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Abstract
Representation-based Siamese networks have risen
to popularity in lightweight text matching due to
their low deployment and inference costs. While
word-level attention mechanisms have been imple-
mented within Siamese networks to improve per-
formance, we propose Feature Attention (FA), a
novel downstream block designed to enrich the
modeling of dependencies among embedding fea-
tures. Employing ”squeeze-and-excitation” tech-
niques, the FA block dynamically adjusts the em-
phasis on individual features, enabling the network
to concentrate more on features that significantly
contribute to the final classification. Building upon
FA, we introduce a dynamic ”selection” mech-
anism called Selective Feature Attention (SFA),
which leverages a stacked BiGRU Inception struc-
ture. The SFA block facilitates multi-scale seman-
tic extraction by traversing different stacked Bi-
GRU layers, encouraging the network to selectively
concentrate on semantic information and embed-
ding features across varying levels of abstraction.
Both the FA and SFA blocks offer a seamless inte-
gration capability with various Siamese networks,
showcasing a plug-and-play characteristic. Exper-
imental evaluations conducted across diverse text
matching baselines and benchmarks underscore the
indispensability of modeling feature attention and
the superiority of the ”selection” mechanism. 1

1 Introduction
The goal of the text matching task is to assess the se-
mantic relevance between pairs of sentences and to deter-
mine their relationship. More specifically, it involves cre-
ating a classifier ξ that calculates the conditional probabil-
ity P (label|sa, sb), thereby predicting the relationship be-
tween the sentence pair sa and sb. Here, label ∈ Ω repre-
sents different levels of sentence pair relationships, which can
be {relevant, irrelevant} or {entailed, neutral, contradicted}.
Representation-based Siamese networks [Wang et al., 2017;

∗Corresponding author
1Codes available:https://github.com/hggzjx/SFA

Chen et al., 2017; Yang et al., 2019; Zang and Liu, 2023a]
use dual encoders to compute text embeddings offline and
aggregate them downstream for prediction. They offer the
benefits of having low parameter sizes and reduced infer-
ence latency, making them extensively applicable in indus-
trial contexts, including search engines and recommendation
systems [Huang et al., 2013; Khattab and Zaharia, 2020]. To
enhance the post-interaction of text pairs, researchers have
introduced various downstream attentions in Siamese net-
works [Chen et al., 2017; Yang et al., 2019; Cao et al., 2020;
Liu et al., 2021]. Notably, these attention strategies solely
capture word-level dependencies, neglecting the modeling of
intricate relationships among embedding features. Each fea-
ture in text embeddings captures certain semantic or syntac-
tic properties of the vocabulary, though these properties are
usually not directly interpretable. For example, particular di-
mensions in the embedding vector might be related to parts
of speech, contextual information (the relationship of a word
to surrounding words), or other linguistic attributes.

The Word-level Interaction Attention shown in Figure 1(a)
is the most commonly used downstream attention in Siamese
matching networks [Chen et al., 2017; Tay et al., 2018;
Yang et al., 2019], and is a mapping (a, b) → (x,y), where
a, b,x,y ∈ RL×D. Here, a, b represent the text embeddings
of the text pair sa, sb. x,y represent the embeddings of the
text pair containing rich word level interaction information.
L denotes the length of the text sequence, and D represents
the dimension of the embedding features. To enhance the
sensitivity of the Siamese network to the embedding features
then construct a more robust downstream attention, as illus-
trated in Figure 1(b), we advocate further building a single-
branch symmetric Feature Attention (FA) based on the Word-
level Interaction Attention. The FA block is a mapping that
does not change the tensor size: x → u or y → v, where
u,v ∈ RL×D. It is noteworthy that, despite the FA blocks
in both branches sharing the same form, we advocate against
sharing their parameters.

The FA block incorporates a ”squeeze-and-excitation” ap-
proach, which concentrates on the most influential embed-
ding features, enhancing their significance in the final classi-
fication. Moreover, inspired by neuroscience, where the size
of receptive fields in visual cortical neurons is modulated by
external stimuli, we integrate a dynamic ”selection” mech-
anism into Feature Attention based on the stacked BiGRU
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(a) Word-level Interaction Attention (b) Feature Attention

Figure 1: Our more robust downstream attention, composed of (a) Word-level Interaction Attention and (b) Feature Attention.

Inception structure. This results in the creation of Selective
Feature Attention (SFA). The SFA block stimulates the net-
work to dynamically adapt its focus on semantic information
and embedding features across various levels of abstraction.
Simultaneously, the ”selection” within SFA effectively ad-
dresses the challenge of consistent gradient flow arising from
the diverse scale semantic extraction in multi-branch Incep-
tion, achieving more efficient gradient flow management.

The FA and SFA blocks preserve tensor shape in their
mappings, capable of seamless integration with virtually any
Siamese network, offering a plug-and-play characteristic. In
the experimental evaluation, we combine the FA and SFA
blocks with six of the most commonly used baseline Siamese
networks from 2020 to 2023, assessing their performance
across various text matching benchmarks. Extensive exper-
iments demonstrate that the integration of SFA with all net-
works significantly improves inference accuracy across all
text matching benchmarks. Our primary contributions are
highlighted in the following: (1)Based on our survey, we are
the first to model dependencies at the embedding feature level
for text matching. (2)We present the Feature Attention block
and enhance it with a ”selection” mechanism based on the
stacked BiGRU Inception structure, resulting in the Selective
Feature Attention. Extensive experiments confirm the supe-
rior performance of the ”selection” in SFA block. (3)FA and
SFA blocks are offering a plug-and-play characteristic, allow-
ing them to be integrated with almost any Siamese network.

2 Feature Attention
2.1 Squeeze-and-Excitation Network
Channel-level attention mechanisms have demonstrated ex-
ceptional performance in image classification [Hu et al.,
2018b; Hu et al., 2018a; Woo et al., 2018; Bello et al., 2019]
and segmentation [Hou et al., 2020; Huang et al., 2019;
Fu et al., 2019]. The Squeeze-and-Excitation Network
(SE-Net) [Hu et al., 2018b] pioneered channel attention by
effectively constructing interdependencies among channels
through the compression of each feature map. CBAM [Woo
et al., 2018] further refined this concept by introducing spatial
information encoding via convolutions with large-size ker-
nels. Subsequent studies such as GENet [Hu et al., 2018a],
GALA [Linsley et al., 2019], TA [Misra et al., 2021] ex-
panded on this idea by adopting various spatial attention
mechanisms or designing advanced attention blocks. While

related work [Zang and Liu, 2023b] models feature depen-
dencies through higher-dimensional semantic spaces, we de-
vised a squeeze-and-excitation style Feature Attention to
model dependencies among semantic features.

2.2 FA Block
As illustrated in Figure 1(b), FA block constitutes a 2D to 2D
single-branch mapping that computes x→ u or y → v. For
the sake of simplicity, our discussion will focus solely on the
computational mapping of the x branch.

For the input x ∈ RL×D, to capture feature-level depen-
dencies, we first execute a ”squeeze” step using average pool-
ing (FAP(·)) to compress global information into a feature
descriptor s. Formally, s ∈ R1×D is generated by averag-
ing x along the spatial dimension L, where the dth element
of s is computed as formulated in Equation 1. Throughout
this paper, F(·) represents the mapping that does not involve
trainable weights, whileF(·,W ) represents the mapping that
involves trainable weights W . Symbols with the subscript ·l
denote spatial (word-level) descriptors, while those with the
subscript ·d represent feature descriptors.

sd =
1

L

L∑
l=1

xl , d ∈ [1, ..., D] (1)

In the subsequent ”excitation” step, aimed at enhancing the
model’s sensitivity to features, we filter out the embedding
features that contribute more significantly to the final clas-
sification. For the aggregated information s from the previ-
ous steps, the ”excitation” step is tasked with constructing a
nonlinear, non-mutually exclusive gating mechanism. To en-
sure the excitation of multiple features, we have designed two
fully connected layers for nonlinear mapping (FFC(δ)(·,W )
and FFC(σ)(·,W )), namely a dimension-reducing layer with
a Tanh function followed by a dimension-increasing layer
with a Sigmoid function. Here, δ, σ represent the Tanh and
Sigmoid function respectively, and s′ ∈ R1×D

r is a transi-
tional vector. The decay factor r introduces a bottleneck in
the network to control parameter redundancy.

e = σ(δ(sWFC1)WFC2) (2)
The vector e ∈ R1×D signifies the features that have

been activated. Ultimately, this vector is merged with
x through element-wise multiplication, enabling x to fur-
ther develop into an embedding feature representation u =
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Figure 2: Selective Feature Attention

[u1,u2, ...,uD] ∈ RL×D that is more finely attuned to the
final classification.

ud = ed ∗ xd , d ∈ [1, ..., D] (3)

3 Selective Feature Attention
3.1 Inception Structure
In the visual cortex, neurons’ ability to gather multi-scale spa-
tial information within the same processing stage stems from
the varying receptive field sizes in the same region [Hubel
and Wiesel, 1962]. The Inception structure [Szegedy et al.,
2017] leverages this characteristic, achieving superior perfor-
mance in computer vision by directly concatenating features
extracted from multiple scales. However, this linear aggrega-
tion may be insufficient to model the neurons’ robust adapt-
ability. Furthermore, the uniform treatment of semantic ex-
traction at different scales gradient flow management during
training, affecting training stability.

Related research has shown that stimuli also influence neu-
ronal responses [Nelson and Frost, 1978]. The size of these
receptive fields is not fixed but correlates with the stimulus
contrast: lower contrast corresponds to a larger effective re-
ceptive field [Sceniak et al., 1999]. Selective Kernel Net-
works (SK-Net) [Li et al., 2019] were the first to model this
phenomenon in the field of computer vision, achieving sig-
nificant success in image classification and semantic segmen-
tation. Motivated by this theory, we introduce the Selective
Feature Attention, which encourages the network to dynami-
cally adapt its focus on semantic information and embedding
features across different levels of abstraction.

3.2 SFA Block
The SFA block comprises three phases: ”split-and-fusion”,
”squeeze-and-excitation”, and ”selection”, as illustrated in
Figure 2. Initially, considering the potential complexity intro-
duced by a multi-branch Inception structure, we advocate the
incorporation of bottleneck structure at both ends of the SFA
block for feature dimension scaling. Specifically, we employ
a one-dimensional convolution kernel of size 1 as an auto en-
coder FAE(·,W ) to map the size of the input x to RL× D

r1 ,
where r1 acts as a dimension reduction factor controlling the
feature dimensionality of embeddings.

In the ”split-and-fusion” phase, for x ∈ RL× D
r1 , we in-

troduce an N -layer stacked BiGRU (FS-BiGRU(·,W (n))) to

capture the semantic representation at each layer, effectively
”splitting” the original embedding into vectors {x(n)}Nn=1,
with x(n) ∈ RL× 2D

r1 , as formulated in Equation 4. Here, h(n)
l

represents the hidden state at position l in the nth layer of
either the forward or backward GRU and <;> denotes con-
catenation along the feature dimension.

x
(n)
l =<

−−→
GRU(n)(

−→
h

(n)
l−1,x

(n−1)
l ,W

(n)
−−→
GRU

);

←−−
GRU(n)(

←−
h

(n)
l+1,x

(n−1)
l ,W

(n)
←−−
GRU

) >

,n ∈ [1, ..., N ], l ∈ [1, ..., L]

(4)

The shallower layers of BiGRU excel at capturing short-
range dependencies between words, such as understanding
the combination of words in compound words or phrases. On
the other hand, deeper layers of BiGRU are capable of pro-
cessing and capturing long-range word dependencies. This
includes discerning a sentence’s theme, which may hinge on
words at the beginning and end of the sentence or require
consideration of the entire sentence’s content for accurate in-
terpretation. The core idea behind ”fusion” is to use a gating
mechanism to enable information carrying different levels of
semantic abstraction from multiple branches to flow towards
the neurons of the next layer. To comprehensively and holis-
tically preserve the semantic information of each branch, we
employ stacked concatenation to amalgamate the results of
all branches, as formulated in Equation 5. Here [; ] denotes
the stacked concatenation.

x̃
(n)
l = [x

(1)
l ;x

(2)
l ; ...;x

(n)
l ], n ∈ [1, ..., N ], l ∈ [1, ..., L] (5)

In the subsequent ”squeeze-and-excitation” phase, for x̃ ∈
RN×L× 2D

r1 , we recommend the combined use of global av-
erage pooling (FGAP(·)) and global max pooling (FGMP(·))
to compress information simultaneously at both the BiGRU
layer and word levels. As formulated in Equation 6, we obtain
the sum s from the global average pooling and max pooling
results, and then apply fully connected layers for activation.

sd =
1

N × L

N∑
n=1

L∑
l=1

x̃
(n)
l +

N
max
n=1

L
max
l=1

(x̃
(n)
l ), d ∈ [1, ...,

2D

r1
]

(6)
It is noteworthy that the essence of SFA block is to cap-

ture and excite features of text embeddings at different levels



of abstraction, while adaptively adjust their relative impor-
tance. To accomplish this, we employ a single dimension-
reducing fully connected layer (FFC(δ)(·,W )) alongside a se-
ries of dimension-increasing fully connected layers, with the
count matching the number of branches (FFC(σ)(·,W (n)))
for excitation. This process results in the excited vectors
{e(n)}Nn=1, e

(n) ∈ R1× 2D
r1 , as formulated in Equation 7.

Similarly, δ,σ represent the Tanh, Sigmoid function, respec-
tively. The decay factor r2 creates a bottleneck in the network
to avoid parameter redundancy.

e(n) = σ(δ(sWFC1
)W

(n)
FC2

)) , n ∈ [1, ..., N ] (7)
In the most critical ”selection” phase, we apply vector-

level softmax normalization (FNorm(·)) to the excitation vec-
tors {e(n)}Nn=1. The normalized results {ẽ(n)}Nn=1 serve as
adaptive weights for the different branches, and are used
for element-wise multiplication with each branch’s repre-
sentation {x(n)}Nn=1. The summation of these products
yields the weighted sum representation of each branch u =

[u1,u2...,u 2D
r1

] ∈ RL× 2D
r1 .

ud =

N∑
n=1

ẽ
(n)
d ∗ x(n)

d =

∑N
n=1 exp(e(n)

d ) ∗ x(n)
d∑N

n=1 exp(e(n)
d )

, d ∈ [1, ...,
2D

r1
]

(8)
Finally, to align the input and output dimensions of the

SFA block, we also employ the same auto encoder (FAE(·)) to
transform the shape of u to RL×D. To ensure the expressive
power of the embedding feature, the feature dimension re-
duction caused by the bottleneck layer in the entire text must
satisfy [Lai et al., 2016]:

D

r
,
2D

r1
,
2D

r1r2
> 8.33 logL (9)

3.3 Efficient Gradient Management
The traditional Inception structure aggregates multi-scale
information linearly. However, this uniform updating of
weights across different Inception layers impedes the differ-
entiated flow of gradients, thereby impacting training stabil-
ity. The distinct mapping branches F (n)

S-BiGRU(·,W (n)) : x→
x(n) represent semantic extraction at various scales from the
text embeddings, acknowledging that semantic extraction at
different scales contributes differently to the final classifica-
tion. In this section, we analyze the backpropagation within
the SFA block during training, focusing on how the ”selec-
tion” mechanism impacts training stability in the context of
the gradient flow ∂u

∂x .
w/o selection Firstly, an SFA block without ”selection” im-
plies that there is only a single feature weight e, thus we
have u = e ∗ x̃. Consequently, the gradient flow chain is
jointly determined by the gradient propagations of both e and
x̃, specifically ∂u

∂x̃ = e and ∂u
∂e = x̃. The gradient flow in the

direction of e is formulated in Equation 10. Since the process
involves a straightforward addition, it results in ∂s

∂FGMP(x̃)
= 1,

∂s
∂FGAP(x̃)

= 1.

∂u

∂x̃
=

∂u

∂e
∗ ∂e

∂s′ ∗
∂s′

∂s
∗ (∂FGMP(x̃)

∂x̃
+

∂FGAP(x̃)

∂x̃
) (10)

Combining the backward propagation of gradients from
x → x̃, the computation of the overall gradient flow is for-
mulated in Equation 11. In this context, the transformation
from x(n) → x̃ is a stacked concatenation, hence it follows
that ∂x̃

∂x(n) = 1.

∂u

∂x
= 2 ∗ ∂u

∂x̃
∗

N∑
n=1

∂x̃

∂x(n)
∗ ∂x(n)

∂x
= 2 ∗ ∂u

∂x̃
∗

N∑
n=1

∂x(n)

∂x

(11)
It can be observed that each semantic extraction mapping

F (n)
S-BiGRU : x→ x(n) represents a gradient flow ∂x(n)

∂x , which
impacts the overall gradient flow ∂u

∂x in a uniform proportion
of 2 ∗ ∂u

∂x̃ . This implies that the feature weights of each Bi-
GRU layer are updated to the same degree. However, this
uniformity does not align with the necessity for differentiated
gradient flow management across various semantic scales, re-
sulting in unstable training.
w/ selection The ”selection” mechanism of the SFA block
introduces an adaptive weight for each branch, leading to the
entire gradient flow chain being jointly determined by the gra-
dient propagations of both x(n) and ẽ(n). This is expressed
as ∂u

∂x(n) = e(n) and ∂u
∂ẽ(n) = x(n). The gradient flow in

the direction of ẽ(n) is formulated in Equation 12. Since
the process involves a straightforward addition, it results in
∂u

∂ẽ(n) = 1, as formulated in Equation 12.

∂u

∂x̃
=

N∑
n=1

(
∂u

∂ẽ(n)
∗ ∂ẽ(n)

∂e(n)
∗ ∂ẽ(n)

∂s′ )

∗ ∂s′

∂s
∗ (∂FGMP(x̃)

∂x̃
+

∂FGAP(x̃)

∂x̃
)

(12)

After backpropagating the gradients in Equation 12, a com-
plete gradient chain is formulated in Equation 13. It is evident
that, upon the introduction of a selection mechanism, the co-
efficient preceding each ∂x(n)

∂x becomes a linear function of

ẽ(n). This equation reflects how ∂x(n)

∂x directly and, through
the adaptive weights ẽ(n), indirectly influences the total gra-
dient flow. In contrast to the scenario without the ”selec-
tion”, where ∂x(n)

∂x affects the total gradient flow uniformly,
the adaptive weights ẽ(n) manage the gradient flow across
different branches in an adaptive and differentiated manner.
This approach leads to a more robust training process, as re-
flected in Section 4.2.

∂u

∂x
=

N∑
n=1

(
∂u

∂x(n)
∗ ∂x(n)

∂x
) +

∂u

∂x̃
∗

N∑
n=1

(
∂x̃

∂x(n)
∗ ∂x(n)

∂x
)

=

N∑
n=1

(ẽ(n) +
∂u

∂x̃
) ∗ ∂x(n)

∂x

(13)

4 Experimental Results & Analysis
4.1 Main Results
We selected the six most commonly used lightweight base-
lines in text matching tasks from 2020 to 2023. All
these baselines reported parameter sizes in the articles



Network r N QQP MRPC BoolQ SNLI MNLI(m/mm) QNLI Scitail Avg. Pavg.(M) ILavg.(ms)
BiMPM - - 85.54 70.38 69.75 87.22 72.34/72.02 79.24 79.45 76.99 1.83 0.403
+FA 2 1 85.79 70.61† 70.18† 87.19 72.74†/72.41† 80.19† 80.13† 77.41† 2.01 0.481
+SFA (3.75, 4) 2 86.13† 71.33† 70.86† 88.14† 73.19†/72.97† 80.94† 80.98† 78.17† 2.06 0.708
ESIM - - 87.92 73.48 71.71 88.04 74.27/74.19 80.84 79.23 78.71 4.46 0.672
+FA 1 1 88.38† 73.59 72.32† 88.59† 74.28/74.11 81.16† 80.17† 79.08† 4.82 0.718
+SFA (3,5) 3 90.32† 75.88† 73.94† 90.02† 76.31†/76.19† 82.92† 81.62† 80.90† 4.88 1.248
CAFE - - 88.01 73.18 71.23 87.68 75.02/74.45 81.65 80.54 78.97 4.75 0.672
+FA 1 1 89.04† 73.25 71.34 87.98† 75.34†/74.47 81.71 81.75 79.36 5.11 0.708
+SFA (3,5) 3 90.27† 74.54† 73.21† 89.72† 77.03†/76.33† 82.84† 82.82† 80.85† 5.17 1.386
RE2 - - 88.78 73.17 72.11 88.29 75.98/75.52 80.36 82.45 79.58 4.85 0.742
+FA 1 1 90.14† 73.51† 72.97† 88.87† 76.11/75.71† 80.53† 82.38 80.03† 5.21 0.805
+SFA (3,5) 3 90.97† 75.29† 74.28† 90.52† 77.61†/77.41† 81.97† 84.52† 81.57† 5.27 1.478
DIIN - - 88.26 73.03 71.45 88.08 76.56/76.49 81.67 82.34 79.74 4.42 0.653
+FA 1 1 88.71† 73.42† 71.78† 88.56† 76.43/76.37 82.05† 82.87† 80.02† 4.78 0.689
+SFA (3,5) 3 90.34† 75.04† 73.73† 89.33† 78.03†/77.82† 82.68† 84.51† 81.44† 4.84 1.289
DRCN - - 88.81 72.45 71.67 89.84 78.07/77.85 81.03 82.98 80.34 6.68 1.436
+FA 1 1 90.18 72.56 71.98† 90.25† 78.38†/78.17† 81.21 83.07 80.73† 7.40 1.608
+SFA (3,5) 3 90.53† 74.34† 73.57† 90.96† 79.25†/78.95† 82.38† 84.97† 81.87† 7.51 2.803

Table 1: The evaluation accuracy (%) of introducing FA and SFA on 6 lightweight text matching baselines across 7 text matching benchmarks.
The hyperparameters r and N represent the dimension reduction factors and the number of branches in the Inception network, respectively.
Pavg.(M) denotes the model’s average parameters (million), and ILavg.(ms) indicates the sentence-level inference latency. The bolded parts
represent the best values in each group, and †signifies a significant improvement over the baseline (t-test, p < 0.05).

with values less than ten million. The selected base-
lines are: BiMPM [Wang et al., 2017], ESIM [Chen et
al., 2017], CAFE [Tay et al., 2018], RE2 [Yang et al.,
2019], DIIN [Gong et al., 2018], and DRCN [Kim et al.,
2019]. In the experiments, we introduce FA block and SFA
block to these baseline networks and evaluated their perfor-
mance on following benchmarks: QQP [Iyer et al., 2017],
MRPC [Dolan and Brockett, 2005], BoolQ [Clark et al.,
2019], SNLI[Bowman et al., 2015], MNLI [Williams et al.,
2018](matched&mismatched), QNLI [Wang et al., 2018],
and Scitail [Khot et al., 2018].

Table 1 reports the evaluation accuracies of six lightweight
text matching baselines, as well as their performances follow-
ing the integration of FA and SFA blocks. Particularly, since
DRCN is composed of multiple identical modules in series,
we incorporated two FA and SFA blocks in each branch to
align with the number of autoencoders present in DRCN. To
minimize the impact of increased parameters on performance,
we carefully controlled the values of r and N to maintain a
consistent increment in parameters caused by the FA and SFA
blocks. By regulating these hyperparameters, the additional
parameters introduced by FA and SFA amounted to approx-
imately 5%-10% of the network’s original parameters. The
sentence-level inference latency caused by the SFA block is
higher than that of the FA block, due to the increased model
complexity resulting from the stacked BiGRU. The incorpo-
ration of the FA block lead to overall improvements across
all baselines, while the introduction of the SFA block signifi-
cantly boost inference accuracy. The SFA block consistently
demonstrate the best performance across all baselines com-
pared to the FA block. It provides the most substantial av-
erage performance boost for the ESIM model (from 78.71%
to 80.90%). With the integration of the SFA block, DRCN
achieved the highest accuracy (81.87%) among all baselines,
albeit at the cost of having the highest network parameters
and inference latency.

Table 2 reports a comprehensive comparison of six

Network QQP SNLI Pavg.(M) ILavg.(ms)
Residual Stacked* - 86.0 29 -
LSTM-Max* - 84.5 40 -
LM-Transformer* - 89.9 85 -
AlBERT 89.31 87.30 12 7.27
BERT-base 90.06 90.16 109 7.74
BERT-large 90.45 90.82 335 27.26
RoBERTa-base 90.73 91.13 125 12.05
BiPMP-SFA 86.13 88.14 2.06 0.71
ESIM-SFA 90.32 90.02 4.88 1.25
CAFE-SFA 90.27 89.72 5.17 1.39
RE2-SFA 90.97 90.52 5.27 1.48
DIIN-SFA 90.34 89.33 4.84 1.29
DCRN-SFA 90.53 90.96 7.51 2.80

Table 2: Evaluation results of the network with the SFA block in-
tegrated, compared with other large-scale networks on QQP and
SNLI. * signifies that the result directly adopts the accuracy as re-
ported in [Kim et al., 2019].The bolded parts represent the two best
results for each evaluation benchmark.

SFA-enhanced lightweight baselines against several
high-parameter networks, (Residual Stacked [Nie and
Bansal, 2017], LSTM-Max [Conneau et al., 2017], LM-
Transformer [Vaswani et al., 2017], BERT-base/large [Devlin
et al., 2019], AlBERT [Lan et al., 2019], and RoBERTa [Liu
et al., 2019]). The comparison is based on evaluation
accuracies, parameter sizes, and inference latencies across
the QQP and SNLI benchmarks. In the QQP benchmark, it is
observed that after integrating SFA, networks such as ESIM,
CAFE, RE2, DIIN, and DRCN not only retain a substantial
advantage in parameter volume and inference latency but also
surpass the performance of pre-trained models like AlBERT
(89.31%) and BERT (90.06%). Particularly noteworthy is
RE2-SFA, which, with only 1.5% and 4.2% of the parameters
and 5.4%, 12.3% of the inference latency, surpasses the accu-
racy of BERT-large (90.45%) and RoBERTa-base (90.73%)
at 90.97%. In the SNLI benchmark, our networks with SFA
outperform Residual Stacked, LSTM-Max, LM-Transformer,
and AlBERT in terms of accuracy. Notably, DRCN, with just
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Figure 3: Ablation study on the components of SFA block on QQP
and SNLI datasets, using RE2 and ESIM as baselines.

6.9% and 2.2% of the parameter size and 36.2%, 10.3% of
the inference latency, surpasses both BERT-base (90.16%)
and BERT-large (90.82%). Despite having only 6.0% of
the parameters and 23.2% of the inference latency, DRCN
closely approaches the accuracy of RoBERTa-base (91.13%).

4.2 Ablation Study
To investigate the key factors contributing to the superiority
of the SFA block over the FA block, we conducted detailed
ablation studies on the various components of the SFA block.
As indicated in Table 1, ESIM and RE2 demonstrated the
most significant average performance improvement follow-
ing the integration of the SFA block. Thus, for a clearer rep-
resentation of the results, we chose these two networks, along
with QQP and SNLI, as the baselines and benchmarks for our
ablation experiments.

Figure 3 illustrates the changes in prediction accuracy
when components such as auto encoder, global max pooling,
global average pooling, and the ”selection” within the SFA
block are individually removed. It is evident that the exclu-
sion of each of these components resulted in a decrease in
performance. Notably, the exclusion of the ’selection’ step
resulted in a substantial drop in performance, dipping below
the outcomes achieved with the FA block. This impact was
pronounced enough to cause ESIM’s inference accuracy on
QQP and SNLI to fall below that of their original baseline net-
works. Furthermore, the error bars indicate increased training
instability after the removal of the ”selection”.

Figure 3 illustrates the loss-epochs curves (dev.) for the
ESIM model trained on two datasets. It is evident that the
introduction of the FA and SFA blocks not only maintains or
even improves training convergence speed but also enhances
overall convergence performance. On the other hand, intro-
ducing a SFA block without the ”selection” leads to numer-
ous inefficient training processes. The loss exhibits little vari-
ation, significantly slowing down the convergence compared
to previous models. As explained in Section 3.3, the omission
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Figure 4: The average increase in evaluation accuracy (%) of SFA
blocks on QQP and SNLI with different Inception networks (using
RE2 and ESIM as baselines), along with the associated parameters
and average inference latency growth.

of the ”selection” yields uniform gradient updates across dif-
ferent Inception branches during feature extraction, leading
to reduced training efficiency. This obstructed backpropaga-
tion process also hinders effective convergence during train-
ing, resulting in outcomes that may even be inferior to those
of the base network.

4.3 Inception Networks
Section 4.2 corroborates that the ”selection” is the pivotal el-
ement in the SFA block, which is built upon the foundation of
multi-branch Inception networks. In this section, we discuss
the effects of semantic multi-scale mapping using various In-
ception networks. These networks can be categorized into
three types based on their fundamental architecture: CNN,
RNN, and Transformer. For the CNN series, we investi-
gate three forms: (1) CNNs with varying one-dimensional
kernel sizes (K = 2N + 1) across different branches, (2)
CNNs with a fixed kernel size of 3 but varying dilation factors
(Dilation = N ) across branches, and (3) CNNs with a fixed
kernel size of 5 and varying dilation factors (Dilation = N ).
For the RNN series, we explore stacked BiRNN, stacked Bi-
GRU, stacked BiLSTM. For the Transformer series, we ex-
amine three forms of stacked Transformer blocks with 1, 2,
3 attention heads, respectively. Specifically, we continue to
use RE2 and ESIM as baselines and introduce SFA blocks
with different Inception networks on top of them. Figure 4
illustrates the average accuracies of the networks on the QQP
and SNLI datasets. A significant increase in accuracy is ob-



served when the number of branches changes from 1 to 2 in
each Inception structure, further emphasizing the criticality of
the ”selection” based on multi-branch Inception. Compared
to the RNN and Transformer series, SFA blocks built on the
CNN series do not exhibit superior performance, possibly be-
cause RNN and Transformer architectures are suited for cap-
turing sequential characteristics. When the branch amount
reaches 3, the RNN and Transformer series generally achieve
the highest inference accuracy.

Figure 4 illustrates the increase in parameters and inference
latency introduced by different Inception based SFA blocks,
under the constraint of identical bottleneck factors (r1, r2).
It is observed that at N = 3, stacked BiLSTM and stacked
Transformer blocks incur relatively high parameters and in-
ference delay, contradicting the principle of lightweight text
matching. In comparison, stacked BiRNN and stacked Bi-
GRU strike a balance between performance and computa-
tional costs. SFA blocks based on stacked BiGRU exhibit su-
perior and more stable accuracy compared to stacked BiRNN.
This is the reason why we opted for a stacked BiGRU as the
Inception network within the SFA block.

4.4 Attention Analysis
The interaction of sentence embeddings directly influences
the performance of matching networks. To visually illustrate
the impact mechanism of FA and SFA blocks on the net-
work, We selected two sets of sentence pairs from the MRPC,
both of which have an ’irrelevant’ relationship between them:
”Robin Saunders, head of the bank’s London-based principal
finance unit, is also expected to quit.” & ”Robin Saunders,
head of the principal finance unit, has made clear she has
funding to buy parts of the business.” and ”In the second quar-
ter, Anadarko now expects volume of 46 million BOE, down
from 48 million BOE.” & ”Production for the second quarter
was cut to 46 million barrels from 48 million barrels.”.

We encoded the two sentence pairs using three types of
trained ESIM (base, +FA, +SFA) respectively, and visualized
the word-level dot product matrices of the base network x and
y, as well as those of the network u and v with FA and SFA
integrated. For visualization purposes, we performed feature-
level average pooling, as illustrated in Figure 5. It can be
observed that the base network only activates attention be-
tween synonyms, such as ”head of,” ”principal finance unit”,
”second quarter”, ”46 million” and ”48 million”. When the
FA block is introduced, this situation remains unchanged, as
focusing only on synonyms does not make the network aware
of their lack of relevance. In contrast, the introduction of the
SFA block prompts the network to activate additional seg-
ments, such as ”is also expected to quit” & ”has funding to
buy parts of the business” and ”now expects” & ”was cut to”.
These segments are essential for the network to determine
the ”irrelevant” relationship between sentences. This is be-
cause the FA block only adjusts the weights among individual
features of each word, not affecting the values post-average
pooling of all features (the weight of the sum of word-level
features), and thus cannot directly influence word-level inter-
actions. On the other hand, the SFA block aggregates em-
bedding features across different scales with weighting. The
mappings at these different scales are nonlinear, which leads
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Figure 5: The heatmap of the dot product matrix for sentence pair
embeddings, where deeper colors indicate higher levels of activated
word-level attention.

to changes in the weight of the sum of word-level features.
This directly activates words that were previously not focused
on by the network, enabling the extraction of semantic infor-
mation at a finer granularity and capturing the semantic focus.

5 Conclusion

In this paper, we introduce innovative attention modelling at
the embedding feature level within lightweight text matching
networks, presenting the FA and SFA blocks. The structures
of the FA block and SFA block are concise, plug-and-play,
and offer vast opportunities for expansion. In terms of struc-
tural design, beyond being a selection mechanism, the feature
attention structure can support various forms, enabling finer-
grained feature modeling. In terms of task format, feature
attention is merely an activation of feature dependencies, un-
affected by task formats. This indicates its applicability to
various other semantic embedding-based tasks in NLP, such
as text classification, entity recognition. We hope to encour-
age more researchers to explore diverse forms of feature-level
attention across a broader range of NLP tasks, fostering a
community ecosystem for feature attention in NLP.
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