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We revisit the contribution to the strong CP parameter θ̄ from leptonic CP violation at one-loop
level in the minimal left-right symmetric model in the case of parity as the left-right symmetry. The
Hermitian neutrino Dirac mass matrix MD can be calculated using the light and heavy neutrino
masses and mixings. We propose a parameterization of the right-handed neutrino mixing matrix VR

and construct the heavy neutrino mass that maintains the Hermiticity of MD. We further apply it
to evaluate the one-loop θ̄, denoted as θ̄loop, as a function of the sterile neutrino masses for explicit
examples of VR. By requiring the magnitude of θ̄loop ≲ 10−10, we derive the upper limits on the
sterile neutrino masses, which are within reach of direct searches at the Large Hadron Collider and
neutrinoless double beta decay experiments. Furthermore, our parameterization is applicable to
other phenomenological studies.

I. INTRODUCTION

The standard model (SM) of particle physics has
achieved great success. However, the origin of neutrino
masses and the strong CP problem remains unsolved,
serving as compelling motivations for physics beyond the
SM (BSM). These two problems might have intrinsic con-
nections, even though they appear in the weak and strong
sectors at low energies.

If neutrinos are Majorana fermions, they could ac-
quire Majorana masses in the seesaw mechanism [1–5],
making them naturally small. In the type-I [1–5] and
type-II [6–11] seesaw mechanisms, right-handed neutri-
nos and scalar triplet are introduced, respectively. In the
minimal left-right symmetric model (MLRSM) [5, 9, 12–
15], the neutrino masses can receive contributions from
both type-I and type-II seesaw mechanisms Mν = ML −
MT

DM−1
N MD (cf. Eq. (11)). In case of parity or charge

conjugation as the left-right symmetry [16], dubbed case
P or C, respectively, the MLRSM is highly predictive,
which has been extensively studied [17–25]. Moreover,
it was found that in the MLRSM, one can calculate the
neutrino Dirac mass matrix MD in terms of the light
and heavy neutrino masses and mixings [26–29]. As a
contrast, the expression of neutrino Dirac mass matrix
MD in Casas-Ibarra parameterization [30] in type-I see-
saw models is still dependent on an arbitrary complex
orthogonal matrix.

The strong CP problem is about the extremely small
parameter θ̄ ≲ 10−10 [31–33] that violates CP in the
strong sector of the SM. The most popular solution
to the strong CP problem is the Peccei-Quinn mecha-
nism [34, 35], which leads to the existence of the ax-
ion [36, 37] and has thus drawn a lot of theoretical atten-
tion [38–44] as well as experimental interest [45]. Addi-
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tionally, the strong CP problem can also be addressed by
imposing discrete symmetries [46–51]. Parity solutions to
the strong CP problem in the left-right symmetric mod-
els were considered in Refs. [46–48], and have been fur-
ther studied recently [52–55]. In both SM and BSM sce-
narios, we can separate θ̄ = θ + arg det(MuMd), where

θ is the coefficient of GG̃ term in the Lagrangian, and
arg det(MuMd) is included since the up-type and down-
type quark mass matrices Mu and Md are in general non-
Hermitian [56]. In the MLRSM of case P, θ vanishes at
tree level and θ̄ is equal to arg det(MuMd). It has been
shown that θ̄ ≃ sinα tan(2β)mt/(2mb) [21, 52], where
α and β are defined in Eq. (5), mt and mb denote the
masses of top and bottom quarks, respectively. Thus
in order to satisfy the constraint from measurements of
neutron electric dipole moments [31–33] on θ̄ ≲ 10−10,
sinα tan(2β) → 0 is required.
However, even if the quark mass matrices are (nearly)

Hermitian, leptonic CP violation would induce θ̄ at
one-loop level, which might exceed the aforementioned
bound as pointed out in Ref. [57]. Instead of being a
problem, Senjanovic et al. [58] demonstrated that the
one-loop θ̄ in the MLRSM implies an upper bound on
the masses of sterile neutrinos, which is complemen-
tary to the direct searches at the Large Hadron Col-
lider [59]. As obtained in Ref. [58], θ̄loop is proportional to

ImTr
(
M†

NMN [MD,Mℓ]
)
, where Mℓ denotes the charged

lepton mass matrix, and the neutrino Dirac mass ma-
trix MD is determined by the light and heavy neutrino
masses and mixings. However, it was shown that [25]
θ̄loop might vanish in the type-I seesaw dominance sce-
nario for specific benchmark choices of the right-handed
neutrino mixing matrix VR, which hindered the attempt
to search for sterile neutrinos contributing to θ̄ with neu-
trinoless double beta (0νββ) decay [25].
In this work, we propose a parameterization of right-

handed neutrino mixing VR in the MLRSM of case P
and construct the heavy neutrino mass matrix MN , for
which the Hermiticity of the neutrino Dirac mass matrix
MD is maintained. We then evaluate the one-loop θ̄ for

ar
X

iv
:2

40
4.

16
74

0v
1 

 [
he

p-
ph

] 
 2

5 
A

pr
 2

02
4

mailto:ligang65@mail.sysu.edu.cn
mailto:luody25@mail2.sysu.edu.cn
mailto:zhaox88@mail2.sysu.edu.cn


2

the general seesaw relation for explicit examples of VR,
and obtain non-vanishing θ̄loop as a function of the sterile
neutrino masses. By using the bound |θ̄loop| ≲ 10−10, we
can then obtain the upper limits of the sterile neutrino
masses.

The remainder of the paper is organized as follows. In
the next section, we provide a brief introduction of the
MLRSM of case P. Sec. III delves into the calculation of
neutrino Dirac mass matrix MD in the Senjanovic-Tello
method, and the parameterization of VR and MN . In
Sec. IV, we evaluate the one-loop θ̄ for explicit examples
of VR. We conclude in Sec. V.

II. MINIMAL LEFT-RIGHT SYMMETRIC
MODEL

The MLRSM is based on the gauge group SU(3)c ×
SU(2)L × SU(2)R × U(1)B−L, which was proposed to
explain the origin of neutrino masses [5, 9]. Three right-
handed neutrinos νR and scalar triplets ∆L,R are intro-
duced

ℓL,R =

(
ν
e

)
L,R

, ∆L,R =

(
δ+L,R/

√
2 δ++

L,R

δ0L,R −δ+L,R/
√
2

)
,

(1)

where the flavor indices of leptons are omitted. Besides,
the scalar bi-doublet Φ exists, which is written as

Φ = [ϕ1, iσ2ϕ
∗
2] , ϕi =

(
ϕ0
i

ϕ−
i

)
, i = 1, 2 , (2)

where σ2 is the second Pauli matrix. If parity is taken as
the left-right symmetry, i.e., case P, we have

∆L ↔ ∆R , Φ ↔ Φ† . (3)

The leptonic Yukawa interactions are

L = −ℓ̄L (Y1Φ− Y2σ2Φ
∗σ2) ℓR

− 1

2

(
ℓTLCYLiσ2∆LℓL + ℓTLCYRiσ2∆RℓR

)
+ h.c. , (4)

where C = iγ0γ2 is the charge conjugation matrix, h.c.
denotes the Hermitian conjugate terms. The left-right
symmetry is spontaneously broken once the right-handed
triplet ∆R develops a vacuum expectation value (vev),
vR = ⟨δ0R⟩. After the electroweak symmetry breaking, Φ
develops vevs

⟨Φ⟩ = vdiag(cβ ,−sβe
−iα) (5)

with cβ ≡ cosβ, sβ ≡ sinβ and v ≃ 174 GeV. Then
the left-handed triplet ∆L would get the vev vL, which is
generally complex [60] and proportional to v2/vR [9, 61].
Defining NL = νcR, one obtains the neutrino mass terms

Lν = −1

2
(ν̄cL, N̄

c
L)Mn

(
νL
NL

)
+ h.c. , (6)

where the full neutrino mass matrix is defined as

Mn ≡
(
ML MT

D
MD MN

)
. (7)

The neutrino Majorana and Dirac neutrino mass matri-
ces are

ML =
vL
vR

UT
e M∗

NU∗
e , (8)

MN = Y ∗
RvR , (9)

MD = −v
(
Y1cβ + Y2sβe

−iα
)
. (10)

After block diagonalizing the neutrino mass matrix, we
can obtain the light neutrino masses

Mν = ML −MT
D

1

MN
MD , (11)

which is a general seesaw relation including contributions
from both type-I and type-I mechanisms. If vL is negli-
gibly small, it is reduced to the type-I seesaw dominance
scenario.
As shown in Ref. [28], in the MLRSM of case P we

have

MD − UeM
†
DUe ∝ sαt2β , (12)

where sα ≡ sinα, t2β ≡ tan(2β), Ue is the matrix that
diagonalizes the charged lepton mass matrix. Thus, in
the limit sαt2β → 0, MD is Hermitian and Ue = ±1.

III. CALCULABLE NEUTRINO DIRAC MASS
MATRIX

A. Senjanovic-Tello method

It has been shown by Senjanovic and Tello [27, 28],
the neutrino Dirac mass matrix MD can be determined
with the light and heavy neutrino masses and mixings
in the limit sαt2β → 0. In the following, we will briefly
introduce the general method they proposed in Ref. [28].

From MD = M†
D, Eq. (11) can be expressed as

HHT =
vL
vR
1− 1√

MN

M∗
ν

1√
MN

, (13)

where the Hermitian matrix H is defined as

H =
1√
MN

MD
1√
MN

. (14)

One can then decompose HHT as

HHT = OsOT , (15)

using the fact that HHT is symmetric. In the above, O
is a complex orthogonal matrix and s is the symmetric
normal form. The matrices O and s are obtained from
Eqs. (13) (15). The matrix H itself can be expressed as

H = O
√
sEO† . (16)

with E being determined by the Hermitian condition
H = H†.
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√
sE = E

√
s∗ , ET = E∗ = E−1 . (17)

Comparing Eq. (16) with Eq. (14), one readily get

MD =
√
MNO

√
sEO†√M∗

N . (18)

Notice that O, s and E depend on Mν and MN , the neu-
trino Dirac mass matrix, we can calculate MD once the
light and heavy neutrino masses and mixings are known.

Although the above method is applied to the general
seesaw relation in the Hermitian case (cf. Eq. (11)), no
general MD could be obtained since MN is arbitrary [28].
In terms of the physical masses and neutrino mixing ma-
trices,

Mν = V ∗
LmνV

†
L , MN = VRmNV T

R , (19)

thus we should have a priori knowledge of VR and mN

besides the inputs of mν and VL from the measurements
of neutrino oscillation [62].

If VR = VL is assumed,we could obtain [27, 28]

MD = VLmN

√
vL
vR

− mν

mN
V †
L . (20)

While it is straightforward to calculate MD for a dif-
ferent VR, the following condition

ImTr

[
vL
vR

− 1

MN
M∗

ν

]n
= 0 , n = 1, 2, 3 (21)

makes it more complicated, which results from the Her-
miticity of H. The above relation implies that the phases
of light and heavy neutrino mass matrices are not inde-
pendent [27].

That is to say, for any VR being assumed, it is neces-
sary to verify the condition in Eq. (21) with the resulting
heavy neutrino mass matrix MN . Therefore, an appro-
priate choice of VR is crucial and non-trivial.

B. Parameterization of VR and MN

Notice that if vL is real, the condition in Eq. (21) is

reduced to ImTr
[
M−1

N M∗
ν

]n
= 0. This enables us to

obtain possible forms of MN and VR, the details of which
are given in Appendix A.

We find that in the MLRSM of case P for Hermitian
MD and real vL, the right-handed neutrino mixing ma-
trix VR can be parameterized as

VR = PVL
√
mNmν

−1
, (22)

where P is a Hermitian or anti-Hermitian matrix,

P = ±P † . (23)

For convenience, we can further write VR as

VR = P̂ VL , P̂ ≡ PVL
√
mNmν

−1
V †
L . (24)

Note that P has the mass dimension one, while P̂ is

dimensionless. As VL and VR are unitary [28], it follows

that P̂ must also be a unitary matrix, thereby imposing
constraint on P . If VR = VL, P̂ = 1, we readily get the

Hermitian matrix P = VL
√
mNmνV

†
L .

From Eq. (22), one can construct the heavy neutrino
mass matrix

MN = PM−1
ν PT , (25)

which satisfies the condition in Eq.(21).
If VR = VL, and mN = vR/vLmν , using Eq. (25),

we can readily get MN = vR/vLM
∗
ν . Thus the above

parameterization of MN is compatible with the type-II
seesaw dominance scenario.

IV. ONE-LOOP θ̄

As pointed out in Ref. [57], θ̄ can be generated from
the leptonic CP violation, which contributes to the Higgs
potential at one-loop level:

V ⊃
[
α2 Tr

(
∆†

R∆R

)
+ h.c.

]
Tr
(
Φ̃Φ
)
, (26)

where the coupling α2 is complex and Φ̃ ≡ σ2Φ
∗σ2. It is

shown that [57, 58]

θ̄loop ≃ 1

16π2

mt

mb
ImTr

(
Y †
RYR[Y1, Y2]

)
ln

MPl

vR
, (27)

where the Dirac Yukawa couplings YR and Y1,2 are de-
fined in Eq. (4), and MPl = 1.22× 1019 GeV denotes the
Planck scale. In terms of the mass matrices, we have [58]

θ̄loop ≃ 1

16π2

mt

mb

1

v2Rv
2

× ImTr
(
MT

NM∗
N [MD,Mℓ]

)
ln

MPl

vR
. (28)

where the charged lepton mass matrix Mℓ is diagonal due
to Ue = ±1. If VR = VL, by using the expressions of MN

and MD given in Eqs. (19) (20), we can easily verify that
θ̄loop is exactly zero. This also applies when VR = 1 [25].
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Figure 1: The magnitude of θ̄loop as a function of the
heaviest sterile neutrino mass mNmax, which is assumed
to be m4.

In order to evaluate θ̄loop for other choices of VR, we
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use the parameterization in Sec. III B, and consider VR =
P̂ VL with the following textures of P̂ :

P̂1 = i

1 0 0
0 0 1
0 1 0

 , P̂2 = i

0 1 0
1 0 0
0 0 1

 ,

P̂2 = i

 1
2

1
2 −

√
2
2

1
2

1
2

√
2
2

−
√
2
2

√
2
2 0

 , (29)

where we have included the factor of i to maintain the
Hermiticity of the neutrino Dirac mass matrix MD

1.
One can directly verify that for these cases the matrix

P = P̂ VL
√
mNmνV

†
L is anti-Hermitian.

We assume that the active neutrino masses mν ≡
diag(m1,m2,m3) are in the normal hierarchy, and that
the sterile neutrino masses mN ≡ diag(m4,m5,m6) are

correlated with mν :

m1m4 = m2m5 = m3m6 , (30)

and choose the parameters as

m1 = 10−3 eV , vL = 1 eV , vR = 15 TeV . (31)

For the cases in Eq. (29), we obtain the magnitude of
non-vanishing θ̄loop as a function of the heaviest ster-
ile neutrino mNmax = m4 in Fig. 1. Since θ̄loop ap-
proximately increases with the sterile neutrino masses
(mNmax)

5/2, by requiring |θ̄loop| ≲ 10−10 2, we obtain
the upper bound on the sterile neutrino masses, which
was highlighted in Ref. [58]. For P̂ = P̂1, P̂2 and P̂3, we
obtain mNmax ≲ 2.5 TeV, 6 TeV and 2 TeV, respectively.

As a benchmark, we take P̂ = P̂1 and assume m4 =
2.86 TeV, m5 = 3.32 GeV, and m6 = 57.2 MeV. The
heavy neutrino mass matrix is given by

MN =

 −1.95× 1012 − 7.05× 105i −1.16× 1012 + 5.60× 1010i 6.38× 1011 + 6.47× 1010i
−1.16× 1012 + 5.60× 1010i −6.96× 1011 + 6.69× 1010i 3.85× 1011 + 2.03× 1010i
6.38× 1011 + 6.47× 1010i 3.85× 1011 + 2.03× 1010i −2.09× 1011 − 4.24× 1010i

 eV .

Using the Senjanovic-Tello method, we obtain the matrices in Eq.(16)

O =

 −0.1344 + 0.04691i −0.4861− 0.006028i 0.8648 + 0.003902i
0.6396− 0.0002750i 0.6240 + 0.01683i 0.4499− 0.02296i
0.7584 + 0.008545i −0.6125 + 0.02193i −0.2263− 0.03073i

 ,

E = 1 , s =

 8.576× 10−7 0 0
0 4.602× 10−10 0
0 0 6.867× 10−13

 ,

and the neutrino Dirac mass matrix

MD =

 545380. 343623.+ 13636.i −204348.+ 16763.i
343623.− 13636.i 272102. −116364.+ 17374.i
−204348.− 16763.i −116364.− 17374.i 109404.

 eV .

The resulting value of θ̄loop is −1.241335× 10−10. While
the heaviest sterile neutrino is within reach of direct
searches at the Large Hadron Collider [59], the lighter
sterile neutrinos could give significant contributions to
neutrinoless double beta decay [25].

It is worth noting that due to sαt2β ∝ Imα2, the neu-
trino Dirac mass matrix MD is not exactly Hermitian.
A delicate examination of non-Hermitian MD was re-
cently conducted in Ref. [29]. Nevertheless, the corre-
lation between MD and θ̄ poses a challenge for recursive
evaluation. Unless there is accidental cancellation, as-

1 In the type-I seesaw dominance scenario, where vL is negligibly
small, MD in Eq. (20) is anti-Hermitian if we assume VR = VL,
a fact that appears to have been overlooked. We find that for
VR = iVL, θ̄loop also vanishes, which can be verified analytically.

2 We obtain that θ̄loop has definite sign for P̂ being given in
Eq. (29).

suming that MD is exactly Hermitian, as we have done,
is adequate for estimating the upper limit on the sterile
neutrino masses.

V. CONCLUSION

In this work, we have proposed a parameterization
of right-handed neutrino mixing VR = PVL

√
mNmν

−1

with P being a Hermitian or anti-Hermitian matrix in
the MLRSM of case P, and constructed heavy neutrino
mass matrix as MN = PM−1

ν PT . In this parameteri-
zation, the Hermiticity of the neutrino Dirac mass ma-
trix MD is maintained. We then evaluate the one-loop
θ̄ generated from leptonic CP violation for the general
seesaw relation with explicit examples of VR and obtain
non-vanishing θ̄loop as a function of the sterile neutrino
masses. By requiring |θ̄loop| ≲ 10−10, we obtain the up-
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per bound on the sterile neutrino masses.
Our parameterization of VR and MN is applicable to

other phenomenological studies. In particular, it enables
us to study the interplay of 0νββ decay and one-loop θ̄
mediated by the sterile neutrinos in the MLRSM of case
P.

Appendix A: Hermitcity of H

In Sec. III B, we have provided the parameterization of
the right-handed neutrino mixing VR and heavy neutrino
mass matrixMN , which guarantees the Hermiticity of the
matrix H hence neutrino Dirac mass matrix MD. In this
appendix, we will give more details.

From Eq. (21), we expand[
vL
vR

− 1

MN
M∗

ν

]n
=C1 + C2

1

MN
M∗

ν + ...+ Cn(
1

MN
M∗

ν )
n , (A1)

where all the Cn for n ∈ N are real numbers. So all we
need to check is

(
M−1

N M∗
ν

)n
.

First, we assume

MN = PM−1
ν Q , (A2)

where Q is a matrix with dimension one.
We observe that if Q = ±P ∗,

ImTr

[(
1

MN
M∗

ν

)n]
=± ImTr

[
(P−1∗MνP

−1Mν∗)n
]
. (A3)

Defining A = P−1∗Mν , we have

Tr[(AA∗)n] = Tr
[
A∗(AA∗)n−1A

]
= Tr[(A∗A)n] , (A4)

so that

ImTr

[(
1

MN
M∗

ν

)n]
= ImTr

[(
1

MN
M∗

ν

)n∗]
, (A5)

which implies that

ImTr

[(
1

MN
M∗

ν

)n]
= 0 . (A6)

Therefore, the condition in Eq. (21) is satisfied.
From Eq. (A2), we have

MN =PVLm
−1
ν V T

L Q

=VRmNV T
R . (A7)

To find a possible form of VR, we define

F =
√
mνX

√
mN , (A8)

where X is an orthogonal matrix, XXT = 1, and obtain

mν = Fm−1
N FT . (A9)

Then Eq. (A7) becomes

PVL(F
T )−1mNF−1V T

L Q = VRmNV T
R . (A10)

If

VR = PVL(F
T )−1 , V T

R = F−1V T
L Q , (A11)

the relation in Eq. (A10) must be satisfied. Hence, Q =
PT = ±P ∗ with P being a Hermitian or anti-Hermitian
matrix. Without loss of generality, we assume X = 1,
and then F =

√
mνmN . Other choices ofX can also yield

appropriate VR and P , which may also be of interest.
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