which we call MXXMZZ , is
measured to have a process fidelity of 0.851+9

−9, and when fur-
ther post-selected as a QED code, we find a process fidelity of
0.962+5

−5, (details in Appendix B). These QED process fideli-
ties lag behind those of the transversal two-qubit gate QEC
process fidelities, suggesting that enhancements in decoding
strategies alone will not suffice for the lattice surgery proto-
cols to achieve parity with the performance of the transversal
protocols. A total of 30 physical qubits were used in this ex-
periment: 10 for each individual code block. The depth of
the lattice surgery circuit is greater than that of its transversal
counterpart, which likely contributes to the decreased fidelity.
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FIG. 4: Two different implementations of logical teleportation circuits using a lattice surgery gate set. The first circuit (a) is
analogous to the transversal implementation in Fig. 3. The second circuit (b) is logically equivalent (see Fig. 5 in Appendix C)
but does not use a Bell resource state and utilizes less logical qubits.

Lattice surgery offers more than an alternative way to im-
plement logical gates, it can also reduce overheads in some
cases [35]. In this spirit, we also investigated an equivalent
logical teleportation circuit using only two logical qubits in-
stead of three. This version does not use a Bell state resource
but can be shown to be algorithmically equivalent to telepor-
tation protocol. A “proof”, showing the equivalency of this
simpler circuit (Fig. 4(b)) to the typical teleportation circuit
(Fig. 3), can be found in the Appendix C (see Fig. 5). This
form of lattice surgery teleportation can be seen as merging
a logical qubit with an ancillary code block and then shrink-
ing the newly created merged code block back to what was
the auxiliary code block, transferring the logical state to the
logical ancilla. The protocol itself can be viewed as a lattice
surgery version of 1-bit teleportation [36], This technique can
be used for various things, such as code-switching and gate
teleportation [37]. It was previously experimentally imple-
mented for a d=2 QED code in Ref. [32]; here, we implement
it for a QEC code utilizing real-time decoding and error cor-
rection.

The simpler teleportation circuit can be seen in Fig. 4 (b).
The beginning of the circuit is similar to the other experi-
ments, using encoding circuits with verification ancilla im-
plemented in a repeat-until-success protocol to encode |0⟩L.
The repeat-until-success circuit is performed up to three times
for both logical qubits to achieve high-fidelity input states.
From there, the joint Pauli Z1Z2 logical operator is measured,
followed by a full QEC gadget measuring both the flagged
and conditional unflagged syndrome extraction protocol. The
rest of the circuit, including decoding, correction tracking via
Pauli frame, transversal single qubit gates, and destructive
measure outs, are performed like all the other experiments.

We measure this lattice surgery circuit, which we callMZZ ,
to have a process fidelity of 0.887+7

−7 and when further post-
selected as a QED code, 0.992+1

−1. Only 20 qubits were needed
in this implementation, 10 for each individual code block.
Further details are given in Fig. 1 and Appendix B.

II. DISCUSSION

The main results of all the experiments are in Fig. 1 and
Table I (see Appendix B for additional details). The data in
Fig. 1 reflects the asymmetric noise environment of the H-
series quantum computers. As Ref. [13] notes, the circuit er-
ror budget is dominated by two physical layer noise sources
- two-qubit gate errors and memory errors. While the gate
errors are not completely without structure, we find that a de-
polarizing error model usually captures their impact on typi-
cal circuits. However, memory error is strongly dominated by
stochastic and coherent rotations about Z. The CSS structure
of the [[7, 1, 3]] code promotes the physicalZ errors to the log-
ical level since the logical Z operator is a product of physical
Z operators (Fig. 1 in Ref. [13]). The eigenstates of logical
X and Y are sensitive to unintended logical Z operations and,
therefore, yield lower fidelity. Note that the physical layer fi-
delities do not show the same asymmetry because gate errors
dominate the physical circuits more than the logical circuits.

The process fidelity of the physical teleportation experi-
ment is estimated at 0.9895+3

−3, setting a high bar for achiev-
ing the break-even point with logical circuits. The logical
transversal experiment without the QEC gadget on logical
qubit one exhibits a process fidelity of 0.989+2

−2, suggesting
a break-even milestone. However, it would be more conclu-
sive if logical fidelity surpassed physical fidelity with reason-
able statistical separation. Considering our previous work,
which is near break-even with transversal two-qubit gates for
the Steane code [21], achieving break-even in this context
could be plausible. A more stringent and significant break-
even milestone for logical teleportation involves comparing
the physical circuits to the corresponding logical experiments
with mid-circuit QEC gadgets since they are key to prevent-
ing logical errors and fault propagation. Doing so, we find
the process fidelity of 0.975+2

−2 to be slightly lower than the
corresponding physical process fidelity of 0.9895+3

−3. We are
optimistic that even without further hardware improvements,
this process fidelity can be improved by further optimizations
at the logical level, as discussed below.

The experiments 0QEC, 1QEC, and MXXMZZ can be
viewed as implementing the Knill-style QEC gadget [26, 28].
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The 0QEC version closely mirrors Knill’s original proposal.
For Knill-style QEC, X and Z syndromes are assessed dur-
ing teleportation by destructively measuring logical qubits one
and two. These measurements determine logical outcomes
and gather syndromes data, which are subsequently decoded.
These corrections generated are then not only used to teleport
the state but also to fix accumulated faults.

Knill-style QEC is particularly interesting as it supports a
wide class of codes capable of logical teleportation, avoids
generating hook error when transversal two-qubit gates are
used, reduces non-Pauli noise such as leakage, and offers
single-shot decoding. This last feature trades reduced time
overheads for the requirement of two logical ancillas.

The promising fidelity of 0.989+2
−2 for the Knill gadget ob-

served in 0QEC suggests its performance. We can calculate
the infidelity (one minus the process fidelity) as 1.1e−2 and
roughly compare the error rate of QEC gadget used in 1QEC
by subtracting the process fidelities of 0QEC from 1QEC.
Doing so, we estimate a logical error rate of 1.4e−2, poten-
tially increased by memory errors induced on the other logi-
cal qubits during its operation. This indicates the two gadgets
may have similar performance; however, future studies should
conduct a detailed component-level analysis to properly com-
pare the performance of the different QEC gadget implemen-
tations.

Despite these encouraging preliminary estimates, we be-
lieve the current results do not definitively confirm whether
we have met or exceeded a break-even point for the QEC gad-
gets. We suggest two informative break-even milestones for
assessing QEC gadgets’ effectiveness: 1) ensuring the gad-
get’s error rate is at or below that of the physical gate most
limiting the performance of general physical algorithms (typ-
ically the two-qubit gate) and 2) comparing the error rate of
the physical two-qubit gate to that of the fault-tolerant logical
two-qubit gate when QEC gadgets are employed. However,
to hit break-even milestones at the algorithmic level, logical
gates must achieve error rates and order of magnitude lower
or more due to the increased count of logical gates. This stems
from the discrete sets of protected gates that QEC codes uti-
lize [23, 38, 39].

One notable contribution of this work is the introduction of
lattice surgery techniques in the QCCD architecture. Our ini-
tial experiments in lattice surgery showed lower process fideli-
ties than the transversal circuits, but we stress that the lattice
surgery circuits likely have room for more optimization. One
should not draw strong conclusions about the prospects for lat-
tice surgery versus transversal methods in QCCD devices as
the H2 design was not optimized for either method, and less
time was spent considering how to optimize the lattice surgery
protocols. We hope to continue to improve our experimental
implementation of these and other logical procedures.

Optimizing the complex structure of the logical circuits
was made easier by programming on the logical level uti-
lizing a domain-specific language known as SLR (see Ap-
pendix A). Other straightforward optimizations may include
different but logically equivalent QEC protocols, reducing
leakage errors [40–42], Clifford deformation [43–45], dynam-

ical decoupling, Pauli twirling and other circuit-level tech-
niques to suppress coherent noise [46–48], larger distance
codes [49], and improved decoding. The decoders in this
work only consider the syndromes and determine corrections
for individual subcircuits, such as the QEC gadget and logi-
cal measurements. Further improvements in decoding may be
possible by incorporating knowledge of the bias noise present
in the system as well as by decoding over the collection of all
syndromes measured in the circuit [8, 50–52].

The results in this work represent the state-of-the-art in ex-
perimental QEC; however, more work is needed to demon-
strate the error suppression promised by QEC. Fortunately,
we believe we are far from any fundamental limitations. The
largest noise source in the two-qubit gate is spontaneous emis-
sion, which can be reduced using different laser wavelengths
and power [53]. Memory error, especially any coherent com-
ponent, is also of special concern to the performance of deep
logical programs. We note that our results were generated us-
ing the software stack available to any user of Quantinuum’s
H-series computers and ran alongside customer jobs. The
software stack compiler is optimized for general purposes, not
specific error correction circuits. Thus, the results in this work
represent typical performance currently seen for the H2-1 ma-
chine. Custom compilation techniques could reduce transport
times and the associated memory error. Also, QCCD ion-
traps using 2D geometries [54] could significantly increase
the clock speed.

Fault tolerance and error suppression come with an over-
head price, and understanding the amount of tolerance needed,
at a cost of circuit depth, width, and time, compared to the
gain in error suppression is an important consideration as
quantum devices scale up. To this end, we demonstrate the
first logical state teleportation and the first instance of lat-
tice surgery for a QEC code, demonstrating the ability of the
QCCD technology to explore different QEC paradigms. In
that same spirit, another trapped-ion quantum processor re-
cently demonstrated code-switching [55], which could be an
enabling technique for non-Clifford operations and should be
suitable for QCCD architectures. We expect many more stud-
ies in the emerging field of experimental QEC to be done
to optimize resource requirements, including resource state
generation and use, gate set comparisons, and investigating
practical fault-tolerance beyond idealized mathematical defi-
nitions. Through investigations like these, quantum hardware
and tailored QEC protocols may be co-designed to accelerate
the progress toward large-scale quantum computing.

III. ACKNOWLEDGEMENTS

We acknowledge the large team at Quantinuum for all their
contributions and the fabrication facility at Honeywell for pro-
ducing world-class ion traps. We’d also like to thank Ben
Criger for helpful discussions, Jonhas Colina for helping de-
velop the H2-1 compiler, and the good people at IARPA for
inspiring discussions. Lastly, we would like to thank Tony
Uttley for his leadership, support, and friendship.



7

[1] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
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Appendix A: The H2 quantum processor

H2 is based on the QCCD architecture [29] and, therefore,
uses ion-transport operations to achieve full-connectivity.
This is a key enabler for some of the QEC protocols in this
work, such as transversal entangling operations and logical
joint Pauli measurements [13, 21]. H2 uses 171Yb+ ions [56]
for physical qubits and 138Ba+ ions for sympathetic cool-
ing, using a total of 64 ions in the experiments described in
this work. The physical qubits are gated via stimulated Ra-
man transitions implemented with off-resonant lasers directed
at four different gating regions. At the time of these experi-
ments, randomized benchmarking [57] experiments averaged
over all four gate zones showed fidelities of ∼ 3 × 10−5 and
1.4× 10−3 for single-qubit and two-qubit gates, respectively.
SPAM errors are measured to be ∼ 2×10−3, and the crosstalk
errors from mid-circuit SPAM operations are < 10−4. Mem-
ory errors are more difficult to characterize in the QCCD ar-
chitecture as different circuits require different transport se-
quences. Previously reported benchmarking experiments [9]
showed that memory errors are smaller than the gate error for
certain types of circuits, but the impact of memory error on the
circuits used in this work has not yet been fully characterized.

The experiments were designed at the logical level using
an internally developed domain specific language for QEC
dubbed Simple Logical Representation (SLR) [58]. SLR is
used to construct libraries of QEC protocols, build logical
programs from theses libraries, and resolve these logical pro-
tocols into physical circuits. This greatly simplifying the
manual labor involved as well as debugging and optimiza-
tion efforts. After designing the experiments in this work
using SLR and generating the physical-level circuits, they
were then submitted to the H-series compiler stack to pro-
duce machine-level instructions for ion-transport operations
and laser pulses [59].

Appendix B: Additional Experimental Data

This appendix includes additional experimental details for
the different teleportation experiment variants.

In this manuscript, we have focused more on the QEC data
instead of the QED data since QEC is more pertinent to the de-
velopment of large-scale fault-tolerant computation. Aggres-
sive forms of QED applied to QEC programs might be useful
as a potential bridge between the NISQ and fault-tolerant eras,
but if discard rates are too high the utility of such techniques
will be limited. For example, when viewed as a QED code, the
transversal logical circuit that used the QEC gadget achieves
a process fidelity of 0.9998+2

−5, but approximately half of the
shots had to be discarded (Table VI). Regardless, it can be use-
ful to consider the space-time trade off of using QEC protocols
in a QED manner compared to other QED protocols that aim
to bridge between the NISQ era and large-scale fault-tolerant
computation. In particular circumstances, post-selection and
QED can be used in a scalable manner for fault-tolerant pro-
tocols such as the generation of resource states [16, 23–26] or
when rare but uncorrectable errors are detected such as when

|ψ⟩ Fs Shots

|0⟩ 0.9949+2
−2 104, 000

|1⟩ 0.9932+3
−3 100, 000

|+⟩ 0.9941+8
−8 104, 000

|−⟩ 0.9928+3
−3 104, 000

|+i⟩ 0.9923+3
−3 92, 000

|−i⟩ 0.9907+3
−3 92, 000

Fa 0.9930+2
−2 99, 333.3

Fp 0.9895+3
−3 NA

TABLE II: The measured fidelities of the physical layer
teleportation gadget. All six eigenstates of the three Pauli
operators were used as inputs to the gadget with each state’s
fidelity denoted as Fs. The informationally complete set of
states is sufficient to estimate the average state fidelity Fa,
and process fidelity Fp.

using even distance codes [60].
The shots for each experimental settings were split amongst

several jobs which were randomly mixed. Most error bars
indicate one standard deviation and were determined using
jackknife resampling [61] of the fidelities for a set of related
jobs, helping to account for variation in the noise (drift) over
time. When an experimental setting produced no errors for
any shots (seen only for the QED experiments), jackknife
sampling is not used, and the “rule of three” [62] is employed
to provide a one standard deviation lower bound. The rule of
three estimates 95% confidence intervals, so for consistency
with the other errors bars we alter the rule to the analogous
bound for one standard deviation. For our parenthetical error
bar notation, a single number indicates a symmetric error bar
around the mean, and two numbers indicates an asymmetric
error bar around the mean.

Table II contains the data for the physical qubit telepor-
tation experiments. Table III contains the data for the logi-
cal transversal teleportation experiments operating as a QEC
code, and no QEC gadget is applied to the logical input state
(logical qubit 1). Table IV contains the data for the logi-
cal transversal teleportation experiments operating as a QEC
code, and one QEC gadget is applied to the logical input
state (logical qubit 1). Table V contains the data for the log-
ical transversal teleportation experiments operating as a QED
code, and no QEC gadget is applied to the logical input state
(logical qubit 1). Table VI contains the data for the logical
transversal teleportation experiments as a QED code, and one
QEC gadget is applied to the logical input state (logical qubit
1). Table IX contains the data for the logical teleportation ex-
periments that use a lattice surgery MZZ operation to teleport
the logical qubit.
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|ψ⟩L Fs Accepted Discard

shots fraction

|0⟩L 0.999+1
−1 1, 550 0.354

|1⟩L 0.9987+9
−9 1, 565 0.348

|+⟩L 0.991+2
−2 1, 594 0.336

|−⟩L 0.990+3
−3 1, 529 0.363

|+i⟩L 0.991+2
−2 1, 538 0.359

|−i⟩L 0.985+4
−4 1, 574 0.344

Fa 0.992+1
−1 1558.3 0.351

Fp 0.989+2
−2 NA NA

TABLE III: The measured fidelity for the logical transversal
teleportation circuit operating as a QEC code with no QEC
gadget acting on the input qubit (logical qubit 1). We list the
individual state fidelities Fs for our set of input states |ψ⟩L,
the average state fidelity Fa, and process fidelity Fp. We also
list the individual discard rates associated with each input
state. The discarded events are heralded by the measurement
of non-trivial syndromes in the Bell state preparation
sequence as described in the main text.

|ψ⟩L Fs Accepted Discard

shots fraction

|0⟩L 0.990+2
−2 1, 956 0.348

|1⟩L 0.988+4
−4 1, 997 0.346

|+⟩L 0.983+3
−3 1, 949 0.350

|−⟩L 0.983+4
−4 2, 015 0.328

|+i⟩L 0.975+4
−4 1, 896 0.368

|−i⟩L 0.983+5
−5 1, 951 0.350

Fa 0.984+1
−1 1, 960.7 0.346

Fp 0.975+2
−2 NA NA

TABLE IV: The measured fidelities of the logical transversal
teleportation circuit operating as a QEC code with a QEC
gadget acting on the input qubit (logical qubit 1). We list the
individual state fidelities Fs for our set of input states |ψ⟩L,
the average state fidelity Fa, and process fidelity Fp. We also
list the discard rates associated with each input state. The
discarded events are heralded by the measurement of
non-trivial syndromes in the Bell state preparation sequence
as described in the main text.

|ψ⟩L Fs,QED Accepted Discard

shots fraction

|0⟩L 1.0000+0
−9 1, 273 0.470

|1⟩L 1.0000+0
−9 1, 288 0.463

|+⟩L 1.0000+0
−9 1, 319 0.450

|−⟩L 0.9992+8
−8 1, 273 0.470

|+i⟩L 1.0000+0
−9 1, 250 0.479

|−i⟩L 0.9992+8
−8 1, 292 0.462

Fa,QED 0.9997+2
−4 1, 282.5 0.466

Fp,QED 0.9996+3
−5 NA NA

TABLE V: The measured fidelities of the logical transversal
teleportation circuit when treated as a QEC with no QEC
gadget acting on the input qubit (logical qubit 1). To treat as
a QED code, all non-trivial syndromes or state-preparation
validation measurements are post-selection on. We list the
individual state fidelities Fs for our set of input states |ψ⟩L,
the average state fidelity Fa, and process fidelity Fp. We also
list the discard rates associated with each input state.

|ψ⟩L Fs,QED Accepted Discard

shots fraction

|0⟩L 1.0000+0
−8 1, 449 0.517

|1⟩L 1.0000+0
−7 1, 549 0.484

|+⟩L 1.0000+0
−8 1, 462 0.513

|−⟩L 1.0000+0
−7 1, 535 0.488

|+i⟩L 0.9993+7
−7 1, 408 0.531

|−i⟩L 1.0000+0
−8 1, 499 0.500

Fa,QED 0.9999+1
−3 1, 483.7 0.505

Fp,QED 0.9998+2
−5 NA NA

TABLE VI: Logical transversal teleportation circuit fidelities
analyzed as a QED code for experiments using one QEC
gadget on the input qubit (logical qubit 1). To treat as a QED
code, all non-trivial syndromes or state-preparation
validation measurements are post-selection on. We list the
individual state fidelities Fs for our set of input states |ψ⟩L,
the average state fidelity Fa, and process fidelity Fp. We also
list the discard rates associated with each input state.
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|ψ⟩L Fs Accepted Discard

shots fraction

|0⟩L 0.950+4
−4 2, 330 0.403

|1⟩L 0.943+7
−7 1, 018 0.321

|+⟩L 0.88+1
−1 2, 321 0.405

|−⟩L 0.91+2
−2 797 0.336

|+i⟩L 0.87+2
−2 800 0.333

|−i⟩L 0.86+2
−2 797 0.336

Fa 0.901+6
−6 1, 343.8 0.356

Fp 0.851+9
−9 NA NA

TABLE VII: The measured fidelities of the MXXMZZ

lattice surgery logical teleportation circuit when treated as a
QEC code. We list the individual state fidelities Fs for our set
of input states |ψ⟩L, the average state fidelity Fa, and process
fidelity Fp. We also list the discard rates associated with each
input state. The discarded events are heralded by the
measurement of non-trivial syndromes in the Bell state
preparation sequence as described in the main text.

|ψ⟩L Fs,QED Accepted Discard

shots fraction

|0⟩L 0.980+2
−2 1, 123 0.712

|1⟩L 0.979+5
−5 562 0.625

|+⟩L 0.982+3
−3 1, 250 0.679

|−⟩L 0.994+3
−3 455 0.620

|+i⟩L 0.95+2
−2 476 0.603

|−i⟩L 0.96+1
−1 450 0.625

Fa,QED 0.974+3
−3 719.3 0.644

Fp,QED 0.962+5
−5 NA NA

TABLE VIII: The measured fidelities of the MXXMZZ

lattice surgery logical teleportation circuit when treated as a
QED code. We list the individual state fidelities Fs for our
set of input states |ψ⟩L, the average state fidelity Fa, and
process fidelity Fp. We also list the discard rates associated
with each input state. The discarded events are heralded by
the measurement of non-trivial syndromes in the Bell state
preparation sequence as described in the main text.

|ψ⟩L Fs Shots

|0⟩L 0.957+3
−3 2, 400

|1⟩L 0.953+6
−6 2, 400

|+⟩L 0.925+8
−8 2, 400

|−⟩L 0.93+1
−1 2, 400

|+i⟩L 0.90+2
−2 2, 400

|−i⟩L 0.88+2
−2 2, 400

Fa 0.925+5
−5 2, 400

Fp 0.887+7
−7 NA

TABLE IX: The measured fidelities of the logical MZZ

lattice surgery gadget when treated as a QEC code. We list
the individual state fidelities Fs for our set of input states
|ψ⟩L, the average state fidelity Fa, and process fidelity Fp.
We also list the discard rates associated with each input state.

|ψ⟩L Fs,QED Accepted Discard

shots fraction

|0⟩L 0.991+3
−3 1, 229 0.488

|1⟩L 0.994+4
−4 1, 269 0.471

|+⟩L 0.9985+9
−9 1, 353 0.436

|−⟩L 0.999+1
−1 1, 365 0.431

|+i⟩L 0.993+2
−2 1, 349 0.438

|−i⟩L 0.992+2
−2 1, 285 0.465

Fa,QED 0.995+1
−1 1, 308.3 0.455

Fp,QED 0.992+1
−1 NA NA

TABLE X: The measured fidelities of the logical MZZ lattice
surgery gadget when treated as a QED code. We list the
individual state fidelities Fs for our set of input states |ψ⟩L,
the average state fidelity Fa, and process fidelity Fp. We also
list the discard rates associated with each input state.
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Appendix C: Circuits and identities

Here, we give explicit circuits for measuring the joint Pauli operators used in the lattice surgery experiments, a visual proof
of the circuit equivalency of the simpler lattice surgery experiment to the transversal logical teleportation circuit, and include
useful gate identities to help the reader.

∼= ∼= ∼=

∼=

|ψ⟩

MZZ

H

|0⟩ H X Z |ψ⟩

PARITY CHECK

|ψ⟩ H

|0⟩ H H

|0⟩ H X Z |ψ⟩

IDENTITY
|ψ⟩ H

|0⟩ H H H H

|0⟩ H H H X Z |ψ⟩

CNOT

CNOT
|ψ⟩ H

|0⟩ H H H H

|0⟩ H H H X Z |ψ⟩

BELL STATE PREP. H ⊗H

|ψ⟩ H

|0⟩ H H

|0⟩ H X Z |ψ⟩

BELL STATE MEAS.

BELL STATE PREP.

|ψ⟩ H

|0⟩ H

|0⟩ X Z |ψ⟩

∼=

(i) (ii) (iii)

(iv) (v) (vi)

FIG. 5: Proof of the equivalency of the lattice surgery implementation of the teleportation circuits to that of the typical
teleportation circuit. Starting with (i), which is exactly the circuit implemented in the experiment (see Sec. I B), we use the
relationship in Fig. 6 to replace the lattice surgery MZZ operation with a parity check relation involving an additional ancilla
qubit, to get the circuit (ii). To get (iii), we insert two pairs Hadamards that equal the identity operation. Using gate identities,
in (iv) we highlight the CZ and Hadamard gates that are equivalent to CNOT gates. Now it is clear that the lower first part of
the circuit is the usual Bell pair preparation circuit which is highlighted by the blue box in (v). The key observation here is that
the H ⊗H operator stabilizes the Bell pair, and thus acts as the identity. Removing this set of gates, we arrive at (vi), the
typical teleportation circuit illustrated in Fig. 2.

1

∼=
|ψ⟩1

MP1P2

|ϕ⟩2

|ψ⟩1 P1

|0⟩ H H

|ϕ⟩2 P2

FIG. 6: Circuit identity for a joint Pauli measurement using an ancilla (see Ref. [23] pg. 188 or Ref. [63] pg. 72).

1

2 3 4

5 6 7
FIG. 7: Depiction of the Steane code. The logical representatives we use for our implementations of the logical circuits are
logical operators that run along the boundary, e.g., X = X5X6X7 and Z = Z5Z6Z7. See Refs. [13, 21] for more details on the
Steane code and additional details on protocols we use for this code.
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|ψ5⟩a,L

|ψ6⟩a,L

|ψ7⟩a,L

|ψ5⟩b,L

|ψ6⟩b,L

|ψ7⟩b,L

|0⟩ H H

|0⟩

FIG. 8: The circuit used to measure the joint XaXb Pauli operator. Since this circuit is used in both lattice surgery implements,
we label logical qubit blocks ”a” and ”b”, to designate the different logical qubits. The subscript number indicates the index of
the physical qubit within the code block. A depiction of the Steane code and corresponding numberings of the qubits can be
found in Fig. 7.

|ψ5⟩a,L

|ψ6⟩a,L

|ψ7⟩a,L

|ψ5⟩b,L

|ψ6⟩b,L

|ψ7⟩b,L

|0⟩ H H

|0⟩

FIG. 9: The circuit used to measure the joint ZaZb Pauli operator. Since this circuit is used in both lattice surgery implements,
we label logical qubit blocks ”a” and ”b”, to designate the different logical qubits. The subscript number indicates the index of
the physical qubit within the code block. A depiction of the Steane code and corresponding numberings of the qubits can be
found in Fig. 7.
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