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Abstract. In human neuroimaging studies, atlas registration enables
mapping MRI scans to a common coordinate frame, which is neces-
sary to aggregate data from multiple subjects. Machine learning reg-
istration methods have achieved excellent speed and accuracy but lack
interpretability. More recently, keypoint-based methods have been pro-
posed to tackle this issue, but their accuracy is still subpar, particularly
when fitting nonlinear transforms. Here we propose Registration by Re-
gression (RbR), a novel atlas registration framework that is highly robust
and flexible, conceptually simple, and can be trained with cheaply ob-
tained data. RbR predicts the (z, y, z) atlas coordinates for every voxel of
the input scan (i.e., every voxel is a keypoint), and then uses closed-form
expressions to quickly fit transforms using a wide array of possible defor-
mation models, including affine and nonlinear (e.g., Bspline, Demons, in-
vertible diffeomorphic models, etc.). Robustness is provided by the large
number of voxels informing the registration and can be further increased
by robust estimators like RANSAC. Experiments on independent public
datasets show that RbR yields more accurate registration than compet-
ing keypoint approaches, while providing full control of the deformation
model.
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1 Introduction

Image registration seeks to find a spatial mapping between two images, and is
a crucial component of human neuroimaging pipelines. Image registration en-
ables: measuring change between different timepoints of the same subject [17];
building population atlases or subject-specific templates via co-registration of
multiple scans [25]; measuring structural differences via tensor-based morphom-
etry [20]; mapping pre-, intra-, and post-operative images [I]; automated seg-
mentation [22]; and many others.
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One application of these methods is registering brain MRI scans to digital
atlases. Atlases are prototypical brain images that are representative of a pop-
ulation and are often built by co-registering and averaging scans from a cohort
of subjects (e.g., the ubiquitous MNI atlas). Atlas registration enables aggrega-
tion of spatial information of multiple subjects into a common coordinate frame
(CCF). Such CCFs enable studies like tensor- or voxel-based morphometry [5].
Moreover, it also enables the mapping of population-wide information to the
native space of a specific subject, e.g., label priors for image segmentation [12].
Atlas registration typically relies on the same methods as pairwise methods.

Most classical registration methods rely on numerical optimization [3I] to
minimize a cost function, often combining an image similarity term with a regu-
larizer; the former seeks to align the images as close as possible, while the latter
prevents excessively convoluted (unrealistic) deformation. Decades of research
have provided medical image registration with sophisticated features, e.g., dif-
feomorphisms [6], symmetry [9], or inter-modality mapping [32].

In 2017, faster registration methods based on deep learning were initially pub-
lished. The first attempts were supervised and sought to predict ground truth
fields obtained, e.g., with accurate classical methods [39]. These algorithms then
evolved into unsupervised methods, trained with the same losses used by clas-
sical algorithms — possibly augmented with segmentation losses [7/10]. By now,
deep learning registration methods have incorporated many of the features of
their classical counterparts (e.g., diffeomorphisms [26], symmetry [21], progres-
sive warping [28], or inter-modality support [14]) and have also started to rely
on more modern architectures, e.g., transformers [§] rather than U-nets [7].

Very recently, keypoint methods [37IT5] have been proposed, which predict
blob-like feature maps such that their centers of gravity can be used to analyt-
ically compute a transform between the two images. This approach addresses
two limitations of machine learning registration methods. First, the lack of in-
terpretability associated with the “black box” nature of neural networks, by
providing insight into the factors driving the alignment (i.e., the keypoints).
And second, the lack of robustness of the affine component. Earlier learning
approaches assumed that the inputs were already affinely aligned; some tried
to predict the 12 parameter registration matrix [I0J30], but these predictions
were generally not robust (e.g., sensitive to initialization) and often failed to
generalize well to new datasets. Instead, the affine matrix that best aligns two
point clouds can be analytically estimated from keypoints in a robust fashion.
Moreover, keypoints can also be used to fit nonlinear transforms, e.g., thin-plate
splines (TPS) in KeyMorph [37]).

Here we present Registration by Regression (RbR), a novel framework that
enables flexible, robust registration of brain MRI scans to digital atlases. In
short, RbR is an evolution of keypoint methods where every vozel is a keypoint:
it uses a convolutional neural network (CNN) that predicts, for each voxel of
the input scan, its (z,y,z) atlas coordinates. Ground truth can be obtained
cheaply via supervision with existing algorithms. This paradigm has a number
of advantages: (i) Since the density of keypoints is much higher (over a million



vs ~500), nonlinear transforms can be fitted more accurately. (i) It does not
need pretraining to avoid clustering of keypoints in the center of the image.
(ii) After a forward pass of the CNN, one can fit with minimal computation
(closed-form expressions) a wide array of popular transforms and regularizers,
including affine and nonlinear models like Bsplines [34], Demons [35], or the
diffeomorphic log-polyaffine framework [2], among others. (iv) Every hyperpa-
rameter of the deformation model can be readily modified. This is in contrast
with hypernetwork approaches [I8], where only specific parameters can be tuned
as the space of deformations is constant (e.g., control point spacing cannot be
specified). (v) It can achieve enhanced robustness using robust estimators like
RANSAC [13]. (vi) It is easy to implement, and ground truth for a new atlas or
dataset can be easily obtained with classical registration methods.

2 Methods

Our proposed method is summarized in Figure [I} It comprises three different
stages: data preparation, training, and test-time fitting.

2.1 Data preparation

The crux of RbR is a regression CNN that estimates, for every voxel of the
input scan (with discrete coordinates x, y, z), its corresponding atlas coordinates
z',1y',2z’. This CNN is trained in a supervised fashion using accurate nonlinear
deformations obtained with a classical registration approach R. If I(z,y, 2) is
the input image and A is a reference atlas, the ground truth registration is:

F:R® = R? where F(z,y,2) = [,y 2] = R(x,y, 2 I, A).

Therefore, a large labeled dataset can be obtained “for free” by simply registering
a set of unlabeled images to the atlas at hand using a well-established registration
algorithm. While there are no formal requisites on the deformation model of
the registration method, diffeomorphic models that yield smooth and invertible
fields are preferred [6]. Unlabeled images exist in abundance in public datasets —
particularly 1mm isotropic MPRAGES typically used in neuroimaging research.

2.2 Training

Training RbR is simple. Given a 3D voxel-wise regression CNN N (-) with pa-
rameters 6, an atlas A, and a set of J images {I;};=1,. . 7, the goal is to minimize
the following loss function with stochastic gradient descent:
R T
azargmin Zi Z gl[R('rayaz;]kaA)_N(x7yvz;lk79)]> (1)
o j=1 | j| (z,y,2)€82;

where (2; is the image domain of image I; and is typically constrained to brain
regions (i.e., excludes extracerebral tissue). Equation (1] is just the ¢; norm be-
tween the predicted and ground truth atlas coordinates; we use ¢; rather than
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Fig. 1. (a) Training data are prepared by nonlinearly registering T1w scans from HCP
and ADNI to the MNI template using NiftyReg. (b) A U-Net is trained to predict
the MNI coordinates for every voxel of an input scan. (c) At test time, almost any
transformation can be fitted between the input scan and predicted MNI coordinates.

{5 due to its higher robustness. We note that no regularization is needed: the
CNN just does its best in a voxel-by-voxel basis, smoothness is provided by
the deformation model and its parameters at test time. However, as with any
other CNN, augmentation is crucial to endow the trained models with the best
possible generalization ability. We use aggressive augmentation during training,
including random blurring, bias field, noise, and deformation (affine and elastic).

2.3 Test-time fitting

The flexibility and robustness of RbR stem from its test-time fitting strategy.
Given an input image I, one first processes it with the trained neural network
to obtain [2/,y’, 2] = N(m,y,z;[,é); we note that the atlas is not required
at this point. Then, one can fit a deformation model to this predicted field to
obtain the final atlas registration. We consider three different types of models in
this article: a family of models based on basis functions, a model based on the
Demons algorithm [35], and a diffeomorphic model based on the log-polyaffine
framework [2]; we note that other models are possible.

Basis functions: a large class of transforms that can be written as a sum of
spatial basis functions can be fitted to [z, y’, 2’] using regularized least squares,
one spatial coordinate at the time. Let d be the flattened column vector of z’,
y', or 2’ coordinates. Let ¢ be a set of B spatial functions evaluated on the
discrete image domain {2, such that each row corresponds to a spatial location
(flattened), and each column corresponds to a basis function. Finally, let ¢ be



a column vector with B elements, corresponding to the coefficients of the basis
functions. Then, the fitted transform is ¢c and its squared coordinate error is:

Ecoord = [d - ¢c}t[d - ¢C] =d'd+ Ct¢t¢c — 2dt¢c.

This fit can be regularized with quadratic penalty terms while remaining closed
form. Here we choose the membrane energy, which penalizes the squared norm
of the gradient of the deformation field. Let G, Gy, G be the spatial gradients
of the basis functions; as for ¢, every row corresponds to a spatial location, and
every column to a basis function. The regularizer is then given by:

Ereg = [Go]' |G+ Gy ] [Gyc] +[G.c]'[G.c] = ¢'[G,G. + GG, +G.G.]c.

Ecoora and E,.4 are combined into an objective function F using a relative weight
A. Setting the gradient to zero yields the regularized least square estimate:

VE = V(Ecoord + AEreg) = 2¢'¢pc — 2¢'d + 2)[G. G, + GG, + G.G.]c = 0,
=c=[¢p'9+ MNG.LG, + GG, + G.G.)| ' ¢d.

Within this family of transforms, we consider three in this article:

— Affine: a standard affine transform, fitted with all available voxels. We note
that, in this case, the basis function matrix is simply ¢ = [z, y, z, 1] (where
1 is the all-ones vector), and the gradients of the basis functions are ignored.
— Affine-RANSAC: an affine transform fitted robustly with RANSAC.

— Bsplines [34]: with control point spacing specified by the user.

Other basis previously used in registration that are straightforward to implement
include lower-order polynomials [38] and the discrete cosine transform [4].

Demons-like model: The demouns algorithm [35] computes a nonlinear registra-
tion by alternating between: (i) estimating force vectors via an optical-flow-like
algorithm [I9]; (41) smoothing these force vectors with a Gaussian kernel; and
(i4i) applying the deformation before recomputing the force vectors. Here, we
propose a similar algorithm with the difference that, since the output of the
CNN is constant, we only take one step, i.e., we just filter the output of the
CNN with a Gaussian kernel. The standard deviation is specified by the user.

Log-polyaffine model: Diffeomorphic models that can be analytically inverted
are desirable in registration. Here we explore a log-polyaffine model [2] that is
fitted to the output of the CNN as follows. First, we subdivide the image domain
into cubic supervoxels of fixed, user-defined width W, this parameter controls
the flexibility of the transform. Next, we compute an affine transform for every
supervoxel s, assuming that it contains a minimum number of voxels. If we
denote this affine transform by T in homogeneous coordinates, then [2]:

L, v,
ou(m) = (5%



and it can be shown that the affine transform can be represented by a stationary
velocity field (SVF) given by: W,(x,y, z) = vs + L[z, y, z]*. The log-polyaffine
framework computes a global SVF ¥ as a weighted sum of SVFs:

W(l‘vya Z) = Zws(-r7 Y, Z)(vs + Ls[xvyv Z]t)a

where wg(x,y, z) are normalized non-negative weights obtained with a Gaussian
function of the distance between (z,y,z) and the center of supervoxel s; we
set the standard deviation of this Gaussian to W/2. The final SVF ¥ can be
integrated with the scale-and-square algorithm to obtain the final deformation
field [3]; the inverse field can be obtained by integrating the negated SVF (—¥).

2.4 Implementation details

The CNN is a standard U-net [33], with a design inspired by nnU-net [23]. Tt
has four resolution levels with two convolutional layers (comprising 3 x 3 x 3
convolutions and a ReLu) followed by 2 x 2 x 2 max pooling (in the encoder)
or upconvolution (decoder). The final activation layer is linear, to regress the
atlas coordinates in decimeters (which roughly normalizes them from -1 to 1).
In addition to predicting atlas coordinates, the CNN also learns to predict a
brain mask, which is used to define the domain {2 at test time. For this, we add
a segmentation loss to Equation[I] with relative weight 0.5; the segmentation loss
itself combines a Dice loss (weight 0.75) and cross-entropy loss (weight 0.25). The
model is trained with stochastic gradient descent with learning rate 0.01, weight
decay 3e—5, and momentum 0.99 for 100 epochs, setting aside 20% of the data
for validation (selecting the best model). Input images are normalized with their
median value inside the brain mask. At test time, nonlinear models are fitted on
the residual of the Affine-RANSAC fit, clipped at 10mm to minimize the impact
of the worst outliers. The RANSAC algorithm uses 50,000 randomly selected
voxels, a maximum of 100 iterations, tests 500 voxels in every attempt, and
requires 20% of voxels to be inliers to consider any given solution. The minimum
number of voxels per supervoxel in the log-polyaffine model is 100.

3 Experiments and Results

The training data consists of high-resolution, isotropic, T1-weighted scans of 897
subjects from the HCP dataset [36] and 1148 subjects from the ADNI [24]. The
test data consists of high-resolution, isotropic, T1 of the first 100 subjects from
both the ABIDE [I1] and OASIS3 [27] datasets, for a total of 200 test subjects.
All scans were segmented into 36 regions using FreeSurfer [12]. Details on the
acquisitions can be found in the corresponding publications.

3.1 Data preparation for RbR training

The scans in the training dataset were masked and registered to the ICBM 2009b
Nonlinear Symmetric MNI template using NiftyReg [29]. Specifically, we first
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Fig. 2. Coronal slice of sample fixed image and corresponding registered MNT slice,
using the different approaches.

ran the block matching algorithm for affine registration (reg_aladin) with the
-noSym option, and subsequently used the fast free-form deformation algorithm
(£3d) to compute the nonlinear registration. £3d was run in diffeomorphic mode
(-vel) and local normalized correlation coefficient (¢ = 5) as similarity metric.
The processing time for the whole dataset was less than 24h on a 64-core desktop.

3.2 Experimental setup

We quantify registration accuracy with average Dice scores between the seg-
mentations of the scans and the segmentation of the atlas, deformed with the
estimated registrations. We further evaluate the regularity of the deformations
using the membrane energy. Using these metrics, we compared RbR with:

NiftyReg: We use the same parameters as for the training data, Since we used
it as ground truth in training, NiftyReg provides a ceiling for the performance
that RbR can achieve.

KeyMorph [37]: Our main competing method is KeyMorph. We test Key-
Morph variants as trained by the original authors (2024-03-06 version). For affine
registration, we use 128 keypoints with weights optimized for affine Dice overlap.
To estimate non-linear transforms, we use the TPS model with 512 keypoints,
Dice-specific weights, and Arpg = 0 (which yields the highest Dice in their arti-
cle). We intensity normalize and skull-strip scans as in the original publication.

SynthMorph [14]: for completeness, we also consider a non-interpretable state-
of-the-art algorithm trained to maximize segmentation overlap (Dice scores) with
synthetic images. SynthMorph has an affine model based on keypoints [15] and
a nonlinear model based on regression [16]. We finetuned SynthMorph with the
MNT atlas permanently selected as moving image, and evaluated its affine and
nonlinear modules separately. We used its default trade-off parameter A\ = 0.5.
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Fig. 3. Left: Average Dice between segmentations of scans and registered MNI. For
RbR, the numbers indicate control point spacing (Bsplines), Gaussian o (demons), or
supervoxel width (log-polyaffine). Right: membrane energy for nonlinear models.

3.3 Results

Figure[2]shows qualitative results for the different methods, while Figure [3|shows
box plots for the average Dice and membrane energy. KeyMorph with TPS yields
an average Dice of 0.60, which is 7 points lower than the value reported in the
original publication. This could be a domain gap issue — including both the test
datasets and the MNI atlas, which is blurrier than a regular scan. Errors are
apparent in Figure 2] where KeyMorph fails to correct the rotation about the
A-P axis in linear mode and introduces wrong deformations in nonlinear mode.

Compared with KeyMorph, RbR does not require skull-stripping and yields
better Dice, with medians of ~0.70 (affine) and ~0.73 (nonlinear) — higher than
Keymorph’s ~0.60 on our dataset or even the value reported in their publication
(~0.67). While the improvement from linear to nonlinear models in RbR may
not be large in terms of median, it is very noticeable in terms of the first quartile
and outliers. In Figure [2] the difference between the nonlinear versions is subtle,
but noticeable e.g., around the third ventricle (less aggressively “closed” by the
Bspline model). The ability to more accurately follow contours is paid in terms
of membrane energy, which is noticeably higher for the more flexible models.

Finally, we note that, while RbR-affine and Synthmorph-affine (both based
on keypoints) achieve the same Dice as NiftyReg in the affine model, keypoint
methods still trail non-interpretable approaches (classical and learning-based) in
nonlinear registration: NiftyReg and SynthMorph achieve Dice scores 10 points
higher than RbR and ~20 points higher than KeyMorph in this setting — and
SynthMorph does so with similar levels of membrane energy.



3.4 Discussion and conclusion

RbR offers a new perspective on interpretable keypoint-based registration, pos-
ing it as a coordinate regression problem. Allowing every voxel to inform the
model fit enables RbR to outperform standard keypoint approaches and fit less
parsimonious nonlinear models. RbR also has disadvantages, particularly the
need to retrain the model for each new atlas. Future work will include fitting
other models, adding topological losses in training (e.g., penalizing negative Ja-
cobians), investigating RbR’s value as a feature extractor (i.e., as pretraining for
other tasks), and exploring other improvements that help close the gap with non-
interpretable approaches. We believe that RbR will be particularly valuable in
scenarios requiring robust and interpretable registration, such as fetal imaging.
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