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The physical nature of pseudogap phase is one of the most important and intriguing problems towards under-
standing the key mechanism of high temperature superconductivity in cuprates. Theoretically, the square-lattice
t-J model is widely believed to be the simplest toy model that captures the essential physics of cuprate su-
perconductors. We employ the Grassmann tensor product state approach to investigate uniform states in the
underdoped (δ ≲ 0.1) region. In addition to the previously known uniform d-wave state, we discover a strongly
fluctuating pair density wave (PDW) state with wave vector Q = (π, π). This fluctuating PDW state weakly
breaks the C4 rotational symmetry of the square lattice and has a lower or comparable energy to the d-wave state
(depending on doping and the t/J ratio), making it a promising candidate state for describing the pseudogap
phase.

Introduction — High-temperature superconductivity in
cuprate materials remains a challenging field in condensed
matter physics, even decades after its discovery [1]. Cuprates
are Mott insulators at half-filling, but they become super-
conducting upon doping [2]. The underdoped region of the
cuprate phase diagram is particularly intriguing due to the
emergence of the pseudogap below a certain temperature T ∗

[3, 4]. It is now shown to be associated with the breaking of
various symmetries, including the C4 rotational symmetry of
the CuO2 planes [5–9]. Interestingly, the model compound
HgBa2CuO4+δ (Hg1201, which has a tetragonal structure and
only one CuO2 plane per unit cell) [10] exhibits nematicity
below T ∗ along the diagonal directions [110] or [11̄0] [9].
Such a rotational symmetry breaking is very different from
the charge-density-wave (CDW) phase, which breaks trans-
lational symmetry. In the pseudogap phase, there is grow-
ing interest in the possible existence of a pair density wave
(PDW) order [11, 12]. PDW is characterized by the forma-
tion of Cooper pairs that carry a nonzero total momentum Q,
resulting in a spatial modulation of the superconducting or-
der parameter. Numerous experiments support the presence of
PDW in cuprate superconductors [13–20]. However, theoreti-
cal understanding of the PDW state is based primarily on phe-
nomenological models, and ongoing debates persist regarding
its microscopic foundations and its relation to the pseudogap
[21–25].

In this work, we use the Grassmann tensor product state
(TPS) method [26, 27] (which can also be equivalently for-
mulated in fermionic tensors [28, 29]) to study the t-J model
on a square lattice [30], which is believed to capture the es-
sential physics of the CuO2 plane. Previous numerical stud-
ies using techniques such as Density Matrix Renormalization
Group (DMRG) [31, 32], infinite Projected Entangled-Pair
States (iPEPS) [33, 34], and Variational Monte Carlo (VMC),
which utilizes a d-wave slave-boson projective wave function
[35–37] have revealed various competing orders, including a
d-wave superconducting (SC) order that coexists with anti-
ferromagnetic (AFM) order, as well as partially filled stripe
orders with varying periods. We report the discovery of a uni-

form and fluctuating PDW state with Q = (π, π) (coexisting
with antiferromagnetic order in the doping range δ ≲ 0.1). Im-
portant features of this state include: (a) the nearest-neighbor
(NN) singlet pairing vanishes as the bond dimension D→ ∞,
implying strong quantum fluctuation; (b) the hole density,
staggered magnetization, and the NN singlet pairing magni-
tude are uniform; and (c) the C4 rotational symmetry is weakly
broken to mere reflections about the diagonal next-nearest-
neighbor (NNN) bonds. These contrast sharply with previ-
ously found PDW states, which are essentially spatially mod-
ulated d-wave states (also called “antiphase” d-wave states)
with a smaller but nonzero wave vector and a static singlet
pairing pattern [35, 38–41]. Our fluctuating PDW state has
a lower or comparable energy to the uniform d-wave state at
low doping (depending on doping and the t/J ratio). These
features suggest that the pseudogap phase may actually be a
distinct quantum state, which strongly competes with the d-
wave superconducting state at low doping.

Model and methods — The Hamiltonian of the well-
known t-J model reads

H = −t
∑
⟨i j⟩,σ

(
c̃†iσc̃ jσ + h.c.

)
+ J

∑
⟨i j⟩

(
Si · S j −

1
4

n̂in̂ j

)
, (1)

Here ⟨i j⟩ sums over NN bonds. c̃iσ = ciσ(1 − c†iσ̄ciσ̄) is
the electron operator defined in the no-double occupancy
subspace. n̂i =

∑
σ c†iσciσ is the electron number opera-

tor. Si = (1/2)
∑
α,β c†iασαβciβ is the spin-1/2 operator, with

σ being Pauli matrices. The ground state |ψ⟩ is taken as a
two-dimensional translational invariant Grassmann TPS [27],
which is divided into two sub-lattices A and B, each generated
by local Grassmann tensors TA or TB. There are also Schmidt
weights Λ on the four types of bonds (named 1 to 4), which
are diagonal dual Grassmann matrices.

|ψ⟩ =

Λ!

B A

A B

Λ"
Λ# Λ$ . (2)
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(a) d-wave

Figure 1. NN singlet pairing ∆i j patterns of (a) the d-wave state, and
(b) the fluctuating PDW state with Q = (π, π). Both states are uni-
form and |∆i j| on each NN bond has the same magnitude. Its sign is
shown by the bond colors (light orange for ∆i j > 0 and dark blue for
∆i j < 0). In both states, we observe co-existing anti-ferromagnetic
order at small doping, i.e. ⟨Si∈A⟩ = − ⟨Si∈B⟩.

The arrow on each bond indicates the order of the two dual
Grassmann numbers in the Grassmann metric used by the con-
traction [27]. All virtual indices have the same total dimension
D and the bosonic (even-parity) subspace dimension De. The
physical index is 3 dimensional, labeled as |↑⟩ (spin-up), |↓⟩
(spin-down) and |0⟩ (empty site). The double occupancy state
is excluded. We adopt the slave fermion point of view [42]
and assign |↑⟩ , |↓⟩ to the bosonic subspace.

Starting from an initialization of |ψ⟩, the ground state is
obtained using the simple update (SU) method, which is an
imaginary time evolution algorithm [43–45]. Since nonuni-
form states (e.g. with stripe order or charge density wave or-
der) break the translational symmetry, they are irrelevant to
pseudogap physics. Furthermore, a previous study with the
full update (FU) scheme [34] suggests that the energy of uni-
form states may eventually be comparable to that of nonuni-
form states as D increases, especially with smaller doping.
Therefore, we focus on uniform states, which are obtained by
averaging the Schmidt weights after updating them all once.
Doping δ is controlled by adding a chemical potential term
−µ

∑
i n̂i (µ > 0) to the Hamiltonian, and a larger µ leads to

smaller doping. The evolution time step slowly decreases to
ensure its convergence. The update stops when the change in
the Schmidt weight is sufficiently small. We measure the re-
sulting ground state with the variational uniform matrix prod-
uct state (VUMPS) method [46–48]. The measurement result
converges when the dimension of the MPS virtual boundary
bond is χ ≳ 4D [45].

Uniform competing ground states — Starting from ran-
dom initialization, we find that the ground state converges to
two types of uniform state: the well-known d-wave SC state
(Fig. 1(a)), and a new PDW state (Fig. 1(b)). Here, the SC
order is detected by the real space singlet pairing amplitude
on each bond: ∆i j = ⟨ci↑c j↓ − ci↓c j↑⟩ /

√
2. In the d-wave state,

the singlet pairing pattern is ∆(x,y)(x+1,y) = −∆(x,y)(x,y+1) ≡ ∆. In
the PDW state, ∆(x,y)(x+1,y) = −∆(x,y)(x,y+1) ≡ (−1)x+y∆, which
varies periodically along the diagonal direction of the lattice,
with wave vector Q = (π, π). We note that the hole density at
each site is uniform, and the magnitude |∆i j| is the same on all
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Figure 2. Energy per hole Eh for the d-wave and the PDW states at
t/J = 3.0, measured with χ = 64.
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Figure 3. 1/D scaling of staggered magnetization m at t/J = 3.0 for
(a) fluctuating PDW and (b) d-wave states, measured with χ = 64.
Vertical bars on the D→ ∞ curves are linear fit errors.

NN bonds. This is rather different from PDW orders in the ex-
isting literature, which are spatially modulated d-wave states
(|∆i j| varies periodically), coexisting with charge or spin den-
sity waves. Strictly speaking, in the presence of AFM order,
the momentum Q = (π, π) is identified with Q = (0, 0) due to
unit cell doubling. However, the PDW state discovered here
can still survive in the absence of a long-range AFM order,
e.g., with a bigger t/J ratio or at larger doping. Therefore, we
believe that the coexistence of an AFM order does not change
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Figure 4. 1/D scaling of average magnitude of NN singlet pairing ∆̄
at t/J = 3.0 for (a) fluctuating PDW and (b) d-wave states, measured
with χ = 64. Within the fitting error, ∆̄ of the fluctuating PDW state
vanishes as D→ ∞.

the physical nature of such a PDW state.
We also measured the singlet pairing ∆i j in further neigh-

bors. Interestingly, for both d-wave and PDW states, ∆i j = 0
(up to numerical errors) on NN bonds. Furthermore, all same-
sublattice SC pairings (along the x and y directions) vanish in
the PDW state, that is, ∆i,i+nx̂ = ∆i,i+nŷ = 0 when n is an even
number (see Supplemental Materials [45] for details). Such a
super-selection rule for SC pairings indicates a hidden projec-
tive symmetry group (PSG) that has never been realized by a
projective mean-field wave function before.

To better visualize the energy difference, we plot the energy
per hole Eh = (Es − E0)/δ (in units of J) in Fig. 2. Here, Es

is the energy per site, and E0 = −1.169438 is its value at
zero doping [49]. The energies for the two states at t/J = 3
with various D are quite close throughout the region 0 < δ ≲
0.1. All of these energies are much lower than the previous
VMC result [36], but slightly higher than the stripe states in
the previous study for doping δ > 0.05 (see Supplemental
Materials [45]).

The magnetic order detected by magnetization on each site

is defined as mi =

√
⟨S x

i ⟩
2 + ⟨S y

i ⟩
2
+ ⟨S z

i ⟩
2. With finite D,

both states have nonzero staggered magnetization m. To con-
firm the existence of an AFM order, we perform 1/D scaling
over m (linear fit with respect to 1/D), and we find that m is
still nonzero as D → ∞ (see Fig. 3) at small doping. We
note that SU overestimates the magnetic order: while m in the

Figure 5. Non-equivalent NN bonds (1 to 4) and NNN bonds (5 to
8) under bipartite lattice translation.

0.00 0.04 0.08

-0.30

-0.25

-0.20

N
N

 S
i

S j

d-wave

1
2
3
4

0.00 0.04 0.08

PDW

1
2
3
4

0.00 0.04 0.08

0.05

0.10

0.15

0.20

N
N

N
 S

i
S j

d-wave

5
6
7
8

0.00 0.04 0.08

PDW

5
6
7
8

Figure 6. Spin correlation ⟨Si · S j⟩ on NN and NNN bonds in D = 8
states at t/J = 3.0, measured with χ = 32.

d-wave state is always nonzero in the whole underdoped re-
gion δ ≲ 0.15, FU suggests that m vanishes around δ ∼ 0.1
[34]. Meanwhile, our SU result shows that m drops to 0 for
the PDW state at δ ≃ 0.12. However, we believe that FU
or other global optimization methods will further reduce the
magnetization in the PDW state as well.

Fluctuating pair density wave and weak C4 rotational sym-
metry breaking — Figure 4 shows the magnitude of singlet
pairing |∆̄| on NN bonds, obtained with various bond dimen-
sions D. |∆̄| is generally smaller in the PDW state than in the
d-wave state at the same doping. Furthermore, |∆̄| of the PDW
state eventually vanishes in the D → ∞ limit (within the fit
error) after the 1/D scaling. This is in contrast to the d-wave
state, where a finite pairing amplitude always survives after
1/D scaling. We conjecture that such a fluctuating PDW state
could naturally explain the experimentally observed pseudo-
gap phase in cuprate materials [23, 24]. In particular, the fluc-
tuating PDW state suggests that the pseudogap phase should
be regarded as a zero-temperature quantum phase with local
pairing but without global phase coherence.

The smoking gun evidence to identify the presence of a
fluctuating PDW state is weak breaking of the C4 rotational
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Figure 7. Hopping Ti j =
∑
σ ⟨c

†

iσc jσ⟩ on NN and NNN bonds in
D = 8 states at t/J = 3.0, measured with χ = 32.

symmetry, which can be detected by measuring the spin-spin
correlation ⟨Si · S j⟩ on nonequivalent NN and NNN bonds
(see Fig. 5, labeled from 1 to 8). The results are shown in
Fig. 6. Despite the bipartite structure of the Grassmann TPS,
the spin-spin correlation still has the full lattice translational
symmetry in both states. However, the PDW state weakly
breaks the C4 rotational symmetry, since the correlations on
the bonds 5, 7 and 6, 8 are different. Reflection symmetry
on the two diagonal lines still survives, which might provide
a natural explanation for the diagonal nematicity observed in
the pseudogap phase of Hg1201 [9]. Symmetry breaking be-
comes more evident as δ increases, as shown by the increased
discrepancy between the spin-spin correlation in two diagonal
directions. In contrast, the spin-spin correlation in the d-wave
state maintains the full lattice symmetry.

The C4 symmetry breaking is also revealed by the NNN
hopping Ti j ≡

∑
σ ⟨c

†

iσc jσ⟩. As seen in Fig. 7, the sign of NNN
hopping is the same as the sign of NN hopping in the d-wave
state, while in the PDW state, Ti j on NNN bonds along the
two diagonal directions have different signs and magnitudes.
However, reflection symmetry on the two diagonal lines still
survives. Therefore, the d-wave state can be further stabilized
over the fluctuating PDW state by adding an NNN hopping
term −t′

∑
⟨⟨i, j⟩⟩,σ(c†iσc jσ + h.c.) to the Hamiltonian with t′ > 0.

This agrees with previous DMRG results that t′ > 0 enhances
the d-wave SC order [41, 50]. However, in realistic hole-
doped cuprate materials with t′ < 0, we believe that such a
fluctuating PDW state should become more stable than the d-
wave state at low doping. This explains why the pseudogap
phase was observed only in all hole-doped materials but not
on the electron-doped side.
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Figure 8. Energy per hole Eh of the fluctuating PDW and the d-wave
states at t/J = 2.5, measured with χ = 64.

The effect of t/J ratio — Finally, to explore the possible
t/J dependence on our result, we repeat the same calculations
for t/J = 2.5. The SC order ∆i j in the PDW state still ex-
hibits a strongly fluctuating characteristic, which reduces to a
very small value as D→ ∞, and a similar weak C4 symmetry
breaking feature is also observed in NNN bonds (see Supple-
mental Materials [45] for details). However, the d-wave state
is now energetically preferred in a wider doping range, but
the energy difference between the two states is still small, es-
pecially close to half-filling (see Fig. 8). This suggests that
the fluctuating PDW state may not only be competitive with
d-wave state in a limited range of t/J, but is actually a generic
feature for the doped Mott-insulator on a square lattice. In
general, a larger t/J ratio will enhance the quantum fluctu-
ations and stabilize the fluctuating PDW state. The global
phase diagram of t-J model can be more accurately deter-
mined with further optimization of the SU result using a more
sophisticated algorithm, such as FU or gradient-based algo-
rithms. Experimentally, our results also indicate that a large
J (corresponding to a smaller charge transfer gap in cuprates)
might stabilize the d-wave superconductivity.

Summary and outlook — Using the Grassmann TPS ap-
proach, we have discovered a uniform PDW state that repre-
sents a novel perspective on the emergence of PDW order in
cuprates, distinct from the spatially modulating d-wave state-
related phenomena previously studied. This PDW state ex-
hibits strong quantum fluctuations, as evidenced by the van-
ishing of the singlet pairing ∆i j in the limit of large TPS bond
dimension. In regions of low doping where uniform states
are favored over nonuniform states, our fluctuating PDW state
competes strongly with the uniform d-wave state. In partic-
ular, the weak breaking of the rotational symmetry of the C4
lattice in the fluctuating PDW state makes it a promising can-
didate for the pseudogap phase. Although all of our results are
based on SU, previous tensor network simulations on the t-J
model suggest that FU will not lead to qualitative differences.
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Finally, the spin-charge separation scenario suggests that
there might be an intrinsic connection between the fluctu-
ating PDW state with the (π, π) wave vector and the peak
observed in the dynamic magnetic susceptibility at (π, π) in
under-doped cuprates, as reported in previous neutron scatter-
ing studies [51–56]. This peak is recognized as a signature
of the pseudogap phase. In particular, the observation of a
similar enhancement of the magnetic response to AFM fluc-
tuations below T ∗ in the model compound Hg1201 [57–59],
together with the C4 symmetry breaking feature, further con-
solidates the uniform fluctuating PDW nature of the pseudo-
gap phase. We stress that such a uniform fluctuating PDW
state, characterized by the absence of the same sub-lattice su-
perconducting pairing and the weak break of rotational sym-
metry C4, suggests the existence of a novel PSG structure be-
yond traditional slave-particle techniques. Investigating the
physical nature of such a new state of matter could provide in-
sight into the microscopic origins of the pseudogap phase and
potentially uncover the key mechanisms of high-temperature
superconductivity.
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R. D. Hunt, and F. Doğan, Science 284, 1344 (1999).

[56] P. Dai, H. A. Mook, R. D. Hunt, and F. Doğan, Phys. Rev. B
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Simple update of tensor product states

Starting from an arbitrary state |ψ0⟩, we can approximate the ground state |ψ⟩ of a Hamiltonian H by the imaginary time
evolution |ψ⟩ ≈ e−βH |ψ0⟩ with a sufficiently large β. The simple update algorithm is a low-cost way to compute evolution
when H is the sum of operators with single-site and nearest-neighbor interactions Hi j. With Trotter decomposition, e−βH can be
expanded as the product of many gates e−ϵHa (a = 1, ..., 4) acting on all type-a bonds with small ϵ. Below we describe the update
of |ψ⟩ with a Trotter gate e−βH1 acting on all type-1 bonds

e−ϵH1 |ψ⟩ = B A

A BΛ!

Λ"

Λ#

𝑒$%&

Λ'
. (3)

1. The weights surrounding the bond to be updated are absorbed into the tensors A and B, as an approximation of the
environment of the bond.

𝐴

Λ!
Λ"

Λ#
𝐴"

=

, 𝐵 𝐵"
Λ!

Λ"

Λ#

=
. (4)

2. To reduce the computational cost, we first apply QR and LQ decomposition to Ã, B̃ as

QR
𝐴$ 𝑋 𝑎! ,

LQ
𝐵$ 𝑌𝑏! . (5)
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The gate e−ϵH now acts on the lower-rank tensors aR and bL [60]

𝐴" 𝐵$
Λ!
𝑒!"#

=
Λ!

𝑒!"#

𝑎" 𝑏#X Y
. (6)

Then we perform SVD, obtaining an updated weight Λa (indicated by a prime), aR, and bL as

Λ!
𝑒!"#

𝑎! 𝑏" = ≈
Λ!"𝑎!# 𝑏"#

SVD . (7)

3. To control the virtual bond dimension, we truncate the weight spectrum Λ by keeping only the largest D singular values.
Here, D can be different from the virtual bond dimension D0 of the initial state |ψ0⟩. Note that the singular values of both
the even and odd sectors are sorted together. The even (or odd) dimension De (or Do) of the virtual index (De + Do = D)
is the number of these D singular values that come from the even (or odd) sector of Λ.

4. The new Schmidt weight is normalized so that the maximum singular value is 1. The new aR, bL tensors are absorbed back
into X,Y to produce the new A, B tensors,

Λ!"𝑎!" 𝑏#"X Y =
Λ!"𝐴$" 𝐵& " . (8)

The absorbed environment weights are then restored by reversing Eq. (4). Finally, the updated TPS unit cell is

e−ϵHa |ψ⟩ ≈

Λ!"

Λ#
Λ$

Λ%
𝐴! 𝐵!

𝐵! 𝐴!
. (9)

5. The steps 1 to 4 are repeated for each of the four bonds. To obtain uniform states, we average the four weights after they
are all updated once. Otherwise, the system will easily evolve to a non-uniform state. In addition, we only keep states that
also have the same De on all virtual indices throughout the update process.

6. The update stops when the change of the averaged weight is sufficiently small, or more precisely,

δΛ(n) ≡
1
D

D∑
i=1

|Λ̄
(n)
i − Λ̄

(n−1)
i | ≲ 10−11, (10)

where Λ̄(n)
i is the i-th averaged weight after the n-th round of simple update.

The two main limitations of the simple update method are its difficulty in (a) obtaining states |ψ⟩ with doping δ ≲ 0.02,
since the convergence (decrease in δΛ) becomes very slow and doping δ becomes very sensitive to the change in µ, and (b)
converging from a random initial state when the bond dimension D is large, due to the increase in the number of free parameters
in |ψ⟩. To address these challenges, we first compute states with D = 8 and relatively large doping 0.08 ≲ δ ≲ 0.15, using a
random initialization |ψ0⟩ with D0 = 8 and even bond dimension (De)0 = 4. The weights are initialized as identity matrices.
Specifically, all initial states |ψ0⟩, except those that evolved to half-filling or produce different De on each virtual bond during
evolution, converge to either d-wave or PDW state, both with De = 4. To obtain states with δ < 0.08, we use the previously
obtained d-wave or PDW state with a close doping level as the initial state to accelerate convergence and avoid evolution toward
half-filling.

To further optimize the energy by increasing D, we use states with smaller D as initial states to speed up convergence. With
the same D, it is possible to obtain multiple states with different values of De. For example, when initializing with D = 8 states
to reach D = 10, we may obtain the states with (De,Do) = (4, 6) or (5, 5). In such scenarios, we keep the De that has the lowest
energy. For D = 10, 12, 14, we find the states with the lowest energies when δ ≲ 0.1 have De = 5, 5, 6 (PDW) or 7 (d-wave)
respectively. The evolution time step ϵ is gradually reduced to ensure the convergence of SU. We start with ϵ = 0.01, and reduce
it to 0.001, 0.0004, and 0.0001 as the weight change δΛ reaches the threshold values 10−6, 10−9, and 10−10, respectively. For
δ ≲ 0.02, one can begin directly with ϵ = 0.001 or smaller to avoid evolution to half-filling.
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Figure 9. Energy per site Es at t/J = 3.0 for (a) fluctuating PDW and (b) d-wave states with D = 14 measured with different bond dimensions
χ of boundary MPSs (left panels) and their 1/χ scaling (right panels).
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Figure 10. Comparing energies of uniform d-wave and fluctuating PDW states with others at t/J = 3.0. (a) Energy per site Es comparison with
VMC and DMRG (see details in the text). (b) Energy per hole Eh comparison with DMRG and stripe states with unit cell sizes 2×5, 2×6, 2×7
obtained from simple update (see details in the text).

Convergence of VUMPS measurements

To ensure the convergence of VUMPS measurement, we test different boundary MPS virtual bond dimensions χ. Fig. 9 shows
the energy per site Es for D = 14 states measured with various values of χ. When χ ≳ 4D, the 1/χ scaling is deemed convergent
for both the d-wave and the fluctuating PDW states, i.e. the change in Es is of the order 10−4 if χ is further increased. Thus, we
mainly present the χ = 64 data in the main text.

Comparison with VMC, DMRG and stripe states

In Fig. 10(a), we compare the energy of our d-wave and fluctuating PDW states with VMC [36]. For D ≥ 10, both have
energies significantly lower than VMC (especially for larger doping). In Fig. 10(b), we compare with stripe states with unit cell
sizes 2× 6, 2× 7, 2× 8 obtained from simple update, which are measured with χ = 32 for 2× 5 and 64 for the others. Although
the stripes states have lower energy at larger doping, their Eh increases more rapidly as doping decreases. This trend agrees with
a previous study [33, 34]. The uniform states have lower energy at small doping δ ≲ 0.05.

We also make a rough comparison with DMRG [61], which shows stripe d-wave order. All DMRG energies are calculated
with U(1) × S U(2) symmetry (U(1) is for charge conservation) with a large bond dimension D. Data labeled “DMRG Ly × Lx”
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are obtained in cylinders with height Ly and circumference Lx, without 1/D or 1/Ly scaling or extracting the bulk energy. The
bond dimensions on 6 × 32 and 6 × 48 cylinders are D = 12000 and 8000, respectively. Data labeled “DMRG (bulk)” are the
bulk energy after 1/Ly scaling extracted from cylinders with Ly = 4, 6, 8 and different Lx, calculated with D = 24000 for Ly = 8
and 6000 for others. The bulk energy for each fixed Ly is obtained by taking the difference between two cylinders with different
Lx. These energies are comparable with the SU results with 2 × 5 and 2 × 7 unit cells.

Singlet pairing on farther neighbors

We measured ∆i j on NNN bonds for the D = 8 d-wave and PDW states with boundary MPS bond dimension χ = 32. We find
that they are all smaller than 5 × 10−5, and can be regarded as zero within the numerical errors. We expect that states with larger
D show the same behavior. We also measured longer-range ∆(0,0)(x,0) and ∆(0,0)(0,y) (see Fig. 11). For PDW state, we find that the
singlet pairing is zero when x or y is an even number, i.e. the two sites involved are on the same sub-lattice.

1 2 3 4 5 6 7 8
x

0.00

0.01

0.02

(0, 0)(x, 0)

d-wave×( 1), D=12, =0.0513
PDW, D=12, =0.0520

1 2 3 4 5 6 7 8
y

(0, 0)(0, y)

d-wave, D=12, =0.0513
PDW, D=12, =0.0520

Figure 11. Singlet pairing ∆i j on long-range bonds along x and y directions. ∆(0,0)(x,0) for d-wave states are multiplied by −1. The selected
d-wave state has D = 5 + 7 and doping δ = 0.0513. The selected PDW state has D = 5 + 7 and doping δ = 0.0520.
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Figure 12. 1/D scaling of staggered magnetization m at t/J = 2.5 for (a) fluctuating PDW and (b) d-wave states measured with χ = 64.

Fluctuating PDW and d-wave states at t/J = 2.5

The general features of the d-wave and the fluctuating PDW states when t/J = 2.5 are similar to t/J = 3.0. (a) Staggered
magnetization vanishes at δ ≃ 0.12 as D → ∞ for the PDW state (Fig. 12). (b) Although ∆i j on NN bonds now scales to a
nonzero value as D → ∞ when doping δ ≲ 0.04, it is still very small (Fig. 13), especially compared to the d-wave value. We
expect that further optimization on the simple update result will eventually eliminate the SC order in the D→ ∞ limit, as in the
case of t/J = 3.0. (c) The PDW state shows the breaking of the C4 symmetry to mere reflections about the diagonal lines, which
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Figure 13. 1/D scaling of magnitude of NN singlet |∆̄| at t/J = 2.5 for (a) fluctuating PDW and (b) d-wave states measured with χ = 64.

becomes more evident as doping δ increases. Meanwhile, the d-wave state still has full lattice symmetry. (d) The d-wave state
can be stabilized by turning on a positive NNN hopping t′.
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