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ABSTRACT

Transportation matrices are m × n non-negative matrices whose row sums and row columns are
equal to, or dominated above with given integral vectors R and C. Those matrices belong to a
convex polytope whose extreme points have been previously characterized. In this article, a more
general set of non-negative transportation matrices is considered, whose row sums are bounded by
two integral non-negative vectors Rmin and Rmax and column sums are bounded by two integral
non-negative vectors Cmin and Cmax. It is shown that this set is also a convex polytope whose
extreme points are then fully characterized.

Keywords transportation polytopes · assignment problems · stochastic matrices

1 Introduction

Imagine that there are n agents that are assigned to perform m tasks, and assume that each agent can perform an
integer number of tasks and each task can only be assigned to an integer number of agents. A manager in charge of
the assignment agent / task will consider the “cost” of assigning each agent to each task and will design an “optimal
assignment”, namely an assignment that leads to a minimal overall cost. Finding a solution to this seemingly simple
practical problem has led to the development of a gem in the mathematics and statistics communities, namely the
optimal transport (OT) problem.

A mathematical formulation of the problem is to consider two sets of points S1 of size n (the agents) and S2 of size m
(the tasks). Each point k in S1 (resp S2) is assigned a “mass” m1(k), the amount of tasks it can perform (resp m2(k),
the number of agents needed to perform this task). The cost of an assignment between S1 and S2 is encoded as a
non-negative matrix T = [T (i, j)] with i ∈ {1 . . . , n} and j ∈ {1 . . . ,m}. The OT problem can then be formulated
as finding a matrix G of correspondence between points in S1 and points in S2 that minimizes the total transport cost
U defined as

U(G) =

n
∑

i=1

m
∑

j=1

T (i, j)G(i, j).

The minimum of U is to be found for the values of G(i, j) that satisfy the following constraints

∀(i, j), G(i, j) ≥ 0, (1a)

∀i,
∑

j

G(i, j) = m1(i), (1b)

∀j,
∑

i

G(i, j) = m2(j). (1c)

What makes the OT problem so interesting is that its solution includes two essential components. First, it defines a
distance between the distributions considered (m1 and m2). These distances have enabled statisticians and mathe-
maticians to derive a geometric structure on the space of probability distributions (Villani [2008], Peyré and Cuturi
[2018]). Second, it also provides the optimal transportation plan G between the distributions; this optimal plan defines
a registration, thereby enabling alignment between the distributions. Applications of OT have exploded in the recent
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years, in domains such as applied mathematics, machine learning, computer vision, and linguistics (see Villani [2008],
Cotar et al. [2013], Santambrogio [2015], Peyré and Cuturi [2018], among others).

The formulation defined above corresponds to the Monge-Kantorovich version of the optimal transport problem
(Kantorovich [1942], Villani [2008]). A simplified version of the OT problem is to set the masses to 1 (i.e. each
agent can only perform one task and each task is performed by one agent) and to assume balance (same number of
agents and tasks). The transportation matrixA then becomes integral (its values are integers) and satisfies the following
constraints:

∀(i, j), A(i, j) ∈ {0, 1}, (2a)

∀i,
∑

j

A(i, j) = 1, (2b)

∀j,
∑

i

A(i, j) = 1. (2c)

This simplified problem that has its root in Monge’s original transport problem Monge [1781] is itself a classical
problem in combinatorial optimization referred to as the assignment problem or alternatively, using the language of
graph theory, as the bipartite weighted matching problem (for a comprehensive analysis of assignment problems, see
for example Burkard et al. [2009]).

Our focus in this paper is on the structures of the set of matrices that either satisfy the constraints 1 or 2. Those
sets of matrices belong to so-called transportation polytopes that have been studied extensively in the literature (see
for example, Birkhoff [1946], Brualdi and Gibson [1976], Brualdi [1980], Muchlis [1992], Gill and Linusson [2009],
Ziegler [2012], De Loera and Kim [2013], Cao and Chen [2019], Chen et al. [2021]). In the special case n = m and
m1(i) = m2(j) = 1 ∀(i, j), the matrices G are doubly stochastic. The set of all those matrices form a convex
polytope Ωn. Under the same conditions, the set of matrices A is the set of permutations Pn. The set Pn is the set of
extreme points of Ωn; as such, any matrix G in Ωn can be expressed as a linear combination of permutation matrices
in Pn:

Theorem 1. (Birkhoff [1946], Von Neumann [1953]) An n × n matrix G is doubly stochastic if and only if there
is a finite set of permutations matrices P1, . . . , PN and corresponding non-negative real numbers α1, . . . , αN with
α1 + . . .+ αN = 1 such that A = α1P1 + . . .+ αNPN .

There are many proofs available for this theorem, referred to as the Birkhoff - von Neumann theorem; we only refer
here to the original proofs Birkhoff [1946], Von Neumann [1953]. This theorem has proved useful to establish con-
vergence for algorithms developed to solve the assignment problem (see for example Kosowsky and Yuille [1994],
Koehl and Orland [2021].

The equations 2 refer to a very specific balanced assignment problem. There are, however many more types of
assignment problems, usually referred to as unbalanced problems. They consider a number of agents that differ from
the number of tasks (using the example and terminology from above). The most common formulation assigns a
single agent to one task, leaving some agents and/or some task unmatched. It is referred to in the literature as the k-
cardinality assignment problem (Dell’Amico and Martello [1997]). Some other formulations allow for multiple jobs to
be assigned to the same agent to compensate for the imbalance (when the number of tasks is bigger than the number of
agents), with possibly additional constraints such as each agent is allocated at least one task. Transportation matrices
for such problems belong to a more general class of transportation polytopes than the doubly stochastic matrices and
doubly substochastic matrices. In this paper, we propose to characterize those transportation polytopes.

We define these more general assignment problems as follows. The cost of transport between S1 and S2 is still encoded
as a non-negative matrix T = [T (i, j)] with i ∈ {1 . . . , n} and j ∈ {1 . . . ,m}. The general assignment problem is
formulated as finding a matrix G of correspondence between points in S1 and points in S2 that minimizes the total
transport cost U =

∑n

i=1

∑m

j=1
T (i, j)G(i, j) whose values G(i, j) satisfy the following constraints

∀(i, j), G(i, j) ∈ {0, 1}, (3a)

∀i, ri ≤
∑

j

G(i, j) ≤ Ri, (3b)

∀j, cj ≤
∑

i

G(i, j) ≤ Cj , (3c)

where ri and Ri are given positive integers satisfying 0 ≤ ri ≤ Rj and similarly cj and Cj are given positive integers
satisfying 0 ≤ cj ≤ Cj . A relaxed version of these constraints is to replace equation 3a with 0 ≤ G(i, j) ≤ 1, i.e.
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allowing G(i, j) to be fractional. Finally, a possible additional constraint is to preset the total number of assignments

between S1 and S2 to a given integer value k, i.e.

n
∑

i=1

m
∑

j=1

G(i, j) = k. Possible solutions of the relaxed general

assignment problem belong to sets of matrices that are defined below.

Definition 1. Let Rmin = (r(1), . . . , r(n)), Rmax = (R(1), . . . , R(n)), Cmin = (c(1), . . . , c(m)), and Cmax =
(C(1), . . . , C(m)) be four non-negative integral vectors satisfying

∀i, 0 ≤ r(i) ≤ R(i),

∀j, 0 ≤ c(j) ≤ C(j).

Let A be a non-negative matrix of size n×m and let us denote the row sum vector of A as RA and the column sum
vector of A as CA. Let us also define σ(A) to be the sum of all elements of A, i.e. σ(A) =

∑n

i=1

∑m

j=1
A(i, j). The

transportation polytope U(Rmax
min , C

max
min ) is the set of n×m matrices A that satisfy

∀(i, j), 0 ≤ A(i, j) ≤ 1,

∀i, r(i) ≤ RA(i) ≤ R(i),

∀j, c(j) ≤ CA(j) ≤ C(j).

The transportation polytope Uk(Rmax
min , C

max
min ) is the set of n×m matrices A that satisfy

Uk(Rmax
min , C

max
min ) = {A ∈ U(Rmax

min , C
max
min )| σ(A) = k} .

Denote P(Rmax
min , C

max
min ) the set of all matrices in U(Rmax

min , C
max
min ) whose entries are either 0 or 1 with a similar

definition for Pk(Rmax
min , C

max
min ) with respect to Uk(Rmax

min , C
max
min ). We now state our main result.

Theorem 2. The transportation polytopes U(Rmax
min , C

max
min ) and Uk(Rmax

min , C
max
min ) satisfy the following properties:

a) U(Rmax
min , C

max
min ) is the convex hull of all matrices in P(Rmax

min , C
max
min ),

b) Uk(Rmax
min , C

max
min ) is the convex hull of all matrices in Pk(Rmax

min , C
max
min ).

Remarks:

i) If Rmin = Rmax = 1n, Cmin = Cmax = 1m (where 1n and 1m are vectors of one of size n and m,
respectively), n = m = k, Uk(Rmax

min , C
max
min ) = Ωn and Pk(Rmax

min , C
max
min ) = Pn and theorem 2 is then

equivalent to the Birkhoff-Von Neuman theorem for doubly stochastic matrices, theorem 1.

ii) If Rmin = 0n, Cmin = 0m, Rmax = 1n, Cmax = 1m, U(Rmax
min , C

max
min ) is the set of doubly substochas-

tic matrices, P(Rmax
min , C

max
min ) is the set of subpermutation matrices; a specific version of theorem 2 was

established (see for example Mirsky [1959], Čihák [1970]).

iii) Similar to case ii), if Rmin = 0n, Cmin = 0m, Rmax = 1n, Cmax = 1m, Uk(Rmax
min , C

max
min ) is the set of

doubly substochastic matrices with total sum k, and P(Rmax
min , C

max
min ) is the set of subpermutation matrices

of rank k; a specific version of theorem 2 was established by Mendelsohn and Dulmage for square matrices
(Mendelsohn and Dulmage [1958]), and later by Brualdi and Lee for rectangular matrices (Brualdi and Lee
[1978]).

2 A simple proof of Birkhoff - von Neumann theorem

As mentioned above, there are many proofs available for the Birkhoff - von Neumann theorem, some of which belong
now to textbooks. Here we describe a simple proof. It is not original, but will serve as the basis for elements of the
proof of theorem 2.

First, we note that it is straightforward to show that Ωn is a non-empty compact convex set in R
n×m and that any

matrix in Pn is an extreme point of Ωn. Since any non-empty compact convex set is the convex hull of its extreme
points, to finish the proof, we only need to show that any matrix A ∈ Ωn r Pn is not an extreme point of Ωn.

We prove first the following claim.

Claim 1. Let A ∈ Ωn. If a row or column of A contains a fractional value, then it contains at least two.

3
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Proof. Let A(i, j) be a fractional value of A. Since

∑

k

A(i, k) = 1,

there exists j2 ∈ [1, n]r {j} such that A(i, j2) is fractional. Similarly, since

∑

k

A(k, j) = 1,

there exists i2 ∈ [1, n]r {i} such that A(i2, j) is fractional.

Let now A be a matrix in Ωn r Pn. There exists a pair (i1, j1) such that A(i1, j1) is fractional. Based on claim 1,
there exists j2 ∈ [1, n] with j2 6= j1 such that A(i1, j2) is non integral. Similarly, we can find i2 ∈ [1, n] with i2 6= i1
such that A(i2, j2) is fractional. We can continue in this manner, leading to a path ((i1, j1), (i1j2), . . .) with fractional
values in A. As n and m are finite, we will ultimately reach a pair that we have already visited. This means that we
have identified a loop L among all edges between S1 and S2; the cardinality of this cycle is even (bipartite graph). We
write this cycle as

L = {(a1, b1), (a2, b2), . . . , (a2M , b2M )},

where 2M = |L|. We define the matrix N






N(i, j) = 0 (i, j) /∈ C

N(a2k, b2k) = 1 k ∈ {1, . . . ,M}

N(a2k−1, b2k−1) = −1 k ∈ {1, . . . ,M}.

Let us now define

ǫmax = min{A(a1, b1), . . . , A(a2M , b2M ), 1 −A(a1, b1), . . . , 1−A(a2M , b2M )}.

As all elements in the loop L are fractional, 0 < ǫmax < 1. For ǫ ∈ (0, ǫmax], we define E1 = A + ǫN and
E2 = A − ǫN . As two consecutive pairs in L lead to the addition and subtraction of the same quantity ǫ on one
row or one column of A, it is easy to verify that E1 and E2 are doubly stochastic and therefore belong to Ωn. Since
A = 1

2
(E1 + E2), A is not an extreme point of Ωn.

3 The polytopes U(R,C) and Uk(R,C)

Let us start with the simple case for which Rmin = Rmax = R and Cmin = Cmax = C. We rewrite U(Rmax
min , C

max
min )

and Uk(Rmax
min , C

max
min ) as simply U(R,C) and Uk(R,C). Those polytopes have been studied extensively (see

for example Jurkat and Ryser [1967], Brualdi [1980], Rothblum and Schneider [1989], Brualdi and Hwang [2005],
daFonseca and Mamede [2009], Brualdi [2006], Cavenagh [2013], Chen et al. [2016]). We prove first the following
lemma.

Lemma 1. The polytope U(R,C) is non-empty if and only if
∑n

i=1
R(i) =

∑m

j=1
C(j). In addition, Uk(R,C) is non

empty if and only if k =
∑n

i=1
R(i), in which case Uk(R,C) = U(R,C).

Proof. Let A be a matrix in U(R,C). Then,

σ(A) =

n
∑

i=1

m
∑

j=1

A(i, j) =

n
∑

i=1





m
∑

j=1

A(i, j)



 =

n
∑

i=1

R(i)

=

m
∑

j=1

(

n
∑

i=1

A(i, j)

)

=

m
∑

j=1

C(j).

Therefore,
∑n

i=1
R(i) =

∑m

j=1
C(j). Conversely, if S =

∑n

i=1
R(i) =

∑m

j=1
C(j), it is straightforward to build a

matrix A that belongs to U(R,C) (for example A = 1

S
RCT ).

Let A be a matrix in Uk(R,C). By definition, k = σ(A). Since Uk(R,C) ⊂ U(R,C), we get k =
∑n

i=1
R(i). In

addition, let A be a matrix in U(R,C). Then σ(A) =
∑n

i=1
R(i) = k, therefore A ∈ Uk(R,C).

4
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In the case considered here, theorem 2 is reduced to the following lemma:

Lemma 2. The transportation polytopes U(R,C) and Uk(R,C) satisfy the following properties:

a) U(R,C) is the convex hull of all matrices in P(R,C),

b) Uk(R,C) is the convex hull of all matrices in Pk(R,C).

The proof of property a) of lemma 2 is similar to the simple proof provided above for the Birkhoff - von Neumann
theorem, once we replace claim 1 with the following claim:

Claim 2. Let A ∈ U(R,C). If a row or column of A contains a fractional value, then it contains at least two.

Proof. Let A(i, j) be a fractional value of A. Since

∑

k

A(i, k) = R(i)

and R(i) is a non-negative integer, necessarily R(i) 6= 0 and there exists j2 ∈ [1, n] r {j} such that A(i, j2) is
fractional. Similarly, since

∑

k

A(k, j) = C(j)

and C(j) is a non-negative integer, necessarily C(j) 6= 0 there exists i2 ∈ [1, n]r {i} such that A(i2, j) is fractional.

The proof of part b) requires in addition that the matrices E1 and E2 built from the matrix A in Uk(R,C) also belong

to Uk(R,C). This is a direct consequence of the fact that the loop identified in the matrix A has en even number of
elements. As such the matrix N defined in equation 4 satisfies σ(N) = 0, and therefore σ(E1) = σ(E2) = σ(A) = k,

i.e. E1 and E2 belong to Uk(R,C).

4 The polytope U(Rmax

min
, Cmax

min
)

We start with the following lemma:

Lemma 3. U(Rmax
min , C

max
min ) is convex.

Proof. The proof of lemma 3 is relatively straightforward. We provide it here for sake of completeness. Let A and B
be two matrices belonging to U(Rmax

min , C
max
min ), α a real number in [0, 1], and E = αA+ (1− α)B. We have:

E(i, j) = αA(i, j) + (1− α)B(i, j).

As both A(i, j) and B(i, j) belong to [0, 1] and [0, 1] is convex, E(i, j) ∈ [0, 1]. Also, for i ∈ [1, n],

m
∑

j=1

E(i, j) = α
m
∑

j=1

A(i, j) + (1− α)
n
∑

j=1

B(i, j).

As
∑m

j=1
A(i, j) and

∑m

j=1
B(i, j) belong to [r(i), R(i)] and this interval is convex,

∑n

j=1
E(i, j) ∈ [r(i), R(i)].

This is true for all i ∈ [1, n].

Similarly,

n
∑

i=1

E(i, j) = α
n
∑

i=1

A(i, j) + (1− α)
n
∑

1=1

B(i, j).

As
∑n

i=1
A(i, j) and

∑n

i=1
B(i, j) belong to [c(j), C(j)] and this interval is convex,

∑n

i=1
E(i, j) ∈ [c(j), C(j)].

This is true for all j ∈ [1,m].

Therefore, αA+ (1− α)B belongs to U(Rmax
min , C

max
min ) and this set is convex.

Lemma 4. If A belongs to P(Rmax
min , C

max
min ), then A is an extreme point of U(Rmax

min , C
max
min ).

5
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Proof. Again, the proof of lemma 4 is relatively straightforward. We provide it here for sake of completeness. Let A
be a matrix of P(Rmax

min , C
max
min ) and let us suppose that A = 1

2
(E + F ) where E and F are two distinct matrices in

U(Rmax
min , C

max
min ).

For any entry A(i, j) = 0, we have:

1

2
(E(i, j) + F (i, j)) = 0.

Since E(i, j) ≥ 0 and F (i, j) ≥ 0, we have E(i, j) = F (i, j) = 0.

For any entry A(i, j) = 1, we have:

1

2
(E(i, j) + F (i, j)) = 1,

i.e.,

E(i, j) + F (i, j) = 2.

Since 0 ≤ E(i, j) ≤ 1 and 0 ≤ F (i, j) ≤ 1, we have E(i, j) = F (i, j) = 1.

Therefore, A = E = F , which is in contradiction with the hypothesis that E and F are distinct. Therefore, A
is not the midpoint of a line segment whose endpoints are in U(Rmax

min , C
max
min ), and so A is an extreme point of

U(Rmax
min , C

max
min ).

Finally, we prove the following lemma:

Lemma 5. If a matrix A is an extreme point of U(Rmax
min , C

max
min ) then it belongs to P(Rmax

min , C
max
min ).

Proof. We use a proof by contrapositive, loosely inspired by the proof in Deng [2019] for doubly substochastic matri-
ces. Let A be a matrix in U(Rmax

min , C
max
min ).

We start with some definitions. An entry in A being neither 0 nor 1 is called a fractional entry, and a row (resp.
column) containing at least one fractional entry is called a fractional row (resp. column). A fractional line is either a
fractional row or a fractional column.

As A ∈ U(Rmax
min , C

max
min )r P(Rmax

min , C
max
min ), it has at least one fractional entry and therefore one fractional line. We

consider two cases.

Case 1) All fractional lines include at least two fractional values.

The proof is then very similar to the simple proof provided above for the Birkhoff - von Neumann theorem,
with no need for claim 1. This means that we can find a loop L within A whose cardinality is even (bipartite
graph). As before, we write this cycle as

L = {(a1, b1), (a2, b2), . . . , (a2M , b2M )},

where 2M = |L|. We then define the matrix N






N(i, j) = 0 (i, j) /∈ C

N(a2k, b2k) = 1 k ∈ {1, . . . ,M}

N(a2k−1, b2k−1) = −1 k ∈ {1, . . . ,M}.

We also define

ǫmax = min{A(a1, b1), . . . , A(a2M , b2M ), 1−A(a1, b1), . . . , 1−A(a2M , b2M )}.

As all elements in the loop L are fractional, 0 < ǫmax < 1. For ǫ ∈ (0, ǫmax], we define E1 = A+ ǫN and
E2 = A− ǫN . As two consecutive pairs in L leads to the addition and subtraction of the same quantity ǫ on
one row or one column, it is easy to verify that the row sums and column sums of E1 and E2 are equal to the
row sums and row columns A, and therefore E1 and E2 belong to U(Rmax

min , C
max
min ). Since A = 1

2
(E1 +E2),

A is not an extreme point of U(Rmax
min , C

max
min ).

Case 2) There exists at least one fractional line that includes a single fractional value.

Let us assume that one such fractional line is a column j1 (the proof would be the same if it were a row) and
let A(i1, j1) be the only fractional value on j1. If row i1 only contains one fractional value, we terminate.

6
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Otherwise i1 includes at least two fractional values and therefore we can find j2 6= j1 such that A(i1, j2) is
fractional. We continue in this manner, until either (a) we have reached a pair that we have already visited, or
(b) we have reached a line that only contains one fractional value. If we are in case (a), we have identified a
loop of fractional values whose cardinality is even and the proof is then similar to Case 1. If we are in case
(b), we have identified an incomplete loop, i.e. a cycle. If the cycle ends because the following column had
a single fractional entry, the cardinality of the cycle is even, and we can again follow exactly the proof from
Case 1. Otherwise, the cycle has an odd number of elements; we write it as

C = {(i1, j1), (i2, j2), . . . , (i2K−1, j2K−1)},

where 2K − 1 = |C|. We define the matrix N as:







N(i, j) = 0 (i, j) /∈ C

N(i2k, j2k) = 1 k ∈ {1, . . . ,K − 1}

N(i2k−1, j2k−1) = −1 k ∈ {1, . . . ,K}.

Let ǫmax = min{A(i1, j1), . . . , A(i2K−1, j2K−1), 1 − A(i1, j1), . . . , 1 − A(i2K−1, j2K−1)}. Since all the
values A(i, j) when (i, j) ∈ C are fractional, 0 < ǫmax < 1.

Let us define E1(ǫ) = A + ǫN and E2(ǫ) = A − ǫN . If 0 < ǫ < ǫmax, all values in E1(ǫ) and E2(ǫ) are
in the interval [0, 1]. In addition, by construction, any line sum of E1(ǫ) and E2(ǫ) is equal to the sum of the
same line of A, with the exception of column j1 and row i2K−1 . Those two lines, however, include a single
fractional value. As such, the column sum CA(j1) and the row sum RA(i2K−1) in A are fractional. Since
the bounds on those row / column are integer values,

r(i2K−1) < RA(i2K−1) < R(i2K−1),

c(j1) < CA(j1) < C(j1),

and it is possible to modify the values of A(i1, j1) and A(i2K−1, j2K−1) without compromising the
constraints on the corresponding column and row, respectively. Let us define ǫ2 = min{CA(j1) −
c(j1), RA(i2K−1) − r(i2K−1), C(j1) − CA(j1), R(i2K−1) − RA(i2K−1)}; note the ǫ2 is strictly frac-
tional, i.e. 0 < ǫ2 < 1. If we set ǫ such that 0 < ǫ < min(ǫmax, ǫ2), then E1(ǫ) and E2(ǫ) belong to
U(Rmax

min , C
max
min ). Since A = 1

2
(E1(ǫ) + E2(ǫ)), A is not an extreme point of U(Rmax

min , C
max
min ).

Note that there are no other cases, as any such case would imply that the matrix A does not contain any fractional line,
and therefore would belong to P(Rmax

min , C
max
min ). This concludes the proof of lemma 5.

The proof of theorem 2 a) is then directly the consequence of lemma 3, 4, and 5.

5 The polytope Uk(Rmax

min
, Cmax

min
)

The set of matrices Uk(Rmax
min , C

max
min ) is the subset of the polytope U(Rmax

min , C
max
min ), whose members A satisfy the

additional constraint that the total sum of their elements, σ(A) is set to a given positive integer value k. Note that

this set is non empty only if 0 < k ≤
∑n

i=1
R(i) and k ≤

∑n

j=1
C(j). Here we show that Uk(Rmax

min , C
max
min ) forms

a convex polytope whose extreme values are the matrices in Pk(Rmax
min , C

max
min ) using the same strategy we used for

U(Rmax
min , C

max
min ).

Lemma 6. Uk(Rmax
min , C

max
min ) is convex.

Proof. The proof is straight forward. Briefly, let A and B be two matrices belonging to Uk(Rmax
min , C

max
min ), α a real

number in [0, 1], and E = αA+ (1− α)B. To prove that E ∈ Uk(Rmax
min , C

max
min ), we need to show that:

1) E(i, j) ∈ [0, 1]: this comes from the convexity of [0, 1] (see proof of lemma 3).

2) r(i) ≤
∑m

j=1
E(i, j) ≤ R(i) for all i ∈ [1, n]: this comes from the convexity of [r(i), R(i)] (see proof of

lemma 3).

3) c(j) ≤
∑n

i=1
E(i, j) ≤ C(j) for all j ∈ [1,m]: this comes from the convexity of [c(j), C(j)] (see proof of

lemma 3).

4) σ(E) =
∑n

i=1

∑m

j=1
E(i, j) = k: this comes from the linearity of the operator σ.

7
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Lemma 7. If A belongs to Pk(Rmax
min , C

max
min ), then A is an extreme point of Uk(Rmax

min , C
max
min ).

Proof. Again, the proof of lemma 7 is straightforward and identical to the proof of lemma 4.

Finally, we prove:

Lemma 8. If a matrix A is an extreme point of Uk(Rmax
min , C

max
min ) then it belongs to Pk(Rmax

min , C
max
min ).

Proof. We use a proof by contrapositive with similar ideas as those used for the equivalent proof for lemma 5. Let
A ∈ Uk(Rmax

min , C
max
min )r Pk(Rmax

min , C
max
min ). As such, it has at least one fractional entry and therefore one fractional

line. We consider two cases.

Case 1) All fractional lines include at least two fractional values. The proof is then equivalent to the proof of Case 1
for lemma 5.

Case 2) There exists at least one fractional line that includes a single fractional value.

Let us assume that one such fractional line is a column j1 (the proof would be the same if it were a row) and
let A(i1, j1) be the only fractional value on j1. Just like in Case 2 of lemma 5, we proceed from this value to
generate a cycle of fractional values. If the cardinality of this cycle is even, we are done. A problem arises,
however, if the cardinality of the cycle is odd:

C = {(i1, j1), (i2, j2), . . . , (i2K−1, j2K−1)},

where 2K − 1 = |C|. We could still define the matrix N as:







N(i, j) = 0 (i, j) /∈ C

N(i2k, j2k) = 1 k ∈ {1, . . . ,K − 1}

N(i2k−1, j2k−1) = −1 k ∈ {1, . . . ,K}.

However, if we define E1(ǫ) = A + ǫN and E2(ǫ) = A − ǫN , even with an ǫ small enough, we have

σ(E1(ǫ)) = σ(A) − ǫ and σ(E2(ǫ)) = σ(A) + ǫ, i.e. E1(ǫ) and E2(ǫ) do not belong to Uk(Rmax
min , C

max
min ).

To address this issue, let us first define that a row i (resp. a column j) is mutable if and only if r(i) <
RA(i) < R(i) (resp. c(j) < CA(j) < C(j)) where RA(i) is the sum of the elements of row i and CA(j)
is the sum of the elements of column j. In other word, a row or column is mutable if it is possible to add
or remove a well chosen small non-zero value to one of its elements without violating the constraints on its
sum. For example, the column j1 of A defined above is mutable: it contains a single fractional value, hence
CA(j1) is fractional and therefore satisfies the definition of mutable. We now make the following claim:

Claim 3. If the matrix A contains one mutable column, then it contains at least 2 mutable columns.

Proof. Let l be a mutable column of A. if all other columns j of A were non mutable, then their column
sums CA(j) would all be integer values, and σ(A) = CA(l) +

∑m

j=1,j 6=l CA(j) would then be fractional,

which is a contradiction with the fact that σ(A) = k. Therefore, there exists a least another column of A that
is mutable.

Based on claim 3, as j1 is mutable, there exists another column j2 6= j1 that is mutable. We consider then
two cases:

a) The cycle C include j2.

We truncate the cycle to the first vertex that belongs to the column j2. This truncated cycle, C′, includes
an even number of vertices. We can then conclude as in Case 1 by considering this cycle.

b) The cycle C does not include j2.

Let A(i2, j2) be a fractional value on j2. We build a second cycle D in A starting from this value. If the
cardinality of this cycle is even, we can follow exactly the proof from Case 1. Otherwise, the cycle has
an odd number of elements; we write it as

D = {(i′
1
, j′

1
), (i′

2
, j′

2
), . . . , (i′

2M−1
, j′

2M−1
)},

8
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where 2M − 1 = |D|. We define the matrix N ′ as:







N ′(i, j) = 0 (i, j) /∈ C

N ′(i2k, j2k) = −1 k ∈ {1, . . . ,M − 1}

N ′(i2k−1, j2k−1) = 1 k ∈ {1, . . . ,M}.

For ǫ small enough (i.e. smaller than the characteristic ǫ for the two cycles), we define E1(ǫ) = A +
ǫN + ǫN ′ and E2(ǫ) = A− ǫN − ǫN ′ where the matrix N was previously defined in equation 4. With
the right choice of ǫ, All values in E1(ǫ) and E2(ǫ) are in the interval [0, 1]. In addition, by construction,
any row/column sum of E1(ǫ) and E1(ǫ) are equal to to that of A, with the exception of columns j1, j′

1

and rows i2K−1, , and i′
2M−1

. Those four lines, however, are mutable: as j1, i2K−1, and i′
2M−1

contain

a single fractional value, there are mutable, and j′
1
= j2 was chosen as it is mutable. The constraints on

the sums of all rows and columns of E1(ǫ) and E2(ǫ) are therefore satisfied. In addition,

σ(E1(ǫ)) = σ(A) + ǫσN + ǫσ(N ′)

= k + ǫ(1× (K − 1) + (−1)×K) + ǫ(−1× (M − 1) + 1×M)

= k − ǫ + ǫ = k,

σ(E2(ǫ)) = σ(A) − ǫσN − ǫσ(N ′)

= k − ǫ(1× (K − 1) + (−1)×K)− ǫ(−1× (M − 1) + 1×M)

= k + ǫ − ǫ = k.

Therefore, E1(ǫ) and E2(ǫ) belong to Uk(Rmax
min , C

max
min . Since A = 1

2
(E1(ǫ) + E2(ǫ)), A is not an

extreme point of Uk(Rmax
min , C

max
min ).

This concludes the proof of lemma 8.

The proof of theorem 2 b) is then just the consequence of lemma 6, 7, and 8.
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