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Abstract.

It is well known that the Young lattice is the Bratelli diagram of the symmetric groups

expressing how irreducible representations restrict from SN to SN−1. In 1988, Stanley

discovered a similar lattice called the Young-Fibonacci lattice which was realized as

the Bratelli diagram of a family of algebras by Okada in 1994.

In this paper, we realize the Okada algebra and its associated monoid using a labeled

version of Temperley-Lieb arc-diagrams. We prove in full generality that the dimension

of the Okada algebra is n!. In particular, we interpret a natural bijection between

permutations and labeled arc-diagrams as an instance of Fomin’s Robinson-Schensted

correspondence for the Young-Fibonacci lattice. We prove that the Okada monoid is

aperiodic and describe its Green relations. Lifting those results to the algebra allows

us to construct a cellular basis of the Okada algebra.

Résumé. Il est bien connu que le treillis de Young peut s’interpréter comme le

diagramme de Bratelli des groupes symétriques, décrivant, par exemple, comment

les représentations irréductibles se restreignent de Sn à Sn−1. En 1975, Stanley a

découvert un treillis similaire appelée treillis de Young-Fibonacci qui a été interprété

comme le diagramme de Bratelli d’une famille d’algèbres par Okada en 1994.

Dans cet article, nous réalisons l’algèbre d’Okada et le monoïde associé grâce à une

version étiquetée des diagrammes d’arcs du monoïde de Jones et de l’algèbre de

Tempeley-Lieb. Nous prouvons en toute généralité que l’algèbre d’Okada est de

dimension n!. En particulier, nous interprétons la bijection naturelle entre les per-

mutations et les diagrammes d’arcs comme une instance de la correspondance de

Robinson-Schensted-Fomin associée au treillis de Young-Fibonacci. Nous prouvons

que le monoïde est apériodique et décrivons ses relations de Green. En relevant, ces

dernières à l’algèbre nous en construisant une base cellulaire.
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1 Introduction

The theory of 1-differential posets was developed by R. Stanley [7] as a framework for

generalizing the Robinson-Schensted correspondence beyond the combinatorics of the

Young lattice Y of integer partitions. A similar undertaking was made by S. Fomin in his

work on dual graded graphs and growth processes, where the later technique was used

to construct an explicit RS-correspondence for Stanley’s Young-Fibonacci lattice YF [1,

7]. Both Y and YF are 1-differential and they are the only lattices having this property.

Fomin’s approach involves a Fibonacci version of standard tableaux; a notion later ex-

amined independently by T. Roby, K. Killpatrick, and J. Nzeutchap (whose formulation

by-passes the growth construction altogether), see [5] and the references therein.

S. Okada [6] showed that the YF-lattice supports a theory of clone symmetric functions

with analogues of the classical bases (e.g. complete homogeneous, Schur, and power-

sum symmetric functions) as well as a YF-variant of the Littlewood-Richardson rule.

The clone theory appears in Goodman-Kerov’s determination of the Martin boundary of

the YF-lattice [2] and is related to various random processes.

The Okada algebras {ON(X, Y)}N≥0 were introduced by S. Okada as a counterpart to

the clone theory, and occupy a role similar to that played by the symmetric groups in the

classical theory of symmetric functions. Okada algebras are finite dimensional, associa-

tive, and depend on parameters X = (x1, . . . , xN−1) and Y = (y1, . . . , yN−2). When those

parameters are generic, they are semi-simple and their branching rule, which describes

how irreducible representations restrict from ON(X, Y) to ON−1(X, Y), is expressed by

the covering relations of the YF-lattice.

In this paper we realize the Okada algebra ON(X, Y) as a diagram algebra with a mul-

tiplicative/monoidal basis expressed in terms of certain arc-labeled, non-crossing perfect

matchings (as appear in both the Temperley-Lieb and Martin-Saleur Blob algebras [4]).

Like most diagram algebras, this basis is cellular and affords us with a novel, diagram-

matic presentation of the irreducible representations of ON(X, Y) (i.e. as cell modules).

We interpret Fomin’s RS-correspondence diagrammatically. This involves constructing a

bijection between saturated chains in the YF-lattice (presented in terms of sequences of

Fibonacci sets) and Okada half arc-diagrams. In addition we examine the structure theory

of the Okada algebra and monoid via a dominance order on Fibonacci sets.

Aknowledgment: F. Hivert would like to thank James Mitchell and Nicolas Thiéry for

fruitful discussions. Likewise, J. Scott thanks Philippe Biane and Anatoly Vershik for

their input and guidance. The computations were done using the SageMath computer

algebra system.
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2 Background

Throughout this paper N denotes a non-negative integer. We denote by [N] the set

{1, . . . , N}. We often write negative numbers as overlined numbers such as 4. The

cardinality of a set S is denoted # S. For a non-negative integer N we endow [N] ∪ [N]
with the total order {1 < 2 < · · · < N < N < · · · < 2 < 1} . Overlining numbers which

are negative should also help the reader remember this unusual ordering.

Stanley’s original construction of the Young-Fibonacci lattice [7] involves endowing

the set of Fibonacci words, i.e. binary words in the alphabet {1, 2}, with a partial order.

We present an alternative description using Fibonacci sets.

Definition 2.1. A Fibonacci set of rank N is a subset S = {s1 < s2 < · · · < sk} of [N] whose

size k has the same parity as N and such that sℓ have the same parity as ℓ. We write YFSN for

the collection of all rank N Fibonacci sets and YFS for the disjoint union of YFSN as N varies.

The entire interval [N] itself is always a Fibonacci set of rank N, while ∅ is a Fibonacci

set only when N is even. We emphasize on the fact that in YFS the set {1, 2, 5} of rank 5

is not the same Fibonacci set as {1, 2, 5} of rank 7. When they need to be distinguished

we include N as a subscript, as in {1, 2, 5}5 and {1, 2, 5}7.

The covering relations which generate the lattice structure on YFS are defined by

S� T if and only if S ∈ YFSN−1 and T ∈ YFSN and one of these two sets can be obtained

from the other one by removing its largest element. Stanley’s description is equivalent to

ours through the bijection sending a binary word w to the set of the sums of its suffixes

whose first digit is 1. The Hasse diagram of YFS upto rank 5 is illustrated below.

ε

∅0

1
{1}1

11
{1, 2}2

2
∅2

111
{1, 2, 3}3

21
{1}3

1111
{1, 2, 3, 4}4

211
{1, 2}4

11111
{1, 2, 3, 4, 5}5

2111
{1, 2, 3}5

12
{3}3

112
{3, 4}4

22
∅4

1112
{3, 4, 5}

212
{3}5

121
{1, 4}4

1121
{1, 4, 5}5

221
{1}5

1211
{1, 2, 5}5

122
{5}5
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Definition 2.2. Fix a positive integer N. Given a field K, fix also X = (x1, . . . , xN−1) and

Y = (y1, . . . , yN−2) two sequences of parameters in K. The Okaka algebra ON(X, Y) is the

algebra generated by {Ei | i = 1 . . . N − 1} with the relations

E
2
i = xiEi 1 ≤ i ≤ N − 1, (I(X, Y))

EiEj = EjEi |i − j| ≥ 2, (C(X,Y))

Ei+1EiEi+1 = yiEi+1 1 ≤ i ≤ N − 2, (S(X,Y))

If all the X’s and the Y’s are equal to 1, the Okada algebra is actually the algebra of

a monoid; we call this the Okaka Monoid and denote it ON. Recall that setting all yi := 1

and all xi := q and adding the extra relation EiEi+1Ei+1 = Ei defines the Temperley-Lieb

algebra which is also a deformation of the algebra of a monoid called the Jones monoid

(obtained when q = 1).

We now review some of Okada’s results [6]: For generic values of the X and Y

parameters ON(X, Y) is semi-simple and its irreducible representations VT correspond to

rank N Fibonacci sets T. When VT is restricted to the subalgebra ON−1(X, Y) ⊂ ON(X, Y)
it decomposes as a direct sum of irreducible representations VS of ON−1(X, Y) where

S � T is a covering relation in YFS.

The dimension of ON(X, Y) is N! and a basis for ON(X, Y) can be constructed from

permutations in the following way. Recall that the code of a permutation σ ∈ SN is

code(σ) = (c1, . . . cN) where ci := #
{

j < i
∣∣ σ−1(j) > σ−1(i)

}
. It is well known that the

product ∏
n
i=1 σi−1σi−2 · · · σi−ci

taken from left to right, increasing with i, is the lexico-

graphically minimal reduced factorization of σ into simple transpositions σi = (i, i + 1).
Define Eσ := ∏

n
i=1 Ei−1Ei−2 · · · Ei−ci

. Okada showed in [6] that the family {Eσ | σ ∈ Sn}
is, generically, a basis of the Okada algebra. His proof, however, requires semi-simplicity

and doesn’t apply to degenerate specializations, such as the monoid case.

3 Diagram models for the Okada Monoid and Algebra

The goal of this section is to build a basis of the Okada algebra in full generality us-

ing rewriting techniques. Inspired by Viennot’s theory of heaps of dimers [8], we use

diagram rewriting rather than word rewriting.

A diamond diagram of rank-N is a trapezoidal arrangement of boxes with N − 1 rows

starting with a north-east diagonal and ending with south-east diagonal, where each

box can be either black or white. The rows are indexed from bottom to top. The reading

of such a diagram is the sequence i = (i1, . . . , iℓ) obtained by recording the row index

ik of the k-th black box, starting on the left and reading each south-east diagonal from

top to bottom. Associated to the reading i is the monomial Ei := Ei1 · · · Eiℓ in the Okada

algebra ON(X, Y). We identify diagrams differing by empty south-east diagonals on the
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right. This identification is compatible with the reading and the associated monomial.

See Figure 1 for some examples. Using rewriting techniques on such diagrams, one can

show right away that the Okada algebra has dimension N!.

The relevant combinatorics becomes more transparent after we re-encode a dia-

mond diagram as a fully packed loop configuration (FPLC). This is done by replacing

black and white squares respectively with double U-turn and double horizontal squares:

→ and → . The paths fragments at the top and bottom of the trapezoid

are completed by adding horizontal lines. The result is a set C of non-crossing planar

loops and arcs. The endpoints of the arcs are situated on the left and right boundaries of

the trapezoid and we number these endpoints, from bottom to top, with positive indices

(on the left) and negative indices (overlined, on the right). See Figure 1 where we’ve

colored some of the arcs in order to make the picture more legible.

1
2

1

3
2

1

4
3

2
1

5
4

3
2

1

5
4

3
2

1

5
4

3
2

1

5
4

3
2

1

21 3 42 521 42 321 1

1
2

3
4

5
6 6

5
4

3
2

1

1 1

2 2

3 3

4 4

5 5

6 6

1

1

2

4

2
1

Figure 1: A diamond diagram, its reading together with the associated loop configu-

ration and arc diagram

The horizontal arc segments in the -boxes occupy levels 1, . . . , N starting from

the bottom of the trapezoid. The height of an arc/loop in an FPLC is the minimal level

of the horizontal segments which form it. The height statistic of an arc/loop is invariant

under the following local moves which implement the Okada relations:

O :=

{
7−→ , 7−→ xi , 7−→ yi−1

}
.

The first and third moves can be viewed as restricted isotopies which transform arcs and

loops horizontally and downward, while the second move erases loops. By repeatedly

applying local moves, each FPLC can be brought to a normal form (ie. a configuration

without any possible move). This normal form is independent of the sequence of moves

used to obtain it and is therefore uniquely defined. It contains no arcs which go up and

then down when followed in any direction; in particular, there are no loops. There is a

bijection between permutations and normal forms which shows the following result:

Theorem 3.1. For any N and for any specialization of the X, Y parameters, the map σ 7→ Eσ is

a bijection from SN to the monoid ON and the family (Eσ)σ∈SN
is a basis for the Okada algebra

ON(X, Y). In particular the dimension of the Okada algebra ON(X, Y) is always N!.

We abbreviate the structure of a FPLC C by removing its loops, labeling each arc

by its respective height, and taking the isotopy class of what remains. We denote the
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result [C]; an example is depicted in the third image of Figure 1. In view of the previous

remarks [C] = [D] whenever C and D are two FPLCs of rank N which are related by a

sequences of moves. It turns out that this is actually an equivalence, providing us with

a diagram model for the Okada algebra which we now examine.

Recall that a rank N non-crossing arc-diagram is a visualization of a perfect matching

linking vertices {1, . . . , N} and {1, . . . , N} on the right and left boundaries of a rectangle

by non-crossing arcs (drawn in the interior of the rectangle). A pair {a, b} in the matching

is depicted by an arc joining vertices a, b ∈ [N] ∪ [N] and is denoted by a b. Either a, b

are both positive, both negative, or else have different signs; in the later case we say the

arc a b is a propagating. Only the incidence relations of the arc-diagram are relevant,

and so isotopic diagrams are considered equivalent.

An arc a b is said to be nested in another arc c d if c < a < b < d. Nesting

defines a partial order on the arcs of a non-crossing arc diagram. The reader should be

aware that any arc situated above a propagating arc is nested in the later. In particular,

given any pair of propagating arcs, one arc must be nested in the other; consequently

the nesting order is total when restricted to propagating arcs.

Definition 3.2. A rank N Okada arc-diagram is a rank N non-crossing arc-diagram where each

arc a b is assigned an height-label h(a b) such that

1. h(a b) must be at least 1 and at most min(|a|, |b|),

2. h(a b) must have the same parity as min(|a|, |b|),

3. h(a b) > h(c d) whenever a b is nested in c d.

The set of all Okada arc-diagrams of rank N is denoted AN and CAN will denote the

vector space spanned by all Okada arc-diagrams of rank N.

Definition 3.3. Given C, D ∈ AN their composition C ◦ D is the diagram obtained by merg-

ing the right boundary nodes of C with the left boundary nodes of D and concatenating their

respective arcs. The diagram C ◦ D may include loops, created from concatenated arc fragments

of diagrams C and D. The height label of an arc/loop in C ◦ D is the minimum of the height labels

of the arc fragments of C and D which comprise it. Let [C ◦ D] denoted the isotopy class of the

height labeled, non-crossing arc-diagram obtained by removing all loops from the composition.

Lemma 3.4. If C, D ∈ AN then [C ◦ D] ∈ AN . Hence AN acquires the structure of a monoid

denoted ON whose unit is the identity Okada arc-diagram idN which consists entirely of labeled

propagating arcs h(a a) = a for all 1 ≤ a ≤ N.

For simplicity we’ll present the following results for arbitrary X-parameters together

with the assumption that yk = 1 for all k ≥ 1. This is sufficiently generic to include the

semi-simple case and all but the most degenerate specializations.
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Definition 3.5. Given C, D ∈ AN their product C · D is the element Xℓ [C ◦ D] in CAN where

Xℓ = ∏k≥0 x
ℓk
k and ℓk counts the number of loops γ in C ◦ D whose height label equals k.

Lemma 3.6. The product C · D endows CAN with the structure of an associative, unital algebra

which we denote ÕN(X, 1). Using a rewriting rule, the Y-parameters can also be incorporated in

the diagram product and ÕN(X, Y) will denote the corresponding diagram algebra.

Figure 2 below shows some examples.

1

2

3

4

5

6

7

8

1

2

3 3

5

6

7

8

3

1 3

1

1

6
7

1

3
4

11

3

4

2 2

= x1

1

1

1

1

3

4
7

2

Figure 2: The identity, the generator G3 and a composition of Okada arc-diagrams of

rank 8. The red arrows indicate the Hasse diagram of the nesting order.

Let’s point out a few simple remarks. The mirror D⋆ of an Okada arc-diagram, ob-

tained by reflecting D horizontally, is an Okada-arc diagram and the map D 7→ D⋆

extends to an anti-isomorphism of ÕN(X, Y). Let ιN denote the map from ÕN(X, Y) to

ÕN+1(X, Y) adding the labeled, propagating arc h(N + 1 N + 1) = N + 1 to each

arc-diagram. Clearly ιN is an injective algebra homomorphism whose image is the set of

diagrams containing h(N + 1 N + 1) = N + 1.

Definition 3.7. For 1 ≤ i < N, let Gi denote the elementary Okada arc-diagram containing the

labeled arcs h(j j) = j for j 6= i, i + 1, h(i i + 1) = i and h(i i + 1) = i.

The elementary Okada diagrams G1, . . . ,GN−1 satisfy Okada relations I(X, Y), C(X,Y),

and S(X,Y). To construct the isomorphism from ON(X, Y) to ÕN(X, Y), we first need to

show that the elements (Gi) generate ÕN(X, Y). It is clear from the definition that if a

product ends with Gi, then the diagram contains the arc h(i i + 1) = i. The converse

is actually true: If an element e ∈ AN contains the arc h(i i + 1) = i then it can be

factored as e = f · Gi.

Proposition 3.8. Suppose D ∈ AN doesn’t contain the arc h(N N) = N. Then there exist

an integer i such that D contains the arc h(i i + 1) = i. If I is the largest such integer, then

there exists a unique arc diagram D♭ ∈ AN−1 such that D factorize as

D = ιN−1(D
♭)GN−1GN−2 · · ·GI .
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By induction, this proves the following theorem:

Theorem 3.9. The dimension of ÕN(X, Y) is N! and it is generated by the elementary diagrams

G1, . . . ,GN−1. Furthermore the map sending Ei to Gi extends multiplicatively to a unique algebra

isomorphism Θ : ON(X, Y) → ÕN(X, Y).

We conclude this section by making explicit the relation between fully packed loop

configurations and Okada arc-diagrams:

Proposition 3.10. For simplicity assume Y = 1. Let C be a FPLC of rank N, let i be its reading,

and let Ei be the corresponding monomial in the Okada algebra ON(X, 1). Then Θ(Ei) = Xℓ [C]

where Xℓ = ∏k≥1 x
ℓk
k and ℓk counts the number of loops in C with height k.

4 Fomin correspondence and Okada arc-diagrams

We have a bijection between SN and the monoid ÕN of Okada arc-diagrams, however, it

is circuitous: Starting from a permutation, first its code is computed, then the associated

FPLC is drawn, from which an Okada arc-diagram is obtained. It is not obvious, for

example, that the inverse of a permutation corresponds to the mirror of the associated

Okada arc-diagram. The goal of this section is to better explicate this graphical bijection

which turns out to be an incarnation of Fomin’s Robinson-Schested correspondence for

the Young-Fibonacci [7, 1] lattice. Recall that this is a bijection between permutations of

SN and pairs of saturated chains in the Young-Fibonacci lattice starting at ∅ and sharing

a common endpoint in YFN. The reader who is not familiar with Fomin’s construction

should refer to [1]. See Figure 3a for an example. We will see in this section that Okada

arc-diagrams are also in natural bijection with the same pairs of chains.

Cutting a labeled arc-diagram D in the middle gives a natural notion of a Okada half

arc-diagram containing either a labeled full arc h(a b) joining two nodes a, b ∈ [N], or

else a labeled half arc h(a ) with a free end. Such a half arc is called propagating. The

bra 〈D| is the Okada half arc-diagram obtained by restricting D to its positive part. The

ket |D〉 is defined to be the bra 〈D⋆| of the mirror D⋆.

Definition 4.1. The propagating label set of an Okada half arc-diagram H is the subset PLab(H)
of [N] consisting of the height labels of its propagating arcs.

The propagating label set of an Okada half arc-diagram of rank N is always a Fi-

bonacci set of rank N. The following trivial lemma-definition is of great importance:

Lemma 4.2 (Gluing lemma). For any Okada arc diagram D, the left and right half diagram

〈D| and |D〉 are two Okada half arc diagrams which have the same propagating labels set. As

consequence, it makes sense to define PLab(D) := PLab(〈D|) = PLab(|D〉).
Moreover if L and R are two Okada half arc-diagrams such that PLab(L) = PLab(R), there

is a unique Okada arc-diagram L 1 R such that 〈L 1 R| = L and |L 1 R〉 = R.
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To convert half arc diagrams to chains we need to restrict the former:

Definition 4.3. For r ≤ N, the r-restriction of an Okada half arc diagram H is the Okada half

arc-diagram denoted by H/[r] of rank r possessing

• a full arc h(a b) = h whenever H contains a full arc h(a b) = h with a, b ≤ r

• a half arc h(a ) = h whenever H contains either a full arc h(a b) = h with a ≤ r < b

or a half arc h(a ) = h with a ≤ r.

If r ≤ s then clearly the r-restriction of the s-restriction of any Okada half arc-diagram

H coincides with the r-restriction of H.

Definition 4.4. To any Okada half arc-diagram H of rank N we associate the sequence of Fi-

bonacci sets Chain(D) := (C0, . . . , CN) defined by Ci := PLab(H/[i]).

Proposition 4.5. The map Chain is a bijection between Okada half arc-diagrams and saturated

chains of rank N in the YFS-lattice. See Figure 3a for an example.

Theorem 4.6. Given a permutation σ ∈ SN, let Lσ and Rσ denote the two Okada half arc-

diagrams associated to the pair of saturated chains obtained from Fomin’s RS-correspondence.

Then Θ(Eσ) = Lσ 1 Rσ. Moreover Θ(Eσ)⋆ = Θ(Eσ−1) = Rσ 1 Lσ.

5 Structure of the Okada algebra and monoid

From now on, we identify ON(X, Y) and ÕN(X, Y) through the isomorphism Θ. The

goal of this section is to understand the structure of the Okada algebra and its monoid

via the YFSN dominance order. In particular, we describe the stratification of the Okada

algebra by two-sided ideals (generated by free elements) and the Green relations for the

monoid (which allows us show that the monoid is aperiodic). This allows us to prove

cellularity of the Okada algebra in the next section.

Definition 5.1. Let S = {s1 < · · · < sk} and T = {t1 < · · · < tℓ} be two Fibonacci sets of the

same rank N. We says that S is dominated by T and write S � T if k < ℓ and sk−i ≤ tℓ−i for

any 0 ≤ i < k. We write S ≺ T if S � T but S 6= T.

Proposition 5.2. (YFSN,�) is a ranked lattice.

Definition 5.3. A free set of rank N is a subset of [N] which does not contain both i and i + 1

for all 1 ≤ i < N. The map S 7→ F(S) := {i | i − max{s ∈ S | s < i} is odd} defines a

bijection from the collection of rank N Fibonacci sets to the collection of rank N free sets.

Definition 5.4. For S ∈ YFSN the corresponding free element in ON(X, Y) is ES := ∏i∈F(S) Ei.
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1

2
3

1

2

4

6

5

∅

{1}

{1, 2}

{1}

{1, 2}

{1, 2, 3}

{1, 2, 3, 6}

{1, 2, 3}

{1, 2}

∅

{1}

∅

{1}

{1, 4}

{1, 4, 5}

{1, 4}

{1}

{1, 2}

(a) An arc-diagram with its associated chains

{1}

{3}

{1, 2, 3} {5}

{1, 2, 5}

{1, 4, 5}

{3, 4, 5}

{1, 2, 3, 4, 5}

(b) The dominance order on YFS5

Note that ES = EσS
where σS := ∏i∈F(S) σi is the associated free involution in SN.

Remark 5.5. The half arc-diagrams 〈ES| and |ES〉 coincide for any S ∈ YFSN. Further-

more 〈ES| consists only of labeled propagating arcs h(s ) = s for s ∈ S and labeled

full arcs h(i i + 1) = i for i ∈ F(S).

Proposition 5.6. Let JS be the two-sided ideal in ON(X, Y) generated a free element ES for

S ∈ YFSN, then JS ⊆ JT if and only if T � S for any pair S, T ∈ YFSN.

Theorem 5.7 (Triangular Factorization). For σ ∈ SN there exists a unique pair of per-

mutations ρ, τ ∈ SN such that Eσ = Eρ · ES · Eτ where ℓ(σ) = # S + ℓ(ρ) + ℓ(τ) and

S� inf(PLab(Eρ), PLab(Eτ)) and where S = PLab(Eσ).

Returning to the Okada monoid, an element e ∈ ON is said to be involutive whenever

it equals its mirror e⋆. Involutive elements are always idempotents and thanks to the

RS correspondence, these are precisely the basis monomials Eσ where σ ∈ SN is an

involution (i.e. σ2 = 1).

Remark 5.8. The set of idempotents in ON is not exhausted by the involutive elements.

For example in O3 all element are idempotents, while E1E2E3 and E3E2E1 are the only

non-idempotents in O4. Computer calculations show that the number of idempotents

for N ≤ 10 are: 1, 1, 2, 6, 22, 108, 594, 4116, 30500, 274006, 2560400.

Proposition 5.9. Let e, f ∈ ON. Then either 〈ef| = 〈e| and thus PLab(ef) = PLab(e) or

PLab(ef) ≺ PLab(e). As a consequence, PLab(ef) � inf(PLab(e), PLab(f)).

The previous proposition is the main ingredient of the following theorem which

describe the structure of the Okada monoid:
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Theorem 5.10. The monoid ON is aperiodic, i.e. there exists an integer K such that eK = eK+1

for all e ∈ ON. Equivalently, all the groups in ON are trivial.

Recall that R (resp. J ) is the equivalence relation on ON such that e R f if e and f

generate the same right (resp. two-sided) ideals.

Theorem 5.11. Each R-class of ON contains a unique involutive element. Each J -class of ON

contains a unique free element. Moreover, the free representative of e ∈ ON is the free element

having the same propagating set as e.

6 Cellular structure of the Okada algebra

Recall that a cellular algebra A is a finite dimensional algebra with distinguished cellular

basis which is particularly well-adapted to studying the representation theory of A,

especially as the ground ring/field varies. For brevity, we skip a general discussion

about cellular algebras and point the reader to [3] for definitions and context.

Definition 6.1. Let HN and CHN denote respectively the set and the vector space spanned by

all Okada half arc-diagrams of rank N. Likewise HS
N and CHS

N will denote the set and the vector

space spanned by all half diagrams H ∈ HN for which PLab(H) = S where S ∈ YFSN. We

extend the bra map D 7→ 〈D| by linearity to obtain a map from ON(X, Y) to CHN.

The following result is a consequence of the factorization given in Proposition 5.7:

Theorem 6.2. The Okada algebra ON(X, Y) is cellular with the following data

1. A cell-poset is ΛN = (YFSN,�).

2. An index set MS = HS
N for each S ∈ YFSN

3. A cellular basis element CS
L,R

:= L 1 R associated to L, R ∈ HS
N

4. An involutive anti-isomorphism given by the mirror map ⋆ : L 1 R 7→ R 1 L.

Remark 6.3. The left ON(X, Y) cell module associated to S ∈ YFSN can be realized by the

vector space CHS
N equipped with the left action defined by

D • H :=

{〈
D · (H 1 H)

∣∣ if PLab
(

D ◦ (H 1 H)
)
= S

0 otherwise

where D ∈ ON(X, Y) and H ∈ HS
N. For generic values of the X, Y parameters CHS

N is

irreducible.1

1The cell module HS
N carries an invariant bilinear form ϕS. We conjecture an explicit value for the

determinant of the associated Gram matrix GS, which we express in terms of (specialized) clone Schur

functions.
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7 Prospectives

For a fixed choice of a threshold k ≥ 1, we truncate any Okada arc-diagram D, replacing

its height labels h by min(h, k). The k-truncated Okada arc-diagrams form a multiplica-

tive basis for a higher Blob algebra Blob
(k)
N , which can be realized as a quotient of the

Okada algebra ON(X, Y) after specializing the X, Y parameters appropriately. In partic-

ular the Temperely-Lieb and Martin-Saleur Blob algebras [4] are recovered for k = 1, 2

respectively. It seems that the corresponding Bratelli diagram YF
(k) naturally embeds

into the YF-lattice and can be seen as a Fibonacci counterpart of the sublattice of inte-

ger partitions with at most k parts. Both the Temperely-Lieb and the Blob algebras are

intertwiner algebras which raises the question of whether the higher Blob algebras have

such a description for k ≥ 3. If so, this would be indicative of a Fibonacci version of

Schur-Weyl duality, and would entail, on a combinatorial level, a well-behaved version of

the RSK-correspondence.

It should be possible to incorporate height labels into other diagram algebras such

as the partition and Brauer algebras. Can one, for example, define a suitable notion of

height labeled braids together with skein relations consistent with these labels? A satisfac-

tory answer might shed light onto the problem of identifying appropriate Jucys-Murphy

elements for the Okada algebras.
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