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Abstract

We consider nonparametric statistical inference on a periodic interaction potential
W from noisy discrete space-time measurements of solutions ρ = ρW of the nonlinear
McKean-Vlasov equation, describing the probability density of the mean field limit of an
interacting particle system. We show how Gaussian process priors assigned toW give rise
to posterior mean estimators that exhibit fast convergence rates for the implied estimated
densities ρ̄ towards ρW . We further show that if the initial condition φ is not too smooth
and satisfies a standard deconvolvability condition, then one can consistently infer the
potentialW itself at convergence rates N−θ for appropriate θ > 0, where N is the number
of measurements. The exponent θ can be taken to approach 1/2 as the regularity of W
increases corresponding to ‘near-parametric’ models.

1 Introduction

We investigate the problem of conducting statistical inference in a class of dynamical systems
whose state at time t ∈ [0, T ] is described by the probability density ρ = ρW (t, ·) solving the
nonlinear partial differential equation (PDE)

∂ρ

∂t
= ∆ρ+∇ · (ρ∇(W ∗ ρ)) (1)

ρ(0, ·) = φ,

known as the McKean-Vlasov equation, where ∆,∇·,∇ denote the Laplacian, divergence and
gradient operators, respectively. Further φ is the probability distribution of the initial state
and W is an interaction potential with Lipschitz gradient. In the present paper we consider
this equation on the d-dimensional torus Td, with periodic boundary conditions. This PDE
is a non-linear and non-local Fokker-Planck type equation and plays a fundamental role in a
variety of scientific application areas ranging from opinion dynamics [31] and other models
in the social sciences [51] to mathematical biology [50], sampling and optimization [59, 55],
plasma physics [18], fluid mechanics [28], as well as statistical physics [29, 19] and kinetic
theory [63, 25, 41].

The problem we shall study here is how to recover the interaction potential W from a
discrete statistical measurement of the evolution of the macrosopic state ρ of the system over

∗Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, email:

nickl@maths.cam.ac.uk
†Department of Mathematics, Imperial College London, email: g.pavliotis@imperial.ac.uk,

kolyan.ray@imperial.ac.uk

1

http://arxiv.org/abs/2404.16742v1


time. We shall take a non-parametric approach where a possibly high- or infinite-dimensional
model is postulated for the function W , arising from a Gaussian process prior Π, which then
is updated via Bayes rule from ‘regression type’ data (Yi, ti,Xi)

N
i=1 of the form

Yi = ρW (ti,Xi) + εi, εi ∼iid N(0, 1), i = 1, . . . , N, (2)

where the ti,Xi are sampled discretely from the the time-space cylinder X = [0, T ] × T
d.

This approach is frequently taken in applications, e.g., [27, 32, 37], and fits into the general
paradigm of Bayesian non-linear inverse problems with PDEs [62], which is amenable to an
algorithmic treatment via MCMC and numerical PDE methods even in high- and infinite-
dimensional models [10, 3] – see after (6) below for more details. It also allows us to take
advantage of recent theoretical developments in the field, e.g., [43, 42] and especially [44],
but before we do so let us shed some more light on how such measurements may arise in
concrete physical situations, explaining also the interpretation of the function W as driving
interactions.

A basic interacting particle model postulates the simultaneous evolution in time t ∈ [0, T ]
of n particles Xi

t in a d-dimensional state space Td, solving the coupled system of n stochastic
differential equations (SDEs)

dXi
t = − 1

n

∑

i 6=j

∇W (Xi
t −Xj

t )dt+
√
2dBi

t , i = 1, . . . , n, (3)

where the Bi
t are independent d-dimensional Brownian motions, and where chaotic initial

conditions are assumed, i.e., the Xi
0 are all started independently, drawn randomly from the

given initial distribution φ. This setup can be considered as well in R
d, in particular if we

add a drift −∇U(Xi
t)dt arising from a (known) confining potential U to the SDE (3). There

has been a sequence of interesting recent papers trying to address the problem of inferring
W from measurements in models such as (3), see [2, 61, 15, 53, 54, 20, 22, 1, 9, 14] – with
earlier references being [4, 34]. Key statistical aspects of this task, such as dealing with the
multi-dimensional setting d > 1 and clarifying when the potential W is indeed statistically
identifiable, still remain broadly open, however. The important reference [14] shows how the
particle densities can be estimated empirically from the data, but as our results indicate,
one can obtain faster convergence rates than in [14] in important physically relevant settings
(see below for more discussion). Furthermore, the hypotheses imposed in all the preceding
references to identify W are typically implicit and can generally not be verified for natural
parameter spaces. Note also that recently developed proof techniques for non-parametric
inference in multi-dimensional diffusion models (see [46, 24, 45, 33] and references therein)
do not apply to the model (3) when the number n of particles is large as the dimension nd
of the underlying state space then diverges rapidly.

To exploit the information present in measurements of such systems in the mean field limit
(n → ∞), one ought to take advantage of the rich mathematical theory that describes the
macroscopic behaviour of particles interacting according to (3). In particular, it is well known
that under mild assumptions on the interaction potential, and with chaotic initial data, the
propagation of chaos property holds– we refer to [63] for a classical reference, to [49, 39] for
particularly clear proofs, and [28, 36, 13] for important recent developments. Specifically, it

is shown in [36] that if one considers the marginal distributions P k,n
t of any fixed number

of k = o(n) particles, then in the mean field limit n → ∞ the laws P k,n
t are approximated

in relative entropy by a product measure P k
t whose coordinate distributions have probability
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density ρW solving the PDE (1). Moreover, ρ = ρW is the density of the law Law(Xt) where
Xt is the solution of the nonlinear (in the sense of McKean) SDE

dXt = −∇W ∗ ρ(t,Xt)dt+
√
2dBt, t ≥ 0, X0 ∼ φ. (4)

The existence of the solution to the last equation is not difficult to prove, in particular when
the state space is the torus, by a fixed point argument in path space, see, e.g., Ch.I in [63].
The intuition is that as n increases, the distribution of any fixed particle is determined by
the local dynamics of a Brownian motion with drift term reacting to the local density ρ of
nearby particles by convolution with the gradient of the interaction potential. Moreover,
we can regard the laws of each distinct (fixed) pair chosen among k = o(n) particles as
approximately independent. One can then record the ‘relative frequencies’ of the proportion
of these k particles spent in each of N ‘bins’ of a dissection of the time-space cylinder [0, T ]×
T
d. This allows one to obtain approximate (‘histogram’ type) measurements of the particle

density ρW , and by the approximate independence of the k marginals we can justify the
measurement model (2). We believe that the results obtained here also strongly inform the
non-iid models (3), (4), possibly even by using the non-asymptotic approximations in [36]
combined with results in [58] to bound the (one-sided) Le Cam distance for equivalence of
statistical experiments. These questions are of independent interest and will be investigated
elsewhere – in the present article we content ourselves with aggregating the information in
the data to a measurement (2) of the particle densities.

Once we have adopted the paradigm of Bayesian nonlinear regression with data (2), the
question of whether consistent statistical inference on W,ρW is feasible can be determined by
studying analytical properties of the parameter to solution map W 7→ ρW of the underlying
PDE – this was first shown in [42] and a general theory is laid out in [44]. For the present
non-linear Fokker-Planck equation (1) we exploit ideas from [7, 8] that allow to realise ρW
as a limiting fixed point of sequences of suitable linear parabolic problems, as well as a
‘Girsanov type’ estimate in relative entropy for solutions to linear and nonlinear Fokker-
Planck equations [5, 36]; this bound permits us to replace the arguments for linear PDEs from
Sec. 2.1.1 in [44]. Our key analytical results consist, first (Lemma 3), of proving Lipschitz
continuity of the non-linear forward map W 7→ ρW on bounded subsets of C2(Td);

‖ρW1 − ρW2‖L2(X ) . ‖∇(W1 −W2) ∗ ρW2‖L2(X ) . ‖W1 −W2‖H−β

where β > 0 is a measure of the regularity of the initial condition φ ∈ Hβ. Using the theory
from [44] this implies that Gaussian process priors for interaction potentials W give rise to
sensible non-parametric models for the relevant regression functions ρW . In particular, this
enables us to obtain fast convergence rates for recovery of ρW by Bayesian plug-in estimates
ρW̄N

arising from the posterior mean W̄N = EΠ[W |(Yi, ti,Xi)
N
i=1]. We then tackle the inverse

problem and prove a partial converse to the first inequality in the last display, specifically a
stability estimate

‖(W1 −W2) ∗ ρW2‖L2(X ) . ‖ρW1 − ρW2‖+
for a norm ‖ · ‖+ that involves partial derivatives in the space and time variables, see (22) for
details. WhenW1 has a bound on the number of non-zero Fourier modes, this further implies
novel injectivity (or ‘inverse stabilty’) estimate for the entire mapW 7→ ρW as soon as decon-
volving the ‘factor’ ρW2 is possible. This permits us to provide concrete verifiable hypotheses
on only the initial condition φ under which full inference on the interaction potential becomes
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feasible at polynomial convergence rates N−θ, θ > 0, as soon as W is Sobolev smooth. The
Bayesian posterior mean estimators that attain these convergence rate can be implemented
by MCMC techniques, and unlike frequentist methods studied in earlier references, our ap-
proach does not require or postulate an explicit identification formula for W . Rather, the
aforementioned stability estimates are sufficient to guarantee recovery, which is one of the
main reason why Bayes methods are attractive in nonlinear inverse problems arising with
PDEs and data assimiliation tasks, see [44] and references therein.

Our proofs exploit information in the observations available at finite (in fact, short) time
horizons, and are not based on any kind of ergodicity properties of the particle system.
Several of the recent papers on inference for the McKean SDE cited earlier develop inference
methodologies based on observing particles over a long time interval, and rely on the ergodic
properties of the dynamics in the limit as T → ∞. This approach is not necessarily well-suited
for the mean field dynamics. Indeed, it is well known [11, 7, 13, 12] that the McKean-Vlasov
dynamics can exhibit phase transitions, i.e. multiple stationary states can exist. In particular,
for the dynamics on the torus in the absence of a confining potential, the uniform measure is
always a stationary state for the mean field dynamics, and clearly no information about the
interaction potential can be deduced from it. For example, the spectral theoretic approach
that was proposed in [53] and that is based on linearising the McKean-Vlasov operator around
the invariant measure, does not work in this case, since the linearised Mckean-Vlasov operator
is simply the Laplacian. But even when the McKean SDE has a unique informative invariant
measure, long term horizon asymptotics may not be useful as the invariant measures are
generally smooth and hence not easily deconvolvable.

2 Main results

2.1 Notation

We will denote by C(Td) the space of (bounded) continuous functions on T
d while L2(Td)

denotes the usual Hilbert space of square integrable functions for Lebesgue (probability) mea-
sure dx on T

d. The spaces Hα(Td), Cα(Td) consist of all functions that have partial (in the
former case, weak) derivatives up to order α ∈ N defining elements of L2(Td), C(Td), respec-
tively, and we set C∞(Td) = ∩α>0C

α(Td), C0(Td) = C(Td) by convention. For regularity
estimates for the PDE (1), it is also convenient to introduce the space Wα,∞(Td) of functions
in C(Td) whose weak partial derivatives up to order α lie in the space L∞(Td) of bounded
functions. We have Cα(Td) →֒ Wα,∞(Td) where →֒ means a norm-continuous imbedding.
We can further define Sobolev spaces Hα(Td) = (H−α(Td))∗ also for α < 0 as the topological
dual space. The convolution ∗ of functions and measures is defined as usual, for instance if
f, g ∈ C(Td) then f ∗ g(x) =

∫

Td f(x− y)g(y)dy, x ∈ T
d.

We further define function spaces on the time-space cylinder X = [0, T ] × T
d, such as

the Hilbert space L2(X , λ) where λ = λT is the uniform probability measure on X . For
B a normed space we also use standard parabolic PDE notation for the function spaces
Lp([0, T ], B) of maps H : X → R whose norms ‖H(t, ·)‖B lie in Lp([0, T ]). The spaces
Hm([0, T ], B) then denote those functions H ∈ L2([0, T ], B) whose (weak) time derivatives
(∂j/∂t)H for all 0 ≤ j ≤ m lie in L2([0, T ], B), with corresponding Hilbert space norm. We
also write P = P(Td) for the set of all (Borel-) probability measures on T

d.
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2.2 Gaussian process regression in the McKean-Vlasov model

For an initial condition φ ∈ Hβ, consider the time marginal densities ρ = ρW providing the
unique periodic solutions to the non-linear parabolic PDE (1) on the time-space cylinder
X = [0, T ] × T

d, see Theorem 4. Consider N independent and identically distributed (iid)
observations (ti,Xi, Yi)

N
i=1 arising from the model (2), where the (ti,Xi) are drawn iid from

the uniform distribution λ on [0, T ] × T
d, independently of the noise εi. We denote by

DN = ((ti,Xi, Yi))
N
i=1 the observation vector, with law PN

W . As explained in the introduction,
such regression-type forward models are widely used in (Bayesian) inverse problems [44] and
are approximately justified in interacting particle models (3) by the propagation of chaos
phenomenon.

We devise a Bayesian model for the solutions ρW of the PDE (1) in the non-linear regres-
sion framework (2), placing a prior on the interaction potential W , our quantity of interest,
while treating the initial condition φ as given. Another common approach in data assimila-
tion with such time evolution equations would be to assign a prior to the initial condition φ
– see for instance the recent article [47] in the 2D Navier-Stokes model.

We employ Gaussian process priors [57] for the interaction potential – these will be sup-
ported on a separable normed linear space (W, ‖ · ‖W) satisfying the imbedding

W →֒ C2(Td) ∩
{

W :

∫

Td

W (x)dx = 0

}

. (5)

Note that the potential W is identifiable only up to constants as the gradient ∇W relevant
in models (1),(3),(4) annihilates constants, so fixing

∫

W = 0 is natural for identifiability
reasons. The separability is required to apply Gaussian process techniques from [23, 44] –
we can think of W to equal a Sobolev space Hα+1(Td) for α > 1 + d/2 or, to obtain sharper
results, we can also take periodic Besov spaces W = Bα

∞1(T
d), α ≥ 2 ([23], p.370). Concrete

examples will be discussed below, but for now we let Π be any Borel probability measure on
some space W satisfying (5).

The posterior distribution obtained from such a prior Π and data (2) is given by Bayes’
formula via standard arguments [21, 44];

dΠ(W |DN ) ∝ eℓN (W )dΠ(W ); ℓN (W ) = −1

2

N
∑

i=1

|Yi − ρW (ti,Xi)|2, W ∈ W. (6)

Posterior draws w ∼ Π(·|DN ) can be approximately calculated from Markov chain Monte
Carlo (MCMC) techniques, for instance by the pCN, ULA or MALA algorithm, following
the now well established paradigm of Bayesian inversion and uncertainty quantification in
PDE models, see [62, 10, 3, 52] and also Section 1.2.4 in [44] for an overview. Each MCMC
step requires one numerical solution of the non-linear Fokker-Planck equation (1), for which
a variety of methods exists, see [6, 26, 60] for recent references. We can then form ergodic
averages (1/K)

∑K
k=1wk of these MCMC draws wk to approximately compute the posterior

mean estimate W̄ = EΠ[W |DN ] of the interaction potential W , which in turn delivers esti-
mates also of the particle densities ρW̄ by one further numerical solution of the Fokker-Planck
equation (1) with interaction potential W̄ . For a concrete example and further discussion on
applying MCMC method for instance to the Keller-Segel model for chemotaxis (which is a
non-linear, non-local PDE of the form (1), [7, Sec. 6.5]), see for instance [37].

One can also attempt to minimise the negative log-posterior over W (amounting to a MAP
estimate, or Tikhonov regulariser), but we note that the problem is non-convex due to the
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nonlinearity ofW 7→ ρW , hence MCMC may be more robust to the presence of local optima in
the criterion function. Computational guarantees for gradient based MCMC methods can be
obtained in principle following ideas from [48] combined with some of the stability estimates
from the proofs that follow. But this is beyond the scope of the present paper – we shall
focus here on analysing the statistical properties of the posterior distribution Π(·|DN ) under
the objective (‘frequentist’) assumption that an actual ground truth potential W0 generated
the interacting particle system and thus data from equation (2). Therefore the statistical

analysis is under the law PN
W0

of the data vector DN , and →PN
W0 will denote convergence in

PN
W0

-probability.

2.3 Posterior contraction rates for the particle densities

We first establish contraction rates for posterior distributions (6) arising from rescaled and
possibly projected Gaussian process priors over T

d. We start with a mean-zero Gaussian
process (V (x) : x ∈ T

d) with reproducing kernel Hilbert space (RKHS) H whose law ΠV

satisfies the following assumption. For definitions and background material on Gaussian
processes and their associated RKHS, see Chapter 11 of [21] or [57].

Condition α. Let ΠV be a centred Gaussian probability measure on W from (5) with RKHS
(H, ‖ · ‖H). Further suppose that for some α > d/2 + 1, the continuous embedding H →֒
Hα+1(Td) holds.

To deal with various non-linearities in our regression problem, we follow ideas in [42] and
rescale the ‘base prior’ via

W =
V√
NδN

; δN = N
− α+1+β

2(α+1)+2β+d , (7)

to introduce extra regularisation in the posterior distribution. Here, α + 1 models the reg-
ularity of the interaction potential W (so α models the regularity of ∇W ), while β > 0 is
determined by that of the initial condition ρW (0, ·) = φ ∈ Hβ. The extra regularisation
allows us for instance to deduce space or time regularity estimates for ρW corresponding to
interaction potentials W drawn from the posterior, see Theorem 5 below. Note that such
priors are special cases of the rescaled Gaussian process priors considered in several ‘direct’
statistical settings [21].

We will further consider L2(Td)-projections πWN
(W ) of the law of W onto sequences of

linear subspaces WN ⊆ W, including the case WN = W for all N . The final prior law of such
W on W or WN will be denoted by Π = ΠN . A typical example of such a projection is the
truncation of an infinite dimensional Gaussian process onto its finite-dimensional counterpart,
as is usually done in practice. We note that less aggressive shrinkage would be permitted in
(7) but we opt for the present choice as this allows us to directly use results from [44] in the
proofs.

The following theorem shows that we can solve the regression problem underlying (2) via
the implied prior arising from a Gaussian process model for the interaction potential W . [We
restrict to even integers β to facilitate the application of parabolic PDE theory in the proofs.]

Theorem 1. Suppose φ ∈ Hβ(Td) for some even integer β ≥ 3 + d and let ΠV be a Gaus-
sian measure satisfying Condition α. Consider the rescaled Gaussian process prior from
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(7) projected onto a linear subspace WN of W. Let W0 ∈ H satisfy
∫

Td W0 = 0, and as-
sume further that there exists a sequence W0,N ∈ H ∩ WN such that ‖W0,N‖H = O(1) and
‖W0 −W0,N‖H−β = O(δN ) as N → ∞. Then for M,L > 0 large enough, we have

Π(W ∈ WM,N : ‖ρW − ρW0‖L2(X ) ≤ LδN |DN ) →PN
W0 1

as N → ∞, where

WM,N = {W =W1 +W2 ∈ WN : ‖W1‖H−β ≤MδN , ‖W2‖H ≤M, ‖W‖C2 ≤M} . (8)

The convergence rate δN = N
− α+1+β

2(α+1)+2β+d derived above corresponds to the forward rate
of an (α + 1)-smooth truth in an inverse problem with ‘polynomial ill-posedness’ β. The
self-convolutional term ∇W ∗ ρW appearing in models (1) and (4) suggests the ill-posedness
here should be related to the smoothness of ρW0 . In the present nonlinear parabolic PDE
setting, the regularity of the densities ρW0 is driven by that of the initial condition φ rather
than that ofW0, see Theorem 5, which is reflected in the role of β in the forward rate, see (19)
below. Whether this is optimal is a delicate question concerning the optimality of regularity
estimates in nonlinear parabolic PDEs. Note that the convergence rate δN accelerates to the
‘parametric’ rate 1/

√
N as soon as either the model for W or the initial condition φ is very

smooth, i.e., as α or β → ∞.
To compare the convergence rates obtained in the preceding theorem to the existing

literature, let us consider a general version of the interacting particle system (3) on all of Rd:

dXi
t = −∇U(Xi

t)dt−
1

n

∑

i 6=j

∇W (Xi
t −Xj

t )dt+
√
2dBi

t , i = 1, . . . , n, (9)

where U is a suitable confining potential. For (spatially) β-smooth ρ solving the corresponding
non-linear Fokker-Planck equation, Della Maestra and Hoffmann [14] show that the minimax

rate for pointwise estimation of ρ is the ‘usual’ nonparametric rate n−
β

2β+d . One can check
that their minimax lower bound is established by considering W = 0, that is, in a diffusion
model without interaction term, where regularity of U translates directly into that of ρ.
However, when U is zero or much smoother than W , our results show that we can expect

significantly faster rates n
− α+1+β

2(α+1)+2β+d for the forward map ρW if the deconvolution structure
is correctly taken advantage of.

This suggests that methods that are only based on the smoothness of ρ ∈ Hβ and not
(as we do via our Lemma 3) on properties of the underlying parameter to solution map
(U,W ) 7→ ρU,W may not be able to fully exploit the information available in the data. This
highlights a significant advantage of modelling W directly, as the Bayes method does. We
also note that by placing a prior on W , and hence ρW , one obtains posterior draws ρW that
lie in the range of the forward map (i.e., they solve the PDE (1)). This is key for applying
our stability estimate (14) below for recovery of W . While the Bayes method does this
automatically, it is not necessarily the case for other methods that first estimate ρW directly
by some smoothing method which relaxes the PDE constraint.

In summary, our results demonstrate that the estimation rates for ρ are more complex
than the regularity of ρ alone might suggest, and that they depend on a delicate interplay of
the interaction term W , the initial condition φ, and the confining potential U .
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2.3.1 Examples of Gaussian priors

We now discuss examples of Gaussian priors satisfying the conditions of Theorem 1.

Example 1 (Periodized Matérn process). Consider the Gaussian process on T
d given by

V (x) = (2π)d/2
∑

06=k∈Zd

1

(1 + 4π2|k|2)(α+1)/2
gkek(x), gk ∼iid N(0, 1), x ∈ T

d,

where the ek ∝ e2πik(·) are the L2(Td)-orthonormal trigonometric polynomials over Td. This
is the L2(Td)-series expansion resulting from periodising the usual Matérn process on R

d, see
Section A.1.1 of [24] for details. We have excluded the constant function from the trigono-
metric basis to incorporate our identifiability condition

∫

Td W = 0.
By standard arguments (Ex. 2.6.15 in [23]), the RKHS of V equals

H := Hα+1(Td) ∩
{∫

Td

W = 0

}

, (10)

with equivalent norm ‖ · ‖H ≃ ‖ · ‖Hα+1 . The above process has a version V whose sample
paths are in Cα+1−d/2−η(Td) for any η > 0 ([21], Proposition I.4). Thus using [21], Lemma
I.7, we see that V defines a Gaussian random element of Cr0(Td) for any r0 < α + 1 − d/2,
and since for α > 1 + d/2 the space Cr0(Td) imbeds continuously into the separable Besov
space Br

∞1(T
d) →֒ C2(Td), 2 < r < r0, (cf. p.370f. in [23]) we can realise the law of V as a

Gaussian Borel probability measure on

W = Br
∞1(T

d) ∩
{

∫

Td

W = 0
}

, any r < α+ 1− d/2,

so that Condition α is verified.

Remark 1. Passing through a separable space is important to apply techniques from Gaus-
sian process theory [23], Ch.2, but the introduction of Besov spaces could be avoided by
increasing the smoothness to α > 1+ d and taking W = Hα−d/2 as in Theorem B.1.3 in [44].

Now assumeW0 ∈ H defined in (10) which also lies in W (by what precedes, or abstractly
by Corollary 2.6.17 in [23]). Applying Theorem 1 with WN = W,W0,N = W0, then gives
that for M,L > 0 large enough,

Π
(

W ∈ WN : ‖ρW − ρW0‖L2(X ) ≤ LN
− α+1+β

2(α+1)+2β+d , ‖W‖C2 ≤M |DN

)

→PN
W0 1,

as N → ∞ for this prior.

Example 2 (Truncated Fourier prior). For implementation by MCMC, and also in order
to conduct inference on the interaction potential later, it is of interest to remove the higher
Fourier frequencies from the Matérn prior for W just constructed. For KN ∈ N,KN →N→∞

∞, consider the truncated Fourier series prior

πWN
(W )(x) =

1√
NδN

∑

k∈Zd:0<|k|≤KN

1

(1 + |k|2)(α+1)/2
gkek(x), gk ∼iid N(0, 1), (11)

which equals the L2-projection of W onto WN = EKN
, the span of the trigonometric

polynomials up to frequency KN (excluding constants). Let W0 ∈ H, and set W0,N =
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∑

k∈Zd:0<|k|≤KN
〈W0, ek〉L2ek ∈ H∩WN to be the Fourier projection of W0 onto the first KN

frequencies. Then ‖W0,N‖H ≤ ‖W0‖Hα+1 and ‖W0 −W0,N‖H−β . K−α−1−β
N = O(δN ) for

KN & N
1

2(α+1)+2β+d . Applying Theorem 1 gives that for M,L > 0 large enough,

Π(W ∈ WM,N : ‖ρW − ρW0‖L2(X ) ≤ LN
− α+1+β

2(α+1)+2β+d |DN ) →PN
W0 1,

as N → ∞, with regularisation WM,N set given in (8). Note the condition KN & N
1

2(α+1)+2β+d

means the prior scaling rather than the truncation drives the prior smoothness.

Remark 2 (Symmetric potentials). In many physical applications, the interaction potential
W is symmetric. This can be encoded into the prior by separating the real and imaginary
parts of the trigonometric polynomials ek ∝ e2πik(·) into φ2k(x) ∝ cos(2πkx) and φ2k+1(x) ∝
sin(2πkx), and setting the prior coefficients of φ2k+1 to be zero. This yields prior and then
also posterior draws that are symmetric about zero and all our results apply equally for
Sobolev smooth symmetric truths W0.

Remark 3 (Almost finite-dimensional models). One can also consider smoother Gaussian
processes, for instance

V (x) = (2π)d/2
∑

06=k∈Zd

e−r|k|1/2gkek(x), gk ∼iid N(0, 1), x ∈ T
d,

where |k|1 = |k1|+· · ·+|kd| and r > 0. These model infinitely differentiable periodic functions
with exponentially decaying Fourier coefficients. For example, as in [56], we consider the
rescaled Gaussian process

W =
V

logN
,

where less rescaling is needed than above since the sample paths of V are already very regular.
The RKHS of V is

Hr =







h =
∑

06=k∈Zd

hkek : ‖h‖2H :=
∑

06=k∈Zd

h2ke
r|k|1 <∞







, (12)

which embeds continuously into any Sobolev space Hα+1, α > 0, meaning we have all the
required regularity properties needed above. Our arguments can then be modified to extend
to such settings by standard arguments, see Section C of [56] for details. For W0 ∈ Hr, we
thus have for M,L > 0 large enough,

Π
(

W ∈ W ′
N : ‖ρW − ρW0‖L2(X ) ≤ Lδ′N , ‖W‖W 2,∞ ≤M |DN

)

→PN
W0 1

asN → ∞, where δ′N = (logN)η/
√
N for some η > 0 andW ′

N = {W =W1+W2 : ‖W1‖H−β ≤
Mδ′N , ‖W2‖Hr ≤ M, ‖W‖C2 ≤ M}. Such priors work for truths with exponentially decaying
Fourier coefficients and are thus relevant when the interaction potential W0 can be well
approximated by relatively few Fourier modes. This occurs in several physical applications,
for example the Kuramoto-Shinomoto-Sakaguchi (O(2)) model for synchronization or the
(wrapped) Gaussian (attractive or repulsive) interaction potential; we refer to [7, Sec. 6] for
further discussion and several examples.
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2.4 Recovering the interaction potential

We now consider conditions under which we can consistently recover the interaction potential
W0 from noisy observations (2) of the McKean-Vlasov PDE (1).

We notice that the posterior contraction rate δN for ‖ρW − ρW0‖L2 from the previous
theorem becomes close to the parametric rate 1/

√
N as β → ∞, even if we keep the regularity

α of the prior model for the potential W fixed. This reflects the self-convolving nature of
the McKean-Vlasov dynamics: the density ρW can be very smooth even when W is not,
as long as the initial condition is sufficiently regular in a Sobolev sense. A consequence is
that the interacting particle dynamics partially mask information about W unless the initial
condition is somehow atypical. Viewed this way, inferring W becomes a statistical inverse
problem which compounds a deconvolution step and a nonlinear inverse problem for the
Fokker-Planck equation (1). We now show that this inverse problem can be solved, provided
that the initial condition φ is not too smooth, measured by a lower bound on the decay of
its Fourier coefficients. In other words, if we can prepare the system to start in a somewhat
irregular initial state, then the observed dynamics of the interacting particle system will reveal
the potential W to the Bayesian posterior distribution arising from a prior that concentrates
on at most a finite (but growing) number of Fourier modes.

At the heart of the main statistical result Theorem 3 is the following stability estimate
for the forward map W 7→ ρW under such hypotheses.

Theorem 2. Suppose W0 ∈ Hα+1 for α > 1 + d/2 and φ ∈ Hβ(Td) where β ≥ 3 + d is
an even integer. Assume φ is strictly positive φ ≥ φmin > 0 on T

d and that the Fourier
coefficients φ̂ of φ satisfy

|φ̂(k)| ≥ c|k|−ζ , k ∈ Z
d, (13)

for some ζ > β + d/2. Let W =
∑

k∈Zd:|k|≤KWkek ∈ EK be band-limited by K Fourier

frequencies and assume ‖W‖W 2,∞ + ‖W0‖W 2,∞ ≤ M as well as
∫

Td(W −W0)dx = 0. Then
there exists a constant C = C(d, T,M, ‖φ‖Hβ , φmin) > 0 such that for any 0 < t0 ≤ c

2CK
−ζ

we have

‖W −W0‖2L2 ≤ C
(

K−2α−2 + t−1
0 K2ζ

(

‖ρW − ρW0‖2H1([0,t0],H−1) + ‖ρW − ρW0‖2L2([0,t0],H1)

)

)

.

(14)

The analytical intuition of this stability estimate could be phrased as saying that if we can
obtain precise estimates of the space and time derivatives of ρW0 , we will be able to identify
W0 ∈ H under the hypothesis (13). So both the space and time dynamics of the densities
ρW are relevant for reconstruction. We can combine this estimate with the truncated Fourier
series prior in Example 2 to consistently recover the underlying potential.

Theorem 3. Suppose W0 ∈ H for α > 1 + d/2 and φ ∈ Hβ(Td), where β ≥ 3 + d is an even
integer. Further assume that φ is lower bounded by φmin > 0 and satisfies (13). Consider the

truncated Fourier series prior in Example 2 with KN ≃ N
1

2(α+1)+2β+d . Then for L > 0 large
enough,

Π(W ∈ EKN
: ‖W −W0‖L2 ≥ LK

3ζ/2
N δ

β−2
β

N |DN ) →PN
W0 0,

as N → ∞, where δN = N
− α+1+β

2(α+1)+2β+d . In particular, the rate is N−θ for

θ =
(α+ 1 + β)(β − 2)/β − 3ζ/2

2(α + 1) + 2β + d
. (15)

10



Moreover, if W̄N = EΠ[W |DN ] ∈ EKN
is the posterior mean, then we also have

‖W̄N −W0‖L2 = OPN
W0

(N−θ) as N → ∞.

Theorem 3 uses the stability estimate (14) with t0 ≃ K−ζ
N → 0 small, which shows that as

long as the initial condition φ is sufficiently irregular, the short-time dynamics of the system
are already enough to consistently recover W as N → ∞. This is especially relevant in our
setting where ergodic averages may be uninformative for W , since the uniform distribution
is always a stationary state for the mean-field dynamics on the torus [7]. Whether one can
further exploit long-time information under relevant physical scenarios is a subtle question
given the existence of phase transitions and, consequently, of multiple stationary states for
McKean-Vlasov dynamics. In any case, our result already shows that Bayesian methods can
extract relevant short-time information from the data.

The condition ζ > β+d/2 ensures that φ can satisfy both φ ∈ Hβ and (13) simultaneously.
If the lower bound (13) is too weak, i.e. the initial density is much harder to deconvolve that
its Sobolev smoothness β suggests, then our result may not imply consistency. Consistency
with polynomial rates is possible as soon as θ > 0, which holds for ζ satisfying

β + d/2 < ζ <
2(α + 1 + β)(β − 2)

3β
.

This range is non-empty for α > 0 large enough. For semi-parametric applications to
Bernstein-von Mises theorems (e.g., as in Sec. 4.1.1 in [44]) it is important that these rates
can be sufficiently fast in regular models: for instance we can always obtain 3θ > 1 as long
as α ≥ α0(β, d) for some α0 = α0(β, d), if (13) holds for ζ = β + d/2 + η and all η > 0.

One can further check that the rate K
3ζ/2
N δ

β−2
β

N holds in Theorem 3 if one takes any

KN & N
1

2(α+1)+2β+d , though taking larger KN here deteriorates the final rate. One can also

extend the theorem to KN . N
1

2(α+1)+2β+d giving deconvolution rate

K−α−1
N +K

3ζ/2
N

(

ξ
β−2
β + ξ

β
β+1

N

)

,

where now ξN = δN+K−α−1−β
N is a possibly slower contraction rate (since the prior truncation

may now drive the forward rate).

Remark 4 (Deconvolution rates for almost finite-dimensional models). We can also consider
the truncated version of the prior in Remark 3, truncating at level KN as in (11). For
W0 ∈ Hr defined in (12) and KN ≥ 1

r logN , we obtain the same near-parametric contraction

rate δ′N = (logN)η/
√
N for the densities ρW as in Remark 3. Turning to the deconvolution,

we deduce the rate

‖W −W0‖2L2 . e−rKN +K3ζ
N (δ′N )

2(β−2)
β . (logN)

3ζ+ 2(β−2)η
β N

−β−2
β .

Thus for W0 ∈ Hr, one can also recover the true potential W0, and thus solve the inverse
problem, at the near-parametric rate (logN)η

′

/
√
N as the regularity β → ∞.

We next give a concrete example of a distribution φ for which the above theorem applies
and consistent recovery of the potential W0 with polynomial rates is possible.
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Example 3 (Periodised symmetric multivariate Laplace distribution). Consider the symmet-
ric d-dimensional multivariate Laplace distribution on R

d, usually defined via its characteristic
function 1

1+|ξ|2/2
, ξ ∈ R

d. This distribution has a density function of the form ([35], p. 235)

fd(y) =
2

(2π)d/2

( |y|2
2

)
2−d
2

K(2−d)/2(
√
2|y|), y ∈ R

d,

where Kλ is the modified Bessel function of the second kind, having integral representation
Kλ(x) =

∫∞
0 e−x cosh t cosh(λt)dt. Consider the periodized version of this density

fperd (x) =
∑

k∈Zd

fd(x+ k), x ∈ (0, 1]d,

which defines a strictly positive density function on the torus Td with Fourier series

f̂perd (k) = FTd [f
per
d ](k) =

∫

Td

fperd (x)e−2πik.xdx = FRd [fd](k) =
1

1 + 2π2|k|2 , k ∈ Z
d,

where the relation with the Fourier transform of the unperiodized density fd follows from
Theorem 8.35 of [17]. For any m ≥ 1, consider the m-fold convolution φm = fperd ∗ · · · ∗ fperd

which defines a positive probability density function on T
d with Fourier transform

φ̂m(k) =
1

(1 + 2π2|k|2)m .

Then φm ∈ Hβ for any β < 2m − d/2 and satisfies the deconvolution condition (13) with
ζ = 2m.

Applying Theorem 3 with W0 ∈ H ⊂ Hα+1 ∩W 2,∞ and β = 2m − d/2 − η for η > 0
arbitrarily small, we obtain contraction rate

Π(W ∈ EKN
: ‖W −W0‖L2 ≥ LN−θ′ |DN ) →PW0 0

as N → ∞, where θ′ is any constant satisfying

θ′ <
(α+ 1 + 2m− d/2)2m−d/2−2

2m−d/2 − 3m

2(α+ 1) + 4m

(which can get arbitrarily close to the upper bound by taking η > 0 small enough). The
right-hand side is strictly positive if and only if

α+ 1 >
(2m− d/2)(m + d/2 + 2)

(2m− d/2− 2)
,

in which case we can take θ′ > 0. Thus for any fixed m, one can consistently recover W0 ∈ H
with polynomial rates for α large enough.

3 Proofs

3.1 Proof of Theorem 1: forward contraction rate

We verify the conditions of Theorem 2.2.2 in [44], namely Condition 2.1.1 of [44] with regu-
larization space R =W 2,∞ on which the prior concentrates (in view of (5) and the continuous
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imbedding C2 →֒ W 2,∞). This consists of showing (i) boundedness of ρW on the domain X
and (ii) Lipschitz continuity of the forward map W 7→ ρW : H−β(Td) → L2(X ), uniformly
over ‖ · ‖W 2,∞-balls of radius M > 0. While that theorem requires that W0 ∈ H ∩ R, it is
straightforward to modify the proof to require only W0 ∈ R = W 2,∞ along with a suitably
good approximation sequence W0,N in the RKHS H, see (2.22) or Exercise 2.4.3 in [44].

(i) Boundedness: using the Sobolev embedding theorem Hd/2+ε(Td) →֒ C(Td) for any
ε > 0 and the L∞([0, T ];Hk+1(Td)) regularity estimate (27) from Theorem 5 with k = d− 1,

sup
W :‖W‖R≤M

‖ρW ‖L∞(X ) ≤ sup
W :‖W‖W2,∞≤M

sup
0≤t≤T

‖ρW (t)‖Hd/2+ε

≤ sup
W :‖W‖W2,∞≤M

‖ρW ‖L∞([0,T ];Hd(Td)) ≤ CM,d,T,‖φ0‖Hd
,

(16)

since φ ∈ Hβ with β ≥ 3 + d. This verifies (2.3) in Condition 2.1.1 of [44].
(ii) Lipschitz continuity of the forward map: we control the distance between solutions to

the McKean-Vlasov equation (1) for different potentials via the relative entropy/Kullback-
Leibler divergence of the marginal densities. We first require the following estimate from [36,
5], adapted on the torus.

Lemma 1. Let Wi ∈W 2,∞(Td), i = 1, 2, φ ∈ H3+d(Td) ∩ P(Td), and consider the solutions
ρi, i = 1, 2, of the corresponding Fokker-Planck equations

∂ρi
∂t

= ∆ρi +∇ · (ρi(∇Wi ∗ ρi)),

ρi(0, ·) = φ.
(17)

Then for all t > 0,

H(ρ1(t)|ρ2(t)) ≡
∫

Td

ρ1(t, x) log
ρ1(t, x)

ρ2(t, x)
dx

≤ 1

2

∫ t

0

∫

Td

|∇W1 ∗ ρ1(u)−∇W2 ∗ ρ2(u)|2ρ1(u) dxdu.

Proof. The estimate follows from [36], Lemma 3.1, which follows from [5], Theorem 1.1. The
proof can be easily adapted so that it holds for Fokker-Planck equations posed on T

d instead
of Rd. We now check the conditions (H1)-(H3) of [36][Lem. 3.1].

Under our assumptions on the interaction potential and on the initial condition φ, from
Theorem 4 below it follows that the Fokker-Planck equations (17) have a unique, strictly
positive solution ρi(t) ∈ P(Td) ∩ C2(Td) for all t > 0. By standard convolution inequalities,
∇W2∗ρ2 is bounded, therefore (H1) is satisfied. This implies, in particular, that the weighted
Lp spaces in the proof of [36], Lemma 3.1 can be replaced by the flat spaces Lp(Td). Further-
more, since Wi ∈ W 2,∞(Td) and ρi is bounded on T

d for all T > 0, together with Young’s
inequality for convolutions, we have that ∇W1 ∗ρ1 ∈ L2((0, T );Lp(Td)) for p > d+2 (in fact,
we can take p = ∞), ∇W2 ∗ ρ2 ∈ L2((0, T );L2(Td)) and ∇W1 ∗ ρ1 ∈ L∞((0, T );L2(Td)), i.e.
(H2)-(H3) are satisfied.

Lemma 2. Let Wi ∈ W 2,∞(Td), φ ∈ H3+d(Td) ∩ P(Td) and consider the corresponding
solutions ρi = ρWi to (1). If ‖W1‖W 2,∞ ≤M , then for all t ∈ [0, T ],

∫ t

0
H(ρ1(u)|ρ2(u)) du ≤ C

∫ t

0
‖∇(W1 −W2) ∗ ρ2(t)‖2L2(Td),

where C = C(d, T,M, ‖φ‖Hd ).
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Proof. Arguing as in (16) and using Theorem 5,

‖ρ1‖L∞(X ) ≤ C(d)‖ρ1‖L∞([0,T ];Hd(Td)) ≤ C0(d, T,M, ‖φ‖Hd ). (18)

Using Lemma 1, Young’s convolution inequality and Pinsker’s inequality (e.g., Prop. 6.1.7 in
[23]) we have for all 0 ≤ t ≤ T :

H(ρ1(t)|ρ2(t)) ≤ 1

2
‖ρ1‖L∞(X )

∫ t

0

∫

Td

|∇W1 ∗ ρ1(u)−∇W2 ∗ ρ2(u)|2 dxdu

≤ C0

∫ t

0

∫

Td

|∇W1 ∗ (ρ1(u)− ρ2(u))|2 dxdu

+C0

∫ t

0

∫

Td

|∇(W1 −W2) ∗ ρ2(u)|2 dxdu

≤ C0‖∇W1‖2L2(Td)

∫ t

0
‖ρ1(u)− ρ2(u)‖2L1(Td) du

+C0‖∇(W1 −W2) ∗ ρ2‖2L2([0,t]×Td)

≤ 2C0‖W1‖2H1

∫ t

0
H(ρ1(u)|ρ2(u)) du + C0‖∇(W1 −W2) ∗ ρ2‖2L2([0,t]×Td).

Setting η(t) =
∫ t
0 H(ρ1(u)|ρ2(u)) du, the above estimate can be written as

η̇(t) ≤ 2C0M
2η(t) + C0‖∇(W1 −W2) ∗ ρ2‖2L2([0,t]×Td).

The result now follows using the differential form of Gronwall’s inequality [16, Sec. B.2].

The second part of the following lemma shows that the map W 7→ ρW is β-smoothing,
suggesting a mildly ill-posed inverse problem. We have not attempted to optimise β here but
believe it close to being sharp.

Lemma 3. Let Wi ∈ W 2,∞(Td), φ ∈ H3+d(Td) ∩ P(Td) and consider the corresponding
solutions ρWi to (1). Suppose ‖Wi‖W 2,∞ ≤M for i = 1, 2.

(i) Then for some constant C = C(d, T,M, ‖φ‖Hd),

‖ρW1 − ρW2‖2L2(X ,λ) ≤ C

∫ T

0
‖∇(W1 −W2) ∗ ρW2(t)‖2L2(Td)dt.

(ii) If in addition φ ∈ Hβ(Td), where β ≥ 3 + d is an even integer, then

‖ρW1 − ρW2‖L2(X ,λ) ≤ C‖W1 −W2‖H−β (19)

for some constant C(d, β, T,M, ‖φ‖Hβ ).

Proof. (i) For any densities p, q, recall that the Hellinger distance h(p, q) =
∫

(
√
p − √

q)2

satisfies h2(p, q) ≤ H(p|q) (e.g. Lemma B.1 in [21]). Moreover, writing (p − q)2 = (
√
p +√

q)2(
√
p − √

q)2 yields ‖p − q‖2L2 ≤ 4max(‖p‖∞, ‖q‖∞)h2(p, q). Using these facts and that
ρWi(t) are probability densities for all t ≥ 0,

1

T

∫ T

0
‖ρW1(t, ·) − ρW2(t, ·)‖2L2(Td)dt ≤

4

T
max
i=1,2

‖ρWi‖L∞(X )

∫ T

0
H(ρW1(t, ·)|ρW2(t, ·))dt.
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Using (18) and Lemma 1 then gives the result.
(ii) Let em(x) = e2πim.x, m ∈ Z

d, denote the usual trigonometric polynomials. Since
〈f(x− ·), em〉L2(Td) = −e−m(x)〈f, e−m〉L2(Td), Parseval’s theorem yields

|∂xi(W1 −W2) ∗ ρW2(t, ·)(x)|2 ≤ 4π2





∑

m∈Zd

|mi||〈W1 −W2, em〉L2 ||〈ρW2(t, ·), em〉L2 |





2

≤ 4π2
∑

m∈Zd

|mi|2(1 + |m|2)−1−β |〈W1 −W2, em〉L2 |2

×
∑

m∈Zd

(1 + |m|2)1+β|〈ρW2(t, ·), em〉L2 |2

for any x ∈ T
d. This implies that

|∇(W1 −W2) ∗ ρW2(t, ·)(x)|2 ≤ 4π2‖ρW2(t, ·)‖2H1+β‖W1 −W2‖2H−β .

By the regularity estimate (27) in Theorem 5, ‖ρW2‖L2([0,T ];Hβ+1(Td)) ≤ C(d, β, T,M, ‖φ‖Hβ ) <
∞. Integrating the second last display in space and time, and substituting this into the con-
clusion of (i) then implies

‖ρW1 − ρW2‖2L2(X ) ≤ C

∫ T

0
‖ρW2(t, ·)‖2Hβ+1dt ‖W1 −W2‖2H−β ≤ C ′‖W1 −W2‖2H−β .

The estimate given in Lemma 3(ii) is uniform over ‖ · ‖R = ‖ · ‖W 2,∞-balls for W , which
verifies the Lipschitz estimate (2.4) in Condition 2.1.1 of [44] with κ = β. We may thus apply
Theorem 2.2.2 of [44], which completes the proof of Theorem 1.

3.2 Proof of Theorems 2 and 3: stability estimate and deconvolution

Proof of Theorem 2. Let LW,nψ := ∆ψ+∇·(ψ∇W ∗ρn−1), for smooth ψ, denote the operator
defined in the linearized McKean-Vlasov equation (25). We will prove the result for the
linearized solutions before passing to the limit n → ∞. Further define the linear parabolic
operator PW,n = (∂/∂t − LW,n), which satisfies PW,nρW,n = 0 where ρW,n is a solution to
(25), see Theorem 4.

Step 1: Reduction to deconvolution with the particle density. Let ρW , ρW0 be two solutions
of (1) for distinctW,W0, and denote by ρW,n, ρW0,n their n-approximated linearised solutions.
As the PW,n operators are linear, we can write

PW,n(ρW,n − ρW0,n) = 0− ∂ρ

∂t
ρW0,n + LW,nρW0,n

= (LW,n − LW0,n)ρW0,n

= ∇ · (ρW0,n∇(W ∗ ρW,n−1 −W0 ∗ ρW0,n−1)). (20)

The densities ρW0,n(t, ·) are strictly positive throughout [0, T ]×T
d in view of (26). Hence by

standard theory for periodic elliptic equations, the operator L0,n,tψ := ∇ · (ρW0,n(t)∇ψ) is
invertible on L2

0(T
d) := L2(Td)∩{

∫

Td f = 0} for every t: if we select the integral zero solution
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u = L−1
0,n,th to the elliptic equation L0,n,tu = h, we have a uniform in n, t elliptic regularity

estimate (proved just as on p.127-128 in [44]),

‖L−1
0,n,th‖L2 ≤ c‖h‖H−1 , h ∈ L2

0(T
d),

with c depending only on the (universal) constant in the Poincaré inequality on T
d as well

as the lower bound φmin from (26). We also notice that for any t,
∫

Td

PW,n(ρW,n − ρW0,n) =

∫

Td

(LW,n − LW0,n)ρW0,n = 0

as both LWn and LW0,n are in divergence form. Therefore we can apply the inverse of L0,n,t

to (20) and obtain

W ∗ ρW,n−1 −W0 ∗ ρW0,n−1 = L−1
0,n,t[PW,n(ρW,n − ρW0,n)], on [0, T ]× T

d,

where we note that the left hand side integrates to zero since
∫

W =
∫

W0,
∫

ρW0,n−1 =
∫

ρW,n−1 = 1. Rearranging we obtain the identity

(W −W0) ∗ ρW0,n−1 = L−1
0,n,t[PW,n(ρW,n− ρW0,n)] +W ∗ (ρW0,n−1 − ρW,n−1), on [0, T ]×T

d.

We can now fix any time horizon 0 < t0 ≤ T and estimate
∫ t0

0
‖(W −W0) ∗ ρW0,n−1(t)‖2L2(Td)dt

.

∫ t0

0
‖L−1

0,n,t[PW,n(ρW,n − ρW0,n)(t)]‖2L2(Td)dt+

∫ t0

0
‖W ∗ (ρW0,n−1 − ρW,n−1)(t)‖2L2(Td)dt

.

∫ t0

0
‖(∂/∂t − LW,n)(ρW,n − ρW0,n)(t)‖2H−1(Td)dt+

∫ t0

0
‖ρW0,n−1 − ρW,n−1(t)‖2L2(Td)dt

. ‖ρW,n − ρW0,n‖2H1([0,t0],H−1) + ‖ρW,n − ρW0,n‖2L2([0,t0],H1). (21)

We can take limits in this inequality: this is clear for the left hand side by Lemma 4 and since
convolution withW−W0 is uniformly Lipschitz on L2(Td). For the right hand side of (21) we
notice that by Theorem 5 and Rellich’s compactness theorem (p.305 in [17]), the sequences
{ρW,n − ρW0,n : n ∈ N} converge in H1([0, t0],H

−1) and L2([0, t0],H
1) along a subsequence

to their unique limit, which in view of Lemma 4 equals ρW − ρW0 . As the constants implied
by . in (21) are n-independent, we deduce for any 0 < t0 ≤ T that
∫ t0

0
‖(W−W0)∗ρW0(t)‖2L2(Td)dt ≤ C

(

‖ρW −ρW0‖2H1([0,t0],H−1)+‖ρW −ρW0‖2L2([0,t0],H1)

)

(22)

for a constant C = C(T, d,M, φmin, ‖φ‖Hβ ) > 0.

Step 2. Deconvolving at small times. Let W0,K =
∑

k∈Zd:|k|≤K〈W0, ek〉L2ek denote the

Fourier projection of W0 ∈ Hα+1 onto the first K frequencies. By Parseval’s theorem and
since

∫

W =
∫

W0 we have

‖W −W0‖2L2 ≤ ‖W0‖2Hα+1K
−2(α+1) + ‖W −W0,K‖2L2

. K−2α−2 +
∑

0<|k|≤K

|Ŵ (k)− Ŵ0(k)|2
|ρ̂W0,n(t, k)|2
|ρ̂W0,n(t, k)|2

. K−2α−2 + sup
0<|k|≤K

1

|ρ̂W0,n(t, k)|2
‖(W −W0) ∗ ρW0,n(t, ·)‖2L2

(23)
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For t > 0, define the stability constant

ιK,n(t) ≡ sup
0<|k|≤K

1

|ρ̂W0,n(t, k)|2
, (24)

which we now upper bound. By Theorem 5 we know

∥

∥

dρW0,n

dt

∥

∥

L∞([0,T ];Hβ)
≤ C(d, T, β,M, ‖φ‖Hβ ),

and hence t 7→ ρW0,n(t) is Lipschitz as a map from [0, T ] → L1(Td) which implies ‖ρW0,n(t)−
φ‖L1(Td) ≤ Ct. But since L1-norms bound the Fourier coefficients uniformly, for any k ∈ Z

d,

|ρ̂W0,n(k)| ≥ |φ̂(k)| − |ρ̂W0,n(k)− φ̂(k)| ≥ c|k|−ζ − Ct.

Thus for any 0 < t ≤ t0 =
c
2CK

−ζ , the stability constant in (24) satisfies ιK,n(t) ≤ c2

4 K
2ζ .

Integrating the inequality (23) in time then gives

∫ t0

0
‖W −W0‖2L2dt . t0K

−2α−2 +K2ζ

∫ t0

0
‖(W −W0) ∗ ρW0,n(t, ·)‖2L2dt

and hence by (21),

‖W −W0‖2L2 . K−2α−2 + t−1
0 K2ζ(‖ρW − ρW0‖2H1([0,t0],H−1) + ‖ρW − ρW0‖2L2([0,t0],H1)),

completing the proof.

Proof of Theorem 3. The proof follows from combining the contraction rate for the forward
map from Example 2 with the stability estimate from Theorem 2. By Example 2, the posterior
concentrates on the set

WN = {W ∈ EKN
: ‖ρW − ρW0‖L2(X ) > LδN , ‖W‖W 2,∞ ≤M},

where δN = N
− α+1+β

2(α+1)+2β+d , so it suffices to prove the result for W ∈ WN . Using the inter-

polation inequality (A.5) in [44], ‖u‖H1(Td) . ‖u‖1−1/γ

L2(Td)
‖u‖1/γ

Hγ (Td)
for any γ > 1. By (27) of

Theorem 5, ‖ρW ‖L2([0,T ];Hβ+1) ≤ C for any W ∈ WN , and hence applying the interpolation
with γ = β + 1 and using Hölder’s inequality yields

‖ρW − ρW0‖2L2([0,T ];H1) .

(∫ T

0
‖ρW (t)− ρW0(t)‖2L2(Td)dt

)

γ−1
γ

= ‖ρW − ρW0‖
2β
β+1

L2(X )
.

Turning to the time regularity, using Proposition 2.1 in Ch. 4 in [38], we have the interpolation
inequality

‖v‖H1([0,T ];L2) . ‖v‖(m−1)/m
L2([0,T ];L2)

‖v‖1/m
Hm([0,T ];L2)

for any integer m ≥ 1. But by (28) of Theorem 5, ‖dℓρW
dtℓ

‖L2([0,T ];H1) ≤ C for all ℓ =
0, 1, . . . , β/2 and hence we may take m = β/2 to obtain

‖ρW − ρW0‖H1([0,T ];H−1) . ‖ρW − ρW0‖
m−1
m

L2([0,T ];L2)
= ‖ρW − ρW0‖

β−2
β

L2(X )
.

17



Apply Theorem 2 with t0 ≃ K−ζ
N gives that for any W ∈ WN ⊂ EKN

,

‖W −W0‖2L2(Td) . K−2α−2
N +K3ζ

N

(

δ
2(β−2)

β

N + δ
2β
β+1

N

)

. K−2α−2
N +K3ζ

N δ
2(β−2)

β

N .

Substituting in KN ≃ N
1

2(α+1)+2β+d and δN shows that the second term dominates for all
α > 0 and β ≥ 3 + d since ζ > β + d/2. The convergence of the posterior mean vector now
follows from arguments as in Theorem 2.3.2 in [44] and the details are left to the reader.

3.3 Regularity properties for the McKean-Vlasov PDE

In this section, we collect properties and regularity estimates for the nonlinear parabolic
McKean-Vlasov PDE (1) driving the dynamics of our model, as well as its linearization.
Recall that we work on the torus Td = R

d/Zd = (0, 1]d and that P = P(Td) denotes the set
of probability densities (with respect to Lebesgue measure) on T

d. The basic existence and
uniqueness of classical solutions to (1) follows from [7, 30]; see also [28, Thm. 2].

Theorem 4 ([7], Theorem 2.2). If W ∈ W 2,∞(Td) and φ ∈ H3+d(Td) ∩ P(Td), then there
exists a classical solution ρ : [0, T ] × T

d → [0,∞) such that ρ(t, ·) ∈ P(Td) ∩ C2(Td) for all
t > 0.

Similar to [63, 8, 7], we approximate the McKean-Vlasov equation (1) by a sequence of
linear parabolic PDEs. For n = 1, 2, . . . , consider the sequence of linear equations on T

d

∂ρn
∂t

= ∆ρn +∇ · (ρn∇W ∗ ρn−1) =: LW,nρn, (25)

ρ(0, ·) = φ,

where φ ∈ Hβ(Td) ∩ P(Td) and we take a smooth time-independent initialization ρ0 ∈
C∞((Td))P(Td). One then shows as in [63, 8, 7]:

Lemma 4. Let W ∈W 2,∞(Td) and φ ∈ H3+d(Td)∩P(Td). As k → ∞ we have (if necessary
along a subsequence)

sup
0≤t≤T

‖ρW,k(t)− ρW (t)‖H1 → 0.

We now establish quantitative regularity estimates which hold uniformly over potentials
W of bounded norm, which was crucial in our proofs above. It builds on the results of [8, 30].
We remark that the smoothness of ρW is driven by the regularity of the initial condition φ,
while the regularity of W is less crucial as it factors into the estimates only after convolution
with ρn−1, which is a smoothing operation.

Theorem 5. Let β ≥ 3+d be an integer and supposeW ∈W 2,∞(Td) satisfies ‖W‖W 2,∞ ≤M .
Let further φ ∈ Hβ(Td)∩P(Td) be a strictly positive probability density infx φ(x) ≥ φmin > 0
and let ρ0 ∈ C∞(Td) ∩ P(Td) be strictly positive. Then the sequence of PDEs (25) has a
unique solution ρn ∈ C1,2([0, T ] × T

d), which is strictly positive

inf
x∈Td,t∈[0,T ]

ρn(t, x) ≥ λ(φmin,M, T ) > 0, (26)

for a constant λ that depends only on φmin,M, T , and satisfies
∫

Td ρn(t, x) dx = 1 for all
t ∈ [0, T ]. For k = 0, 1, . . . , β − 1, we have the following regularity estimate in space:

‖ρn‖L2([0,T ];Hk+2(Td)) + ‖ρn‖L∞([0,T ];Hk+1(Td)) ≤ C(d, k, T,M, ‖φ‖Hk+1). (27)
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Furthermore, if β = 2j is an even integer, we have the time regularity

dℓρn
dtℓ

∈ L2([0, T ];H2j−2ℓ+1(Td)) ∩ L∞([0, T ];H2j−2ℓ(Td)) for 0 ≤ ℓ ≤ j,

with the estimate

j
∑

ℓ=0

(

∥

∥

∥

∥

dℓρn
dtℓ

∥

∥

∥

∥

L2([0,T ];H2j−2ℓ+1(Td))

+

∥

∥

∥

∥

dℓρn
dtℓ

∥

∥

∥

∥

L∞([0,T ];H2j−2ℓ(Td))

)

≤ C(d, j, T,M, ‖φ‖H2j ).

(28)

Moreover, all the above estimates hold with ρn replaced by ρ, the solution to the McKean-
Vlasov equation (1).

Proof. The existence of a unique solution ρn to (25) that is a probability density follows
from standard linear parabolic PDE theory, e.g. [16, Ch. 7]. The basic regularity in time
and space follow from Theorems 27.2-27.3 (time) and Theorem 27.5 (space) of [64], see
also [40, Thm. 2, Thm. 3]. In particular, since ρ0 is smooth, for n = 1 we have a linear
parabolic PDE (written in non-divergence form) with smooth coefficients ∇W ∗ ρ0 ∈ C∞

and ∆W ∗ ρ0 ∈ C∞. Furthermore, the compatibility conditions are automatically satisfied
since we have periodic boundary conditions. Therefore, from [40, Thm. 2] it follows that

ρ1 ∈ L2([0, T ];Hβ+1(Td)) ∩ H
β+1
2 ([0, T ];L2(Td)). From this we deduce that we have the

same space/time regularity as ρ1 for ∇W ∗ ρn−1 and of ∆W ∗ ρn−1, since W ∈ W 2,∞.
Applying again [40, Thm. 2] we conclude the existence and uniqueness of solutions ρn ∈
L2([0, T ];Hβ+1(Td)) ∩H β+1

2 ([0, T ];L2(Td)) to (25), which justifies taking any derivatives we
need in what follows. It remains to show the quantitative regularity estimates, which we
show hold uniformly in n and over potentials ‖W‖W 2,∞ ≤M .

We start with space regularity and follow ideas in [8, 30]. We prove (27) by induction on
k, starting with k = 0. We multiply (25) by ρn, integrate in x, do the standard integration
by parts, use Hölder and Young inequalities to deduce

1

2

d

dt
‖ρn‖2L2 + ‖∇ρn‖2L2 = 〈ρn,

d

dt
ρn −∆ρn〉L2

= −〈∇ρn, ρn∇Wn−1〉L2

≤ 1

2
‖∇ρn‖2L2 +

1

2
‖ρn‖2L2‖∇Wn−1‖2L2 ,

where we have used the notationWn−1 :=W∗ρn−1. Since ‖∇Wn−1‖L2 ≤ ‖∇W‖L2‖ρn−1‖L1 ≤
M by Young’s convolution inequality, we deduce

1

2

d

dt
‖ρn‖2L2 +

1

2
‖∇ρn‖2L2 ≤ M2

2
‖ρn‖2L2 (29)

for all t ∈ [0, T ], where we recall ρn = ρn(t, ·). Using the differential form of Gronwall’s
inequality ([16], Section B.2), we have

‖ρn(t, ·)‖2L2 ≤ eM
2T ‖ρ(0, ·)‖2L2 = eM

2T ‖φ‖2L2 (30)

for all t ∈ [0, T ]. Furthermore, integrating (29) in time and using (30),

sup
t∈[0,T ]

‖ρn(t, ·)‖2L2 +

∫ T

0
‖∇ρn(t, ·)‖2L2 dt ≤ (M2TeM

2T + 1)‖φ‖2L2 . (31)
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We proceed in similar manner with the higher regularity estimates. For the H2-in-space
estimate, we multiply (25) by ∇ρn, integrate by parts, use Hölder’s and Young’s inequalities
and the fact that ‖ρn−1‖L1 = 1 to deduce that

1

2

d

dt
‖∇ρn‖2L2 + ‖∆ρn‖2L2 =

∫

Td

∇ · (ρn∇Wn−1)∆ρn dx

≤ 1

2
‖∆ρn‖2L2 +

1

2

∫

Td

∣

∣

∣∇ ·
(

ρn∇Wn−1

)

∣

∣

∣

2
dx

≤ 1

2
‖∆ρn‖2L2 + ‖∇ρn · ∇Wn−1‖2L2 + ‖ρn∆Wn−1‖2L2

≤ 1

2
‖∆ρn‖2L2 + ‖∇Wn−1‖2L∞‖∇ρn‖2L2 + ‖∆Wn−1‖2L∞‖ρn‖2L2 .

Using (29)-(30), we similarly obtain d
dt‖∇ρn‖2L2 + ‖∆ρn‖2L2 ≤ C(M,T )‖φ‖2L2 . Integrating in

time and using (31) and Poincaré’s inequality on the torus,

sup
t∈[0,T ]

‖∇ρn‖2L2 + c

∫ T

0
‖ρn‖2H2 dt ≤ C(T,M)‖φ‖2H1 . (32)

This establishes (27) for k = 0.
For the higher regularity estimates (27) with integers 1 ≤ k ≤ β − 1, we proceed by

induction on k as in [8, 30]. Assume that (27) holds for k − 1. We differentiate (25) by ∂ν
for some multi-index ν with |ν| = k, multiply by ∆∂νρn, integrate by parts and use Young’s
inequality to obtain

1

2

d

dt
‖∇∂νρn‖2L2 + ‖∆∂νρn‖2L2 =

∫

Td

∣

∣

∣∆∂νρn∂α∇ · (ρn∇Wn−1)
∣

∣

∣ dx

≤ 1

2
‖∆∂νρn‖2L2 + Cd

d
∑

i=1

‖ρn
(

∂xiW ∗ ρn−1

)

‖2Hk+1 .

(33)

But by Lemma 5,

‖ρn
(

∂xiW ∗ ρn−1

)

‖2Hk+1 ≤ C(d, k,M)‖ρn‖Hk+1‖ρn−1‖Hk .

Substituting this estimate into (33), summing over all ν = |k|, integrating over [0, T ] and
using the induction hypothesis,

sup
t∈[0,T ]

‖ρn(t)‖2Hk+1 +

∫ T

0
‖ρn(t)‖2Hk+2dt ≤ C(d, k,M)

∫ T

0
‖ρn(t)‖2Hk+1‖ρn−1(t)‖Hkdt+ ‖φ‖2Hk+1

≤ C(d, k,M, T, ‖φ‖Hk+1 , ‖ρ0‖Hk+1),

which establishes (27) for k as desired. Now since the ρn are uniformly bounded in the
relevant Hilbert space norms, the Banach-Alaoglu theorem implies that they converge weakly
in these Hilbert spaces to their limits along a subsequence. Combined with the inequality
‖h‖H ≤ lim infn ‖hn‖H for any weakly convergent sequence hn → h in a Hilbert space, we
may take limits in the last inequalities, to give the following apriori estimate for the solution
to the McKean-Vlasov PDE

‖ρ‖L2([0,T ];Hk+2(Td)) + ‖ρ‖L∞([0,T ];Hk+1(Td)) ≤ C(T, ρ0,M). (34)
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We now consider regularity in time. For β = 2j, we have that ρn ∈ L2([0, T ];H2j+1(Td)) ∩
Hj+ 1

2 ([0, T ];L2(Td)) with ∂j−1
t ρn ∈ C([0, T ];H1(Td)), see [40, Thm. 2]. To get the quan-

titative estimates, we follow the proof of [8, Theorem 4.3], proceeding by induction on the
number of time-derivatives ℓ. For ℓ = 0, this follows immediately from (27). Suppose now
we have the time regularity estimate (28) for some integer 0 ≤ ℓ < j. We differentiate (25)

ℓ-times in t to obtain, using the notation ρ(ℓ) := dℓρ
dtℓ

,

ρ(ℓ+1)
n = ∆ρ(ℓ)n +∇ · (ρn∇W ∗ ρn−1)

(ℓ)

= ∆ρ(ℓ)n +
ℓ
∑

k=0

(

ℓ

k

)

∇ ·
(

ρ(k)n ∇W ∗ ρ(ℓ−k)
n−1

)

.

Taking the H2j−2ℓ−1(Td)-norm in space and using Lemma 5 since 2j − 2ℓ ≥ 2,

‖ρ(ℓ+1)
n ‖2H2j−2ℓ−1(Td) ≤ 2‖ρ(ℓ)n ‖2H2j−2ℓ+1(Td) + Cℓ

ℓ
∑

k=0

‖ρ(k)n ∇W ∗ ρ(ℓ−k)
n−1 ‖2H2j−2ℓ(Td)

≤ 2‖ρ(ℓ)n ‖2H2j−2ℓ+1(Td) + Cj,M

ℓ
∑

k=0

‖ρ(k)n ‖2H2j−2ℓ(Td)‖ρ
(ℓ−k)
n−1 ‖2H2j−2ℓ−1(Td),

where C depends only on j and ‖W‖W 2,∞(Td) ≤ M . Integrating over time t ∈ [0, T ] then
gives

‖ρ(ℓ+1)
n ‖2L2(0,T ;H2j−2ℓ−1(Td)) ≤ 2‖ρ(ℓ)n ‖2L2(0,T ;H2j−2ℓ+1(Td))

+Cj,M

ℓ
∑

k=0

‖ρ(k)n ‖2L2(0,T ;H2j−2ℓ(Td))‖ρ
(ℓ−k)
n−1 ‖2L∞(0,T ;H2j−2ℓ−1(Td)).

Since 0 ≤ k, ℓ− k ≤ ℓ, we may now apply the inductive hypothesis (28) to conclude that

‖ρ(ℓ+1)
n ‖2L2(0,T ;H2j−2ℓ−1(Td)) ≤ C(d, j, T, ‖W‖W 2,∞ , ‖φ‖H2j , ‖ρ0‖H2j ),

which is the first part of the required estimate for ℓ+1. Similarly, taking the H2j−2ℓ−2-norm
in space and arguing as above yields

‖ρ(ℓ+1)
n ‖2L∞(0,T ;H2j−2ℓ−2(Td)) ≤ C(d, j, T, ‖W‖W 2,∞ , ‖φ‖H2j , ‖ρ0‖H2j ),

which proves the desired estimate for ℓ + 1. This proves (28) for ℓ = 0, . . . , j as required,
based on the smoothness of the initial condition φ ∈ H2j . As before, we can then pass to the
limit n→ ∞ to obtain the estimates for the mean field PDE.

To obtain the lower bound (26) to the solution to the McKean-Vlasov PDE, we follow
the proof of [36][Lem. 5.1] that is based on the argument presented in [28][Thm. 2]. Fix
T ′ ∈ (0, T ], let ρt(x) = ρ(t, x) denote the solution to the McKean-Vlasov PDE (1), and
consider the unique strong solution of the linear (in the sense of McKean) SDE

dYt = ∇W ∗ ρT ′−t(Yt) dt+
√
2 dBt, Y0 = x.

Using Itô’s formula, the PDE (1) and taking expectations gives for t ∈ [0, T ′],

E
xρT ′−t(Yt) = ρT ′(x)− E

x

∫ t

0
ρT ′−s(Ys)∆W ∗ ρT ′−s(Ys) ds, (35)
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where E
x denotes the expectation with respect to the law of the process Yt starting at x.

We use now the fact that ρu(x) ≥ 0, u ∈ [0, T ], together with the estimate ‖∆W ∗ ρu‖L∞ ≤
‖W‖W 2,∞‖ρu‖L1 ≤M to deduce that

E
xρT ′−t(Yt) ≤ ρT ′(x) +M

∫ t

0
E
xρT ′−s(Ys) ds.

From the integral form of Gronwall’s inequality, it follows that for all t ∈ [0, T ′],

E
xρT ′−t(Yt) ≤ ρT ′(x)

(

1 +MteMt
)

≤ ρT ′(x)
(

1 +MTeMT
)

.

Setting now t = T ′ gives that for any T ′ ∈ (0, T ],

ρT ′(x) ≥ φmin

1 +MTeMT
,

as required. The same argument also applies to the sequence of PDEs (25). We omit the
details.

Lemma 5. Let W ∈W 2,∞(Td), u ∈ Hk and v ∈ Hk−1 for integer k ≥ 2. Then

‖f(∇W ∗ g)‖Hk ≤ C(k, d, ‖W‖W 2,∞)‖f‖Hk‖g‖Hk−1 . (36)

Proof. The proof follows from the estimates in [30], pp. 65-66.
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izations. Birkhäuser Boston, Inc., Boston, MA, 2001. A revisit with applications to
communications, economics, engineering, and finance.

[36] D. Lacker and L. Le Flem. Sharp uniform-in-time propagation of chaos. Probab. Theory
Related Fields, 187(1-2):443–480, 2023.

[37] S. Lee, Y. M. Psarellis, C. I. Siettos, and I. G Kevrekidis. Learning black-and gray-box
chemotactic PDEs/closures from agent based Monte Carlo simulation data. Journal of
Mathematical Biology, 87(1):15, 2023.

[38] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applica-
tions. Vol. II. Die Grundlehren der mathematischen Wissenschaften, Band 182. Springer-
Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth.

[39] F. Malrieu. Logarithmic Sobolev inequalities for some nonlinear PDE’s. Stochastic
Process. Appl., 95(1):109–132, 2001.

[40] A. Milani. A remark on the Sobolev regularity of classical solutions to uniformly
parabolic equations. Math. Nachr., 199:115–144, 1999.

[41] S. Mischler and C. Mouhot. Kac’s program in kinetic theory. Invent. Math., 193(1):1–
147, 2013.

[42] F. Monard, R. Nickl, and G. P. Paternain. Consistent inversion of noisy non-Abelian
X-ray transforms. Comm. Pure Appl. Math., 74(5):1045–1099, 2021.

[43] R. Nickl. Bernstein–von Mises theorems for statistical inverse problems I: Schrödinger
equation. J. Eur. Math. Soc. (JEMS), 22(8):2697–2750, 2020.

[44] R. Nickl. Bayesian non-linear statistical inverse problems. EMS Press, Berlin, 2023.
[45] R. Nickl. Consistent inference for multi-dimensional diffusions from low frequency ob-

servations. Annals of Statistics, page to appear, 2024.
[46] R. Nickl and K. Ray. Nonparametric statistical inference for drift vector fields of multi-

dimensional diffusions. Ann. Statist., 48(3):1383–1408, 2020.
[47] R. Nickl and E. S. Titi. On posterior consistency of data assimilation with gaussian

process priors: the 2d Navier-Stokes equations. arXiv preprint 2023, 2023.
[48] R. Nickl and S. Wang. On polynomial-time computation of high-dimensional posterior

measures by Langevin-type algorithms. J. Eur. Math. Soc. (JEMS), 26(3):1031–1112,

24



2024.
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