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Abstract—
While load balancing in distributed-memory computing has

been well-studied, we present an innovative approach to this
problem: a unified, reduced-order model that combines three key
components to describe “work” in a distributed system: com-
putation, communication, and memory. Our model enables an
optimizer to explore complex tradeoffs in task placement, such as
increased parallelism at the expense of data replication, which in-
creases memory usage. We propose a fully distributed, heuristic-
based load balancing optimization algorithm, and demonstrate
that it quickly finds close-to-optimal solutions. We formalize the
complex optimization problem as a mixed-integer linear program,
and compare it to our strategy. Finally, we show that when
applied to an electromagnetics code, our approach obtains up
to 2.3x speedups for the imbalanced execution.

Index Terms—asynchronous many-task (AMT), distributed al-
gorithm, dynamic load balancing, exascale computing, machine-
learning, modeling, overdecomposition, task-based programming

I. INTRODUCTION

As Moore’s law has arguably ended and the exascale era

emerges, scientific applications are expected to run at larger

scales to decrease time-to-solution. However, distributed-

memory architectures have become more challenging to pro-

gram efficiently. Achieving optimal performance often requires

careful coordination and mapping of data along with compu-

tational work to the available hardware resources. Developers

are often forced to make difficult decisions in trading off

parallelism for communication, data replication, and memory

use that may not be portable across different platforms. Task-

based programming models have emerged as a possible so-

lution, especially for irregular computational structures where

manual work partitioning is particularly challenging. Instead

of decomposing a problem to a fixed number of MPI ranks at

startup, the programmer exposes concurrency to a middleware

runtime system in the form of migratable tasks that can execute

on different and possibly heterogeneous compute nodes.
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Task-based paradigms vary greatly on the level and detail

of information passed to the middleware, and the user is still

often expected to make good decisions in breaking down work

into tasks to get optimal performance. However, for a tasking

model to be performance portable, where each task should

run to get optimal performance (i.e., load balancing) is a key

problem that should be passed to the middleware. For load bal-

ancing to be automated by the middleware, the profile of tasks

must be predictable to some extent, or an online balancing

scheme (e.g., work stealing) must be used. Although making

online schemes locality-aware has been studied (cf. §II), these

approaches still have many limitations in achieving optimal

performance, especially under tight memory constraints.

This article thus makes the fundamental assumption that

task profiles can be predicted by using a cost model. We

use these predictions to propose a novel work model, called

CCM (Computation Communication Memory), to describe the

amount of work that each processor is performing under a

task-to-processor mapping. Its primary contributions include:

• formulating the load balancing problem into a model that

can be used to trade-off communication, processor load,

and data replication under memory constraints;

• a fully distributed load balancing algorithm (called CCM-

LB) that uses the CCM model to redistribute tasks;

• a recasting as a mixed-integer linear program (MILP) of

the CCM optimization problem, to validate that CCM-LB

finds solutions at worst 1.8% slower than optimal ones;

• a machine learning approach for the non-iterative (i.e.,

without repetitive behaviour across iterations) target ap-

plication to predict task durations fed into CCM-LB; and,

• an application of our approach to an electromagnetics

code, demonstrating a 2.3x speedup for the imbalanced

matrix assembly on 128 nodes.

II. RELATED WORK

Load balancing is a well-known and extensively studied

problem. Regularly-structured applications often achieve load

balance through data distribution and careful orchestration of

communication (e.g., multipartitioning [1]). For subclasses of

regularly-structured computations (e.g., affine loops), exten-

sive research has studied the memory and communication

tradeoffs for generating distributed-memory mappings [2], [3].
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This has been extended to broader classes such as tensor com-

putations [4]. Inspector-executor approaches can often apply

to calculations involving sparse matrices [5] or meshes [6]

where computational data and load can be analyzed a priori

at runtime before it starts (e.g., CHAOS [7]). Partitioning

schemes [8], whose parallelization [9]–[11] is non-trivial, are

often applied in this context. However, the data replication

within memory constraints, which graph partitioners typically

do not consider, must be explored for our target application.

Online dynamic load balancing approaches such as Cilk’s

work stealing [12] are widely studied, with provably optimal

space and time bounds for uniform shared-memory machines

on fully-strict parallelism. Such schedulers have been extended

for distributed memory [13], but ignore data locality and mem-

ory limits. Subsequent work in shared-memory has extended

work stealing to be more aware of data locality, such as in

hierarchical place trees [14] and similar approaches [15].

Task mapping has been studied for dataflow runtimes (e.g.,

PaRSEC [16], StarPU [17], Legion [18]), but often requires

the user to generate an efficient mapping. To express an

application with dataflow often requires a complete rewrite

with data use types exposed (which is impractical for many

real applications), and exposes many degrees of freedom to

explore. Recent work [19] has shown that automated mappers

may be feasible but difficult to scale. A MILP-based approach

for mapping tasks to hardware is given by [20], but the

description is terse and it is not immediately clear how the

Boolean constraints are converted into integer ones, which is

necessary if they are to be resolved by a MILP solver.

For iterative applications, scalable persistence-based load

balancers that are hierarchical [21] or distributed [22] may

be applied. However, these strategies often do not consider

communication and lack the ability to consider data replication

and memory constraints.

Various parallel computation models [23] have been pro-

posed to model the costs of executing a parallel program on

hardware, such as PRAM [24] and LogP [25]. These models

are in the same vein as our proposed model, CCM.

A. Background & Challenges

In this article, we devise and build a novel work model com-

bining three elements: (1) computation (time spent executing

a task), (2) communication between tasks, and (3) memory

utilized by tasks (including shared memory). The complex

interplay between these elements creates an combinatorially

large search space for finding the optimal task assignments

across nodes. Furthermore, we propose a scalable algorithm to

efficiently search this space in an incremental manner, so task

assignments can be refined over time. Such a tunable algorithm

should allow users to trade off quality with time complexity,

and thus lower the cost of running the load balancer.

The goal of a load balancer is to minimize the total time an

application spends working. A corollary to this is minimizing

the longest time any rank spends working. Thus, a load

balancer may try to reduce the highest rank load, maxL, to

be as close as possible to the population mean of loads across

all ranks, µL. A simple statistic to assess load imbalance is

IL := maxL/µL − 1, vanishing if and only if all ranks have

the same load, so none of them slow down the rest. However,

while minimizing imbalance is necessary to obtain an optimal

configuration, it is not sufficient if the total amount of work can

vary. For instance, displacing tasks from one rank to another

may result in more overall communication across slower

off-node network edges, thereby increasing total work and

resulting in a longer execution time. Thus, a load balancing

algorithm must rather minimize the total work across all ranks

while also minimizing the maximum work performed on any

rank.

The scalability of an application is further limited by the

scalability of the load balancer itself. For large scales, fully

distributed load balancing schemes show the most promise.

However, the quality of the distributions produced and the

complexity of implementation have traditionally limited their

efficacy in practice. Of particular interest to us have been fully-

distributed epidemic (or gossip) algorithms, that distribute

information across the ranks to be rebalanced, in a manner

similar to that of an infectious disease spreading through

a biological population. This approach has shown promise

in an array of distributed applications, ranging from routing

protocols [26] to database consistency [27]. By building on

original gossip-based work by Menon, et al. [22], we propose

a novel distributed load balancing algorithm that optimizes

task placement to minimize work while operating under strict

memory constraints.

III. DEFINITIONS & MODELS

We start by specifying terminology whose meaning varies

throughout the literature, before introducing new concepts and

mathematical formulations of importance to our approach.

A. Parallel Model

1) Nodes & Ranks: A node is the smallest compute unit

connected to the network. A rank is a distinct process with a

dedicated set of resources (e.g., CPU cores, GPUs) belonging

to a node. The set of all ranks in the computation is denoted R.

2) Phases: This paper focuses on load balancing a phase:

a set of tasks across ranks that are to be executed between

two synchronization points. For some scientific applications,

a phase may be an iteration or timestep that evolves over time.

For others, it may be the entire application’s execution. The

proposed approach assumes that the tasks and communications

are known or at least can be predicted (either by modeling,

persistence, or an inspector-executor approach).

3) Tasks: We define a task as a potentially multi-threaded,

non-preemptable sequence of instructions that has a set of

inputs and outputs, which include communications. Each task

has an associated context in which it executes, consuming

memory, and it may produce outputs that can subsequently

spawn other tasks in other contexts. The set of tasks present

during a phase p is denoted T p and the set of tasks on rank r
during phase p is denoted T pr .



4) Shared memory blocks: These are memory chunks ac-

cessed by multiple tasks, to either read them or perform

commutative and associative update operations on them. A

shared block s has a set of tasks T ps accessing it, and it may

be replicated across ranks to increase parallelism at the cost

of higher communication and memory use. Each task t is thus

associated with a set of shared blocks Spt ; each rank r is

associated with Spr :=∪t∈Tpr S
p
t ; and, Sp:=∪r∈RS

p
r is the set

of all shared blocks. To limit complexity, we assume that each

task accesses at most one shared block, so that Spt is either ∅

or a singleton1.

B. Compute Model

A compute model is an abstraction that predicts the required

time (in s) to complete the computations contained in task t at

phase p, denoted Lp(t). Denoting T pr the set of tasks present

on rank r at phase p, the load of r is readily computed as:

Lp(r) :=
∑

t∈Tpr
Lp(t). (1)

Evidently, it is not necessary to recompute rank loads using (1)

when transferring a task t from a rank r1 to another rank r2;

the following update formulæ can be used instead:

L̃p(r1) = L
p(r1)− L

p(t), L̃p(r2) = L
p(r2) + L

p(t). (2)

C. Communication Model

The set of input and output communications of a task t at

phase p are respectively denoted
←

Cpt and
→

Cpt , and

Cp :=
⋃

r∈R

⋃

t∈Tpr

←

Cpt =
⋃

r∈R

⋃

t∈Tpr

→

Cpt , (3)

thanks to the symmetry between inter-task inputs and outputs.

In other words, the across-rank, across-task union of sent

communications is equal to that of received ones. The volume

of communications sent from task t1 and received by task t2
during phase p (measured in bytes (B)) is denoted Vp(t1, t2).
Inter-task communications are aggregated at the rank level, as

Vp(r1, r2) :=
∑

(t1,t2)∈T
p
r1

×Tpr2
Vp(t1, t2). (4)

In particular, Vp(r) :=Vp(r, r) is the total on-rank commu-

nication volume for r, whose time cost per byte is orders of

magnitude smaller than off-rank time cost per byte, defined

as2:

Vp/∈(r) := max

(
∑

r0∈R\{r}

Vp(r, r0),
∑

r0∈R\{r}

Vp(r0, r)

)
. (5)

1Access to multiple shared blocks does not substantially alter the mathemat-
ical formulation, but impacts the algorithmic treatment presented thereafter.

2Our model assumes that incoming and outgoing communications occur
concurrently, hence we take the maximum between those.

D. Memory Model

Each node has a fixed amount of random-access memory,

and thus the load balancer must prescribe a feasible task

redistribution, so as not to exceed this memory limit. Being

mapped to a certain node, each rank r thus partakes of this

limit, for it has a baseline working memory usage Mp
−(r)

measured at the start of phase p, including base process usage

and application data structures. Moreover, each task t itself has

baseline memory usage Mp
−(t), always used, and overhead

working memory Mp
+(t) during execution3, neither of which

includes memory for any shared blocks it might access. These

task memory components are then assembled at the rank level:

Mp
T (r) :=

∑

t∈Tpr

Mp
−
(t) + max

t∈Tpr
Mp

+(t). (6)

Furthermore, each shared block s has a maximum amount of

working memory it may consume during phase p, denoted

Mp(s). The size of the shared blocks operated on r is

thus Mp
S(r) :=

∑
s∈Spr
Mp(s). The maximum memory usage

combines the baseline, task, and shared memory components:

Mp
max(r) :=M

p
−
(r) +Mp

T (r) +M
p
S(r). (7)

Consequently, if M
∞
(n) is the available memory on a given

node n, i.e., the upper limit on the combined memory usage

for all ranks on n, the following constraint must hold:
∑

r∈n

Mp
max(r) ≤M∞

(n). (8)

To further reduce complexity, we apply the more stringent

per-rank memory condition:

(∀r∈ n) Mp
max(r) ≤M∞

(r) := 1
|{r0∈n}|M∞

(n), (9)

which is evidently sufficient for (8), but not necessary to it.

The home of a shared block that will be read by tasks is the

rank on which it is initialized. For shared blocks that are being

updated, however, the home is uniquely defined as the rank

on which the fully computed shared block will be consumed

in a subsequent phase, which is typically the rank on which

the tasks that update it were initialized. The set of all shared

blocks homed at rank r for phase p is denoted Ŝpr . A shared

block requires extra communication when computed on or read

from any rank other than its home, a cost which in our model

is imputed to the rank with the off-home shared block, as:

Mp
H(r) :=

∑
s∈Spr\Ŝ

p
r
Mp(s). (10)

In a manner similar to what we did for load in (2), we derive

update formulæ for homing costs, when a task t ∈ T pr1 is

transferred from a rank r1 to another rank r2, resulting in

new shared block sets S̃pr1 and S̃pr2 :

Theorem III.1 (Homing communications update formulæ).

M̃p
H(r1) =M

p
H(r1)−

∑
s∈(Spt \S̃

p
r1

)\Ŝpr1
Mp(s), (11)

M̃p
H(r2) =M

p
H(r2) +

∑
s∈(Spt \S

p
r2

)\Ŝpr2
Mp(s). (12)

3The task execution model is non-preemptable; thus, only one task will
ever be executed at once.



Proof. Omitted for brevity, refer to Appendix A.

E. CCM Model

Our proposed CCM model incorporates all components

defined separately above in (1), (4), (5), and (10), and the

memory constraint (9) in the form of a possibly-infinite penal-

ization term, within the following quasi4-affine combination:

Wp(r) := αLp(r) + βVp/∈(r) + γVp(r) + δMp
H(r) + ε, (13)

with the following coefficients:

coefficient unit support description

α ∅ Z2 exclusion/inclusion of (1)

β, γ s/B R+ scales (4) & (5) to time

δ s/B R+ scales (10) to time

ε s {0; +∞} 0 if (9) holds, else +∞

The scaling coefficients β, γ, and δ may be measured empiri-

cally on a per-system basis, or evaluated from first principles.

In order to update the β and γ terms in the work model,

the intra- and inter-rank communication must also be updated.

This is done by finding edges that change from local to remote

when a task is transferred between ranks. For brevity, the

update formulæ are not presented here, but can be derived

from equations (4), and (5).

IV. DISTRIBUTED & CONSTRAINED LOAD BALANCING

We now present our distributed algorithm, CCM-LB, which

iteratively optimizes task placement to reduce overall work as

computed by the CCM model. First, each iteration builds a

distributed peer network for each rank by propagating rank-

local information. Second, ranks can attempt to transfer work

within their known peer set, by evaluating a criterion using

only locally-known information.

Before CCM-LB builds peer networks, we first generate

clusters of tasks (on each rank) that are highly connected

based on the weights of the CCM model. These clusters are

generated based on tasks that communicate heavily or access

the same shared memory block(s). Clusters are important

to consider migrating together as splitting them apart often

increases the amount of work in the system or increases

memory usage (since the same shared block will be accessed

by more ranks as they are split).

A. Augmented Inform Stage

During peer network building, each rank sends its local

information to f (the fanout) randomly selected peer ranks

over a number of asynchronous rounds. When a message is

received, its recipient augments it with its known information

and, if the information round is less than the prescribed

number of rounds, propagates it further to f ranks not visited

before by this message, as shown on line 30 of Figure 1.

In contrast to previous work [22], information beyond rank

loads must be propagated, for without knowledge of the

memory and communication on a given rank, another rank

4because the ε term is neither constant nor linear constant.

1 info known = dict() /* rank−local peer network info */
2

3 def ComputeCCM(rank, add tasks = [], remove tasks = []):
4 /* apply update formulae to compute new work with add tasks

added and remove tasks removed from rank */
5

6 def FindBestCCM(rank, peer):
7 best work diff = −inf
8 work r, work p = ComputeCCM(rank), ComputeCCM(peer)
9 max work = max(work r, work p)

10 for c r in getClusters(rank):
11 for c p in getClusters(peer):
12 work r after = ComputeCCM(rank, c p, c r)
13 work p after = ComputeCCM(peer, c r, c p)
14 max work after = max(work r after, work p after)
15 work diff = max work − max work after
16 if work diff > 0:
17 best work diff = max(best work diff, work diff)
18 return best work diff
19

20 def TryTransfer(rank, peer):
21 best work diff = FindBestCCM(rank, peer)
22 if best work diff > 0:
23 /* perform task transfers for best work diff */
24

25 def BuildPeerNetwork(k rounds, fanout):
26 info known.clear()
27 info known[rank] = /*information from this rank*/
28 def spreadInfo(cur round, new info):
29 info known[a] = b for a,b in new info
30 if cur round < k rounds:
31 for f in fanout:
32 p = /* generate random peer */
33 send(spreadInfo, @p, cur round+1, info known)
34 spreadInfo(1, nil )
35 return info known.keys()
36

37 def CCM LB(n iter, k rounds, fanout, rank):
38 for i in n iter :
39 peers = BuildPeerNetwork(k rounds, fanout)
40 for p in peers:
41 work list .append(FindBestCCM(rank,p),p)
42 for (work, peer) in sort (work list ) :
43 has lock = TryLock(peer)
44 if has lock:
45 if IsLocked(rank) and GetLockingRank(rank) <= peer:
46 Unlock(peer)
47 work list .append((work, peer))
48 else:
49 while IsLocked(rank): pass /* wait to be unlocked */
50 @when recvUpdate(peer info):
51 info known[peer] = peer info /* update */
52 TryTransfer(rank, peer)
53 Unlock(peer)

Fig. 1. The CCM-LB algorithm.

cannot evaluate whether tasks can be transferred even if it is

underloaded. We thus augment the inform messages with on-

and off-rank communication volumes (Vp(r), Vp/∈(r)), homing

cost Mp
H(r), baseline rank footprint memory Mp

−(r), and a

summary of the clusters found on that rank r. For each cluster

c, we send the load Lp(c), the sizes of the shared blocks

accessed by the cluster Spc , the inter- and intra-cluster com-

munication volumes (Vp(c), Vp/∈(c)), and the cluster memory

baseline footprint Mp
−(c). This additional data allows us to

approximate the work model as we consider remapping tasks.

We note that while the rank-based additions have constant size,



the cluster-based component is O(|C|), where C is the set of

clusters, leading to an increased upper-bound on space during

the inform stage.

B. Task Transfer Algorithm

In previous work [22], the transfer phase begins after peer

network building by using a cumulative mass function to bias

random selection of ranks for potential transfer depending on

how underloaded they are. Then, work units are selected from

the overloaded rank and given to the underloaded without any

intervention. In further work, an underloaded rank was allowed

to negatively acknowledge a requested transfer if it increases

the load of this rank beyond the arithmetic mean of loads

across all ranks.

In the landscape of the more complex criterion that in-

cludes (1) computation, (2) communication, and (3) memory

as factors, it is infeasible for a rank to decide unilaterally

to transfer tasks without full knowledge of the other rank’s

tasks (including full communication information and memory

requirements). Thus, the proposed algorithm operates in two

stages. First, it applies the CCM update formulæ to decide

how valuable transferring with a target rank might be (based

on information that might be out-of-date). Second, it picks the

most potentially viable rank to transfer work with and attempts

to obtain a lock on that rank. Figure 1 provides an overview

of the CCM-LB algorithm.

On line 39 of Figure 1, we build the random peer network

for each rank, resulting in a list of ranks that each rank knows

about. On line 41, each rank applies the criterion to each peer

rank by calculating the amount of work (using the update

formulæ) under possible task transfers. The best transfer

(lowest resulting work) is put in a sorted list (work list) for

each peer. Each rank then tries to lock the peer that has the

best potential transfer (line 43).

If all ranks are allowed to request and obtain a lock

concurrently, deadlocks can easily occur. In the simplest case,

ranks r1 and r2 might both send messages requesting a lock

from each other. Rank r1 may receive the request from r2 and

allow it to obtain a lock. Concurrently, rank r2 may apply the

same logic and allow r1 to obtain a lock. By the time both

ranks are notified, they may be locked and also hold a lock on

the other rank. While a rank is locked it cannot make progress

on a lock it holds because another rank might change its task

distribution. These types of cycles can occur with an arbitrary

number. To remediate this problem, if a rank r1 is locked by

another rank, rx, and also obtains a lock on r2, it immediately

releases the lock if rx ≤ r2 (shown on line 45). This logic

guarantees that cycles will not form. The option to lock r2 is

added back to the work list so it can try to obtain the lock

later once it has been unlocked.

Once a lock succeeds, a message is sent from r2 to r1
with up-to-date information on the tasks residing on r2. Once

received, TryTransfer is invoked, calling FindBestCCM (line

21) to search for clusters that can be given or swapped to

reduce the maximum work between the two ranks. It evaluates

many such possible transfers and selects the best one to exe-

cute (if one exists that is better than the current configuration

shown on line 16). After every rank has exhausted its list

of possible ranks to transfer in work list, and all selected

transfers have occurred, the iteration is over. The algorithm

proceeds with the next iteration by creating a new random

peer network and performing the whole process again.

V. MIXED-INTEGER LINEAR PROGRAMMING

FORMULATION

We now reformulate the task-rank problem assignment as a

mixed-integer linear program (MILP), which is NP-hard. Our

CCM model proposed in §III-E makes this formulation much

more complex than a conventional job-machine assignment,

due to the inclusion of additional components with assorted

dependencies. We thus proceed in increasing order of com-

plexity, from constrained compute-only to the full work model

of (13).

A. Common Definitions

We begin with notational conventions which, albeit not

necessary, shall ease the understanding of our approach. For

instance, summation indices are dummy and can be replaced

without altering the meaning of the sum; but we believe it is

more convenient to the reader if a given index letter always

refers to the same type of entity:

entity type set cardinality indices

ranks R I i, j
tasks T p K k, ℓ
communications Cp M m
shared blocks Sp N n

Subsequently, we define assignment matrices between the

above defined entity types, using the indicator function:

to type from type size matrix entries

tasks shared blocks K×N upk,n:=1S
p
tk
(sn)

ranks shared blocks I×N vpi,n:=1
Ŝ
p
ri
(sn)

ranks shared blocks I×N φpi,n:=1S
p
ri
(sn)

ranks tasks I×K χpi,k:=1T
p
ri
(tk)

Although (vp) and (φp) have the same shape, they differ

in that the former specifies homing of a block to a rank,

while the latter indicates the presence of the block on a

rank. The problem statement does not allow the load balancer

to modify either block-task or block-home assignments; as

a result, both (up) and (vp) are parameters, whereas both

(φp) and (χp) are variables, whence the use of different

alphabets to emphasize this contrast. Meanwhile, every task

must be assigned to exactly one rank, and at most one shared

block, while every block shall be homed at exactly one rank;



therefore, the following 2K +N consistency constraints must

hold:

(∀k ∈ J1,KK)
N∑

n=1

upk,n ≤ 1 ∧
I∑

i=1

χpi,k = 1, (14)

(∀n ∈ J1, NK)
I∑

i=1

vpi,n = 1. (15)

Tpr1
={t1,t2} Tpr2

={t3}

t1 t2 t3

r2r1

s1 s2

⇒ (χp)=( 1 1 0
0 0 1 )

S
p
t1

={s1}


(up)=

(
1 0
1 0
0 1

)
S
p
t2

={s1}

S
p
t3

={s2}

(φp) = ( 1 1 0
0 0 1 )⊙

(
1 0
1 0
0 1

)

= ( 1 0
0 1 )

Fig. 2. A Compute-Only Memory-Constrained Problem (COMCP) example
for I=2, K=3, and N=2, with corresponding assignment sets and matrices.

As an illustrative example, consider an arrangement with

I=2, K=3, and N=2, where the two first tasks are assigned

to the first rank and share a memory block, while the remaining

task is assigned to the second rank and is a lone participant

in a second memory block, as shown in Figure 2. From

this we obtain the assignment matrices, with both (up) and

(χp) satisfying the consistency constraints in (14). We further

observe that, although 26=64 different combinations of the

6 binary entries in (χp) may be formed, the consistency con-

straint eliminates 3 degrees of freedom because the knowledge

of, e.g., the first row unambiguously determines the second.

There are, as expected, only 23=IK= 8 consistent task-rank

assignments.

Obviously, shared blocks do not roam freely between ranks;

rather, their assignments are constrained by their associated

tasks. Denoting ⊙ the Boolean product between binary matri-

ces, i.e., using the arithmetic of the (Z2,∨,∧) semiring, the

fundamental constraint is:

Theorem V.1 (Boolean shared block matrix relations).

(φp) = (χp)⊙ (up). (16)

Proof. Omitted for brevity, refer to Appendix A.

Unfortunately, albeit elegant and tight, this property based

on Boolean algebra does not lend itself to a linear program

formulation. It must instead be re-cast in an integral, yet much

less concise form, as follows:

Theorem V.2 (Integer shared block matrix relations).

(∀(i,n) ∈ J1, IK×J1, NK)





(∀k∈J1,KK)φpi,n ≥ u
p
k,nχ

p
i,k

φpi,n ≤

K∑

k=1

upk,nχ
p
i,k.

(17)

(18)

Proof. Omitted for brevity, refer to Appendix A.

i n k u
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≤ φ

p
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∑

k u
p

k,n
χ
p

i,k
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1

{
1 1 1 1 =

}

12 1 1 1 = < 2

3 0 0 0 <

2

{
1 0 1 0 =

}

02 0 1 0 = = 0

3 1 0 0 =

2







1

{
1 1 0 0 =

}

02 1 0 0 = = 0

3 0 1 0 =

2

{
1 0 0 0 <

}

12 0 0 0 < = 1

3 1 1 1 =

TABLE I
COMPLIANCE OF ASSIGNMENT MATRICES TO CONSTRAINTS (17) & (18).

We further remark that (17) provides tight bounds for all K
inequalities when φi,n=0, and at least once when φi,n=1. The

latter can be established by contradiction: assuming strictness

of all inequalities would imply that all upk,nχ
p
i,k be nil, hereby

causing φi,n to vanish as well and thus contradicting the

hypothesis on φi,n=1. In contrast, (18) does not provide a

tight upper bound in general, as exhibited by Table I, which

expounds the earlier illustrative example: for instance, φ1,1=1
but (18) only provides a loose upper bound thereof. However,

because this may only occur when φi,n=1, the problem is

automatically remedied by the fact that the search space for

φi,n is limited to Z2; in other words, another constraint (that

of the definition domain) will compensate for the loose bound.

B. Compute-Only Memory-Constrained Problem (COMCP)

The aim of this simplified model is to ensure that our ap-

proach works for compute-only load balancing under memory

constraint, i.e., with α=1 and β=γ=δ=0 in (13). Regard-

ing ε, the per-rank bound of (9) is used in combination with

the definitions of (χp) and (φp) which, after replacing the

max operator in (6) with K linear inequalities, equivalently

amounts to the following I×K constraints:

(∀(i,k) ∈ J1, IK×J1,KK)

K∑

ℓ=1

Mp
−
(tℓ)χi,ℓ +M

p
+
(tk)χi,k

+

N∑

n=1

Mp(sn)φi,n ≤M∞
(ri)−M

p
−
(ri). (19)

It might be tempting to view the decision variable as

that obtained by vectorizing5 the (χp) and (φp) assignment

matrices, followed by the concatenation of an I(K+N)-
dimensional binary vector. However, this approach cannot be

formulated in terms of a linear program because its objective

function, maxr∈RW
p(r), is not a linear combination of these

binary variables. This difficulty can be resolved with the

makespan formulation [28], which introduces an additional

degree of freedom, in the form of a nonnegative continuous

variable Wp
max constraining Wp(r) from above. As work is

5How this vectorization is performed, i.e., in row or column-major order,
is an implementation detail.



reduced to the compute term in (13), this can be equivalently

formulated in I new constraints using task-rank assignments:

(∀i ∈ J1, IK)

K∑

k=1

Lp(tk)χi,k ≤ W
p
max. (20)

Forming the vector ~xp=vec
(−−→
(χp),

−−→
(φp),Wp

max

)
finally allows

us to formulate the COMCP as the following MILP:

argmin
~xp∈Z2

I(K+N)×R+

~c · ~xp (21)

subject to A~xp = ~1K (22)

subject to B~xp +~b ≥ ~0I(K+1)(N+1) (23)

where ~c has all nil entries, except for a final, unit coordinate

corresponding to theWp
max entry in ~xp, so that ~c ·~xp =Wp

max.

Meanwhile, matrices A (determined by the part of (14) con-

cerning (χp)) and B, and vector ~b (determined by (17), (18),

(19), and (20)) only contain input parameter values.

Continuing with the running example, ~xp is 11-dimensional

and, e.g., using row-major vectorization and column-vector

convention, A =
(

1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0

)
. For brevity, we only

provide the main principles presiding to assembly of B, whose

size is 24× 11: its first 16 are directly given by the inequal-

ities in Table I (12 and 4 lower and upper bounds, respec-

tively). Denoting parameters dℓ=−M
p
−(tℓ), ek=−M

p
+(tk),

fn=−M
p(sn), and gk=−L

p(tk) for conciseness, the last

6+2=8 rows of B are provided by (19) and (20) as follows:



d1+e1 d2 d3 0 0 0 f1 f2 0 0 0
d1 d2+e2 d3 0 0 0 f1 f2 0 0 0
d1 d2 d3+e3 0 0 0 f1 f2 0 0 0
0 0 0 d1+e1 d2 d3 0 0 f1 f2 0
0 0 0 d1 d2+e2 d3 0 0 f1 f2 0
0 0 0 d1 d2 d3+e3 0 0 f1 f2 0
g1 g2 g3 0 0 0 0 0 0 0 1
0 0 0 g1 g2 g3 0 0 0 0 1



.

Finally, all entries of ~b are nil, except those two corresponding

to the opposite of the right-hand sides in (19).

C. Full Work Model Problem (FWMP)

All terms in (13) are now retained. The framework intro-

duced above for the COMCP is conserved; in particular:

• the minimization problem (21) remains essentially iden-

tical, but ~xp is expanded to include the assignments of

communications to ranks, while ~c is expanded by as many

nil entries so that only Wp
max will not be canceled;

• constraint (22) is kept unchanged, and so are the contri-

butions to (23) of (17), (18), and (19).

However, the communication volumes and homing costs must

be added to B and ~b. We thus introduce third-order assignment

tensors, keeping our earlier Latin/Greek alphabetical conven-

tion for parameters vs. variables, respectively:

to type from type size tensor entries

tasks communications K×K×M wpk,ℓ,m:=1 →
C
p
tk
∩
←

C
p
tℓ

(cm)

ranks communications I× I ×M ψpi,j,m:=1 →
C
p
ri
∩
←

C
p
rj

(cm)

We note one peculiarity of these tensors: as a communication

edge has only two endpoints, they have only one nonzero entry

per m-slice. The results of Theorem V.1 are readily extended

to the communication assignment tensors:

Theorem V.3 (Boolean communication tensor relations).

(∀m ∈ J1,MK) (ψp::m) = (χp)⊙ (wp::m)⊙ (χp)⊺. (24)

Proof. Omitted for brevity, refer to Appendix A.

→

C
p
t1
={c1,c4},

→

C
p
t2
={c2},

→

C
p
t3
={c3},

←

C
p
t1
=∅,

←

C
p
t2
={c3,c4},

←

C
p
t3
={c1,c2}

t1 t2 t3

r2r1

s1 s2

c2
c3

c4

c1

→

Cpr1
={c1,c2,c4},

→

Cpr2
={c3},

←

Cpr1
={c3,c4},

←

Cpr2
={c1,c2}⇒

⇒[wp]︷ ︸︸ ︷
w
p
::1

w
p
::2

w
p
::3

w
p
::4[

0 0 0
0 0 0
1 0 0

∣∣∣0 0 0
0 0 0
0 1 0

∣∣∣0 0 0
0 0 1
0 0 0

∣∣∣0 0 0
1 0 0
0 0 0

]

(χp)⊙ ⇓ ⊙(χp)⊺

[ 0 0
1 0 |

0 0
1 0 |

0 1
0 0 |

1 0
0 0 ]

ψ
p
::1

ψ
p
::2

ψ
p
::3

ψ
p
::4︸ ︷︷ ︸

[ψp]

Fig. 3. A FWMP example for I=2, K=3, M=4, and N=2, with
corresponding communication assignment sets and tensors.

By adding M=4 inter-task communications to the COMCP

example of Figure 2, Theorem V.3 is illustrated in Figure 3.

As done for the assignment matrices, the tensor constraints

are reformulated in integral terms for the MILP framework:

Theorem V.4 (Integer communication tensor relations).

(∀i ∈ J1, IK)
(∀j ∈ J1, IK)
(∀m ∈ J1,MK)





ψi,j,m ≤

L∑

ℓ=1

K∑

k=1

χi,kwk,ℓ,m,

ψi,j,m ≤

L∑

ℓ=1

K∑

k=1

χj,ℓwk,ℓ,m,

ψi,j,m ≥

L∑

ℓ=1

K∑

k=1

(χi,k+χj,ℓ)wk,ℓ,m−1.

(25)

(26)

(27)

Proof. Omitted for brevity, refer to Appendix A.

We illustrate Theorem V.4 with the example of Figure 3;

first, (27) immediately sets the values of ψi,j,m that are equal

to 1, as they cannot be greater by definition, as shown in bold:

[
0 −1
1 0

∣∣ 0 −1
1 0

∣∣ 0 1

−1 0

∣∣ 1 0
0 −1

]
≤ [ 0 0

1 0 |
0 0
1 0 |

0 1

0 0 |
1 0
0 0 ] . (28)

We note that when ψpi,j,m must vanish, the lower bounds

in (28) are unimportant, for the search space always bounds it

from below at 0. In turn, (25) and (26) thus respectively yield

[0 0

1 1 |
0 0

1 1 |
1 1
0 0
| 1 1
0 0

] ≥ [0 0

1 0
|0 0

1 0
|0 1
0 0
| 1 0

0 0
] ≤ [ 1 0

1 0
| 1 0

1 0
|0 1
0 1 |

1 0

1 0
] (29)

thereby setting ψpi,j,m to 0 at least once when needed, as shown

in bold as well. We see that all entries in [ψp] are indeed

unambiguously set by Theorem V.4.



Finally, the continuous constraints (20) in the COMCP with

the following, including all terms in (13):

(∀(i,σ) ∈ J1, IK×S2) α
K∑

k=1

Lp(tk)χi,k

+ β

M∑

m=1

I∑

j=1
j 6=i

Vp/∈(cm)ψp
σ(i,j),m + γ

M∑

m=1

Vp(cm)ψpi,i,m

+ δ

N∑

n=1

Mp(sn)(1 − v
p
i,n)φ

p
i,n ≤ W

p
max. (30)

For the sake of brevity, we make only a few observations:

• the compute term is unchanged from (20), except for its

multiplication by α as required by (13);

• the off-node communication (β) term is derived from (4)

but, because the max operator is non-linear, it is replaced

with one upper bound constraint for each operand; as

a result, one inequality must be generated for both

permutations of {i, j}: one for ψi,j,m and one for ψj,i,m;

• the on-node communication (γ) term, obtained from (4),

contains only the diagonal entries of the (ψp) m-slices;

• and the homing (δ) term results from the fact that

1
S
p
r\Ŝ

p
r
= 1

S
p
r∩Ŝ

p∁
r

= 1S
p
r
× 1

Ŝ
p∁
r

= 1S
p
r
× (1− 1

Ŝ
p
r
).

The above results in I[(K+1)(N+1)+3IM+1] inequality

constraints for the FWMP, i.e., when using the example of

Figure 3: 2[(3+1)(2+1)+3×2×4+1]=74.

VI. APPLICATION

A. The Gemma Code

Gemma is developed in support of modernization activi-

ties [29], to gain insight into how the energy from electromag-

netic interference couples into systems and what effects can

occur as a result. It uses frequency-domain analysis to solve

general EM scattering and coupling problems, with particular

emphasis on performance across a variety of computing plat-

forms as well as allowing efficient incorporation of specialized

models relevant to the physics under consideration.

Gemma uses the method of moments [30] to solve surface

integral equations imposed on the surfaces of the problem

structure. Surfaces are discretized with triangular meshes,

while equations and solution space are discretized using the

Rao-Wilton-Glisson basis functions [31] defined on the mesh

triangles. Testing of the integral equations is performed using

an inner product with these same basis functions (i.e., a

Galerkin testing scheme is used). The core of the numerical

analysis is the construction and solution of a matrix equation,

where each matrix entry is constructed by using the basis

associated with one degree of freedom to test the field radiated

by the basis associated with some (possibly other) degree

of freedom. Any two degrees of freedom associated with

elements touching the same problem region (e.g., triangles that

are both on the inner wall of a cavity structure) will generally

be associated with nonzero matrix entries.

Computing the matrix entries is complicated by the singular

nature of the Green’s function. Thus, matrix entries involving

interactions between nearby degrees of freedom are more

computationally expensive than others. When the matrix is

partitioned into blocks for parallel computation on multiple

ranks, this discrepancy results in a significant load imbalance

among the different ranks. In coupling problems, this imbal-

ance is increased by the presence of the zero blocks that occur

due to degrees of freedom not radiating in shared regions.

For our experiments, we run a scaled-up version of the

yaml_rect_cavity_2_slots_curve problem from the

regression test suite in Gemma. This problem mimics the

topology of coupling problems of interest (e.g., the Higgins

cylinder). The geometry is a 1.8m cubic cavity inside a 2m

block of perfectly conducting metal. The inner region is

connected with the outer by two slots 30cm long, modeled

with aperture width of 0.508mm and a depth of 6.35mm. The

exterior surface is excited by a plane wave. The inner and

outer slot apertures are discretized with a string of bar elements

along each. We scale up the size of the problem by decreasing

the mesh edge length.

B. Overdecomposing into Shared Blocks and Tasks

The solver that runs after matrix assembly prescribes how

the matrix must be block-decomposed across MPI ranks. To

allow load balancing of the matrix assembly, we must overde-

compose the assembly work on each MPI rank and make it

possible for other ranks to contribute toward performing that

work. We start by breaking the matrix block on each MPI rank

into slabs of contiguous memory. Due to the layout of the

matrix, a slab contains all rows assigned to the rank but only

a subset of the columns. In the context of our CCM model,

each slab corresponds to a shared memory block; by default,

the tasks accessing that slab are co-located on its home rank.

Each row or column in the matrix corresponds to an un-

known. We overdecompose the work to assemble each shared

memory block by limiting the number of unknowns that will

be assigned to a task. With a limit of u, then, a task would

contribute to at most a u row by u column subset of the shared

block. When there is more than one type of element in a shared

block, separate tasks are used to compute the contributions

from different element type pairs. The number of interactions

that apply to the unknowns assigned to a task is pre-computed

before the task is instantiated. In the case where there is no

coupling in the unknowns represented (i.e., a task would not

produce any non-zero values), the task is never instantiated.

C. Finishing the Assembly Process

All tasks executed on a given MPI rank that are assigned to

the same shared block will contribute to the same contiguous

chunk of memory. Allocating that chunk of memory is deferred

until right before the first task begins contributing to it,

provided that such a task exists. After all matrix assembly

tasks have completed, any shared blocks computed in whole

or in part away from the home rank must be transferred home.



During this transfer process, we must continue to respect

memory constraints. We do so by transferring shared blocks

home in waves, limiting at all times the shared blocks that

can exist across each compute node rather than each rank.

Our transfer schedule is not optimal but minimizes situations

where two ranks need to swap shared blocks but lack the

memory with which to do so. When such a situation does

occur, one shared block is temporarily moved to a different

compute node with available memory in order to free up

memory for the other transfer to occur. For Gemma, because

the cost of the transfers is so much smaller than the time to

compute the shared blocks, we have not attempted to optimize

our algorithm.

Once all instantiated shared blocks are on their home ranks,

the memory pages from the separate shared blocks can be

moved into a larger allocation that represents the matrix block

expected by the solver. If a shared block has not yet been

instantiated due to containing all zeros, those zeros are finally

allocated during this process. Deferring those allocations freed

up memory for balancing the workload earlier in the process.

D. Predicting Task Compute Times

In order to load balance Gemma with our approach,

the compute times for the matrix assembly tasks must be

predicted. As Gemma is often run near memory limits,

careful orchestration of the task placement while considering

shared matrix blocks is required to keep the application under

memory limits. Since a persistence-based model from which

to derive timing predictions is not applicable to Gemma, we

propose using an artificial neural network [32] to approximate

the task-time mapping function. To build a general model, we

ran Gemma on a diverse set of configurations with a range

of interacting element types. We collect inputs for each task,

such as the types of elements, and fed these into the model.

1) Data Pre-Processing Strategy: When collecting task

data across problem configurations, we noticed there are

many more short-duration tasks than longer duration ones.

Thus, we developed a dynamic data point reduction algorithm

(detailed in Appendix B) that utilizes a bin decomposition

approach to randomly eliminate points from over-represented

data segments. Additionally, we employed a standard scaler

to normalize the training data, ensuring that each feature

contributes equally to the model by having a mean of zero

and unit variance, which is crucial for the effective training

and convergence of the neural network.

2) Model Architecture & Training: To build the model for

the task-time prediction, we employ a feed-forward neural

network (FNN) with 4 hidden layers, each comprised of 200

neurons. To maintain input distribution consistency across

layers, we use batch normalization on the hidden layers,

ensuring stable training [33]. In order to avoid overfitting

the model, notably towards over-represented smaller tasks, we

utilize dropout [34]—randomly deactivating neurons during

training. We used the Leaky Rectified Linear Unit (ReLU) [35]

for our neuron activation function:

f(x) = x× 1R+(x) + 0.01x× 1R∗
−
(x). (31)

To train this neural network, we perform the objective function

optimization using AdamW, an improved version of the Adam

optimizer, as it has been shown to lead to better generalization

and convergence [36]. We utilize the mini-batch method,

which processes data subsets at each iteration of this opti-

mization algorithm to balance computational efficiency with

smoother training.

3) Loss Functions: The standard approach to measuring

prediction errors is to compute either the root mean-squared

error (RMSE) or the mean absolute error (MAE) between

the d-dimension vector ~p of ground truth values, and the

corresponding vector ~g of predictions. However, because load

imbalance is likely to be more adversely impacted by over-

predicted than under-predicted compute times, we devised an

under-penalized RMSE, depending on a nonnegative parameter

α, and defined as
√

‖~e(~p, ~g)‖2
2/d, where ~e(~p,~g) is the vector of

under-penalized errors:

(∀i ∈ J1, dK) ~ei(~p,~g) =

{
(~gi − ~pi)

2 if ~gi − ~pi ≥ 0,

α(~gi − ~pi)
2 otherwise.

(32)

In response to this, the trained model barely over-predicts, at

the price of additional under-prediction and, at the time of

writing, empirically produces the best results.

VII. EMPIRICAL RESULTS

All experiments were performed on a cluster with 1488

nodes connected with Intel Omni-Path, each composed of

2.9 GHz Intel Cascade Lake 8268 processors with 192 GiB

RAM/node. We used two ranks per node (one per socket),

with 24 threads each bound to a core on the socket.

A. MILP and CCM-LB Comparison

We have implemented the FWMP (cf. §V) for a small-

scale Gemma problem using the PuLP [37] library in Python,

which outputs a general LP format that can be run with differ-

ent solvers. From initial testing, we found that the commercial

solver, Gurobi [38], far exceeded open-source solvers (such

as CBC [39] or GLPK [40]) in speed and quality of solution,

and so it was used as the comparison for our distributed load

balancer.

This Gemma experimental problem contains 238,738 un-

knowns across 14 ranks, 1959 tasks, and 206 shared memory

blocks with non-zeros. For this set of small-scale experiments,

we used the actual task timings from a prior Gemma run,

rather than our model described in §VI-D, to reduce the

impact of prediction inaccuracies when comparing the two

approaches. We note that significant machine noise still results

in the task timings deviating from the previous timings.

The Gurobi solver first solves the LP relaxation problem

(feasible in polynomial time), whereby the integral constraints

are relaxed to real numbers between [0, 1]. This relaxed, con-

tinuous solution is a lower bound on the best possible integral

one. Thus, the gap is defined as the relative error between the

minimized amount of work W i
max and the continuous lower

bound W l
max, i.e., (Wi

max − Wl
max)/Wl

max.



Gurobi (MILP)
︷ ︸︸ ︷

CCM-LB
︷ ︸︸ ︷

Model Gap Solve Gap Wmax ↑
δ Time Min / Max Min / Max

1e-9 1.2e-3 46h 41m 6.7e-4 / 1.1e-2 -0.1% / 1.0%
1e-10 2.4e-4 8h 9.9e-3 / 1.8e-2 1.0% / 1.8%
1e-11 1.0e-4 8h 8.1e-3 / 1.9e-2 0.8% / 1.8%
1e-12 8.0e-5 29s – –
1e-13 7.9e-5 128s – –
0 9.8e-5 498s 9.0e-3 / 1.8e-2 0.9% / 1.8%

(a) For a single Gurobi solve at each δ, we show the gap obtained
and the solve time needed or allowed (see text). For twelve CCM-
LB solves at each δ, we show the min/max of the gap and percent
increase in Wmax from the Gurobi solution. The mean CCM-LB
solve time was below 0.7 seconds for all δ.
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(b) Blocks that need to be sent home, the time required for such transfers,
and the compute time for each δ. Gemma was run twelve times on the
single Gurobi solution, and once on each of the twelve CCM-LB solutions.

Fig. 4. Results comparing the Gurobi (MILP) solutions to CCM-LB.

Figure 4a describes the solutions obtained by the MILP and

CCM-LB for varying input values of δ. We configured the

solver with a maximum gap of 10−4, and the MILP columns

show the gap that Gurobi found along with the time taken.

For the largest value of δ, after more than 46 hours, Gurobi

had not found a solution with a gap below 10−4, suggesting it

may not be tractable. We thus decided to terminate this solve,

and to time-limit runs to 8 hours for the remaining values of δ.

Gurobi ran much faster for smaller values of δ, indicating that

the complexity of solving the MILP highly depends on input

parameter values. The CCM-LB columns show the ranges of

the gaps and the relative increases in Wmax, compared to the

best Gurobi solution found. CCM-LB was solved twelve times

for each δ, coming up with a different solution each time, and

we stopped decreasing δ once it was clear that the transfer

time was near that of δ=0. The mean time for CCM-LB to

find a solution was always under 0.7 seconds, running online

and much faster than the MILP solver.

For all values of δ except for the largest one, the Gurobi

Ranks Unknowns Tasks Shared blocks

16 243,079 2,383 286

64 488,381 8,955 896

256 983,881 34,709 3,076

(a) Description of the weak-scaled problem. Shared
blocks only includes those containing non-zero values.
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(b) A: baseline Gemma (does not support load balancing); B: overde-
composed Gemma without load balancing; C: overdecomposed Gemma
with CCM-LB and δ=10

−9. The above-bar multiplicative factors are the
full assembly speedups compared to A for the same number of ranks.

Fig. 5. Speedup of the assembly at each scale.

solution gets closer to the optimal (smaller gap), which is

expected as CCM-LB is a heuristic-based approach. Interest-

ingly, the heuristic-based CCM-LB in one case finds a better

solution that the MILP one (−0.1%) when the FWMP starts

to become intractable for Gurobi (δ=10−9).

Figure 4b depicts the number of blocks noff that are com-

puted off the home rank, the communication time required to

send them home, and the compute time for the same Gemma

case, with varying δ in the CCM model. As δ increases,

noff should decrease (and the required communication time as

well), and this is indeed what we observe: a strong inverse

correlation between δ and noff , demonstrating the validity

and efficacy of our model and the relevance of the MILP

formulation (FWMP). We also observe that δ has a larger

impact on the number of blocks to be homed, and thus on the

homing cost, with the MILP solutions than with CCM-LB;

this is because the latter starts from an existing, co-localized

configuration, whereas the former computes a solution ab

initio. Moreover, we note that compute times across varying

δ and gaps remain within machine noise, despite the fact that

gaps are on average slightly worse with CCM-LB.

B. Larger-scale Experiments

In order to demonstrate our approach at larger scale with

a more realistic case, we weak-scaled a similar Gemma
problem to three different rank counts, as illustrated in Fig-

ure 5a. For these experiments, we created our neural-network

model using PyTorch, a popular machine learning framework

in Python. We exported trained model weights that can be used



in C++ using PyTorch’s libtorch API [41]. The model weights

were trained using measurements from a version of Gemma
built with an older software stack that exhibited worse com-

putational performance than the configuration used for these

benchmarks. As a result, CCM-LB used task time predictions

that somewhat differed from the actual, experimental ones; we

expect better speedups after retraining the model with the new

software stack.

Figure 5b shows the performance we attain, with the

“baseline” corresponding to the unchanged Gemma code. By

overdecomposing the matrix, we see about a 1.3x speedup

due to cache effects from a different kernel size and zero

blocks being exposed in the matrix (thus less work being

performed). By running our distributed load balancer CCM-LB

on the overdecomposed code with tasks, we obtain a 2.3-2.4x

speedup up to 256 ranks on the matrix assembly.

VIII. CONCLUDING REMARKS

Using our proposed reduced-order model (CCM) for de-

scribing work in a parallel system with memory constraints,

we have demonstrated that our distributed load balancer can

find close-to-optimal solutions, leading to substantial speedups

in practice for our target application. Because we believe that

distributed load balancing research (especially with complex

models) should be backed by comparisons to provably-optimal

solutions, we have formulated the optimization problem as a

mixed-integer linear program. This has allowed us to gauge the

optimality of our heuristic-based approach and to demonstrate

its veracity. In the future, we plan to show that our model is

widely applicable to many parallel algorithms.
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APPENDIX A

PROOFS OF THEOREMS

Theorem III.1 (Homing communications update formulæ).

M̃p
H(r1) =M

p
H(r1)−

∑
s∈(Spt \S̃

p
r1

)\Ŝpr1
Mp(s), (11)

M̃p
H(r2) =M

p
H(r2) +

∑
s∈(Spt \S

p
r2

)\Ŝpr2
Mp(s). (12)

Proof. Denoting ⊎ the union of two disjoint sets, and because

A and B \A disjoint with union equal to A ∪B, we have:

Spr1 = ∪u∈Tpr1\{t}S
p
u ∪ S

p
t = S̃pr1∪ S

p
t = S̃pr1⊎ (Spt \S̃

p
r1
), (33)

S̃pr2 = ∪u∈Tpr2S
p
u ∪ S

p
t = Spr2∪ S

p
t = Spr2⊎ (Spt \S

p
r2
). (34)

Thus, by right-distributivity of set difference over set union,

Spr1 \Ŝ
p
r1
= (S̃pr1 \Ŝ

p
r1
) ⊎ ((Spt \S̃

p
r1
)\Ŝpr1), (35)

S̃pr2 \Ŝ
p
r2
= (Spr2 \Ŝ

p
r2
) ⊎ ((Spt \S

p
r2
)\Ŝpr2). (36)

Meanwhile, by definition in (10),

M̃p
H(r1) :=

∑
s∈S̃pr1\Ŝ

p
r1
Mp(s), (37)

M̃p
H(r2) :=

∑
s∈S̃pr2\Ŝ

p
r2
Mp(s), (38)

whence the conclusion, thanks to the disjoint set unions in (35)

and (36) that entails additivity of their memory contents.

Theorem V.1 (Boolean shared block matrix relations).

(φp) = (χp)⊙ (up). (16)

Proof. By definition of Spri = ∪tk∈TpriS
p
tk

(cf. III-A4),

φi,n = 1 ⇐⇒ sn ∈ ∪tk∈TpriS
p
tk

(39)

⇐⇒ (∃k ∈ J1,KK) tk ∈ T
p
ri
∧ sn ∈ S

p
tk

(40)

⇐⇒
K∨

k=1

(
1T

p
ri
(tk) = 1 ∧ 1S

p
tk
(sn) = 1

)
(41)

⇐⇒
K∨

k=1

(
χpi,k = 1 ∧ upk,n = 1

)
(42)

⇐⇒

K∨

k=1

χpi,k ∧ u
p
k,n = 1. (43)

Negating both sides of (43) yields:

φpi,n = 0 ⇐⇒

K∨

k=1

χpi,k ∧ u
p
k,n = 0. (44)

Therefore, as φpi,n∈ Z2, it follows that

(∀(i,n) ∈ J1, IK×J1, NK) φpi,n =
K∨

k=1

χpi,k ∧ u
p
k,n, (45)

whencefrom (φp) = (χp)⊙ (up) ensues.

Theorem V.2 (Integer shared block matrix relations).

(∀(i,n) ∈ J1, IK×J1, NK)





(∀k∈J1,KK)φpi,n ≥ u
p
k,nχ

p
i,k

φpi,n ≤

K∑

k=1

upk,nχ
p
i,k.

(17)

(18)

Proof. Given any binary values a and b, a ∧ b = ab, whereas

a ∨ b = a + b − ab ≤ a + b, which, when applied to (45),

yields (18). The proof of (17) is done by disjunction elimina-

tion: if φi,n = 0, it comes from (44) that both sides in (17)

always vanish, making all K inequalities true. If φi,n=1, (17)

also always holds, irrespective of the value of its right-hand

side, which is in Z2; all K inequalities are thus true.

Theorem V.3 (Boolean communication tensor relations).

(∀m ∈ J1,MK) (ψp::m) = (χp)⊙ (wp::m)⊙ (χp)
⊺
. (24)

Proof. For brevity, we only provide a notional proof, for it is

essentially similar to that of Theorem V.1. Applying the same

logic, first to the left Boolean product, transforms each slice

(wp::m), a K×K task-to-task matrix, into an I×K task-to-rank

matrix, itself by the right product into an I×I rank-to-rank

matrix, the (ψp::m).

Theorem V.4 (Integer communication tensor relations).

(∀i ∈ J1, IK)
(∀j ∈ J1, IK)
(∀m ∈ J1,MK)





ψi,j,m ≤
L∑

ℓ=1

K∑

k=1

χi,kwk,ℓ,m,

ψi,j,m ≤

L∑

ℓ=1

K∑

k=1

χj,ℓwk,ℓ,m,

ψi,j,m ≥

L∑

ℓ=1

K∑

k=1

(χi,k+χj,ℓ)wk,ℓ,m−1.

(25)

(26)

(27)

Proof. For all (i, j) and m, in J1, IK2 and J1,MK, respectively,

Theorem V.3 entails that:

ψi,j,m =

K∨

ℓ=1

K∨

k=1

χi,k ∧wk,ℓ,m ∧ χj,ℓ (46)

As mentioned above, for a given m, wk,ℓ,m vanishes for all k
and ℓ, except for a unique couple (km, ℓm) corresponding to

the task endpoints tkm and tℓm of the directed communication

edge cm, for which wkm,ℓm,m=1. Thus, all but one term in

the right-hand side of (46) vanish, and

ψi,j,m = χi,km ∧ 1 ∧ χj,ℓm = χi,kmχj,ℓm . (47)

The same logic applies to the double sum over k and ℓ:

K∑

ℓ=1

K∑

k=1

χi,kχj,ℓwk,ℓ,m = χi,kmχj,ℓm = ψi,j,m. (48)

Although strictly equivalent in integer terms to (24), (48) is not

suitable for MILP due the non-linearity in the χ components

in the decision vector ~xp but, by applying the technique first

described in [42], we obtain (25) and (26) by alternatively

bounding each of these components from above by 1 and,

because 1A∩B+1A∪B=1A+1B,

χi,kmχj,ℓm= χi,km+χj,ℓm−χi,km∨χj,ℓm≥ χi,kmχj,ℓm−1 (49)

which, combined with (48) and the fact that all wi,k,m, aside

from wkm,ℓm,m=1, vanish in the double sum, yields (27).



APPENDIX B

DATA REDUCTION ALGORITHM

Consider a dataset, arranged in a table T with nr rows of

individual observations. Given a target number of rows n∗
r , a

number of bins nb, and a downsampling coefficient θ∈]0, 1[,
our method is described in Algorithm 1. The role of θ is to

Algorithm 1 Dynamic data point reduction.

1: function DYNAMICDATAREDUCE(nr, T , nb, θ)

2: H ←HISTOGRAM(nb,T ) ⊲ nb bins of rows

3: n−r ← nr − n
∗
r ⊲ number of bins to drop

4: while n−r > 0 do

5: bmax ← argmaxb∈H NUMBEROFROWS(b)
6: nmax ← NUMBEROFROWS(bmax)

7: n← min([θ × nmax], n
−

r )
8: Randomly remove n rows from b.
9: n−r ← n−r − n

10: end while

11: end function

arbitrage between convergence speed, and need to obtain a

well-balanced distribution in the downsampled histogram: in

practice with our dataset, we found a value of 0.5 to be a good

trade-off.
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