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SAGBI AND GRÖBNER BASES DETECTION

VIKTORIIA BOROVIK, TIMOTHY DUFF, AND ELIMA SHEHU

Abstract. We introduce a detection algorithm for SAGBI basis in polynomial
rings, analogous to a Gröbner basis detection algorithm previously proposed by
Gritzmann and Sturmfels. We also present two accompanying software pack-
ages named SagbiGbDetection for Macaulay2 and Julia. Both packages allow
the user to find one or more term orders for which a set of input polynomials form
either Gröbner basis for the ideal they generate or a SAGBI basis for the subalge-
bra. Additionally, we investigate the computational complexity of homogeneous
SAGBI detection and apply our implementation to several novel examples.

1. Introduction

Gröbner bases, first formalized by Buchberger [8] in 1965, are nowadays con-
sidered fundamental to both pure and applied algebra, as they provide algorith-
mic solutions to many different computational problems involving multivariate
polynomials: for example, solving polynomial systems of equations, ideal mem-
bership/equality, and implicitization for polynomial or rational maps. We review
basic theoretical ingredients in Section 2, and refer to [14] for a standard intro-
duction. Throughout this paper, we work in the multivariate polynomial ring
R :“ Krx1, . . . , xns over a field K in commuting variables x1, . . . , xn. The classical
algorithm for computing Gröbner bases is Buchberger’s algorithm; its input is given
by a finite set of polynomials in R, which generate an ideal I Ă R. A Gröbner basis
for I is a special generating set for I—typically not the input generators—which
depends, at least a priori, on the choice of a term order ą on R.

Suppose an ideal I is given as input by generators f1, . . . , fs P R, in which case
we write I “ xf1, . . . , fsy. Prior to computing a Gröbner basis for I, a reasonable
question arises: does the set F “ tf1, . . . , fsu already form a Gröbner basis for
some term order? An effective algorithm solving this decision problem was first
given by Gritzmann and Sturmfels [20], and we revisit their solution in this article.
We recall that for any fixed term order ą, Buchberger’s S-pair criterion allows
us to decide if F forms a Gröbner basis with respect to ą; however, there are
infinitely-many term orders on R as soon as n ě 2.

2020 Mathematics Subject Classification. Primary 13P10; Secondary 68Q15, 14M25.
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Just as Gröbner bases allow us to carry out computations with polynomial ideals,
the notion of a SAGBI basis for a finitely generated subalgebra S Ă R, introduced
independently in [34] and [24], may give us valuable information about S. For
example, we have the following solution to the algebra membership problem: given
a SAGBI basis F “ tf1, . . . , fsu for a subalgebra S Ď R with respect to the
term order ą, we can determine whether the polynomial g P R belongs to S by
computing the normal form r of g with respect to F and ą . This means

(1) g “ qpf1, . . . , fsq ` r, q P Kry1, . . . , yss,

where y1, . . . , ys are new variables, either inąprq R inąpSq, or r “ 0, and none of the
monomials present in r belongs to inąpSq. The polynomial q and normal form r,
as they appear in the equation (1), can be computed using an adaptation of the
multivariate division algorithm known as the subduction algorithm. Pseudocode
for subduction may be found in [39, Algorithm 11.1] or [34, Algorithm 1.5].

SAGBI bases are of general interest in algebra, as they provide a natural gen-
eralization of classical notions from invariant theory such as the straightening
algorithm. More recently, they have been studied in connection with Newton-
Okounkov bodies and toric degenerations. As shown in [10], these connections
can be applied to the development of a novel numerical homotopy continuation
method for solving structured systems of polynomial equations. The setting of this
numerical method is as follows: suppose we wish to solve a system of n equations
in n unknowns, and each equation is a general linear combination of some fixed set
of polynomials f1, . . . , fs P R. These polynomials give a rational parametrization
of a projective variety X Ď Ps´1. If tf1, . . . , tfs P S “ Rrts form a SAGBI basis
for the subalgebra they generate for an appropriate term order on S, then one
can construct a one-parameter flat family of varieties in which the general fiber is
isomorphic to X and the special fiber is a toric variety. In this family, the subal-
gebra generators degenerate into a set of monomials. The resulting system may
have fewer solutions than estimates based on the Bernshtein-Kushnirenko theorem,
which may then allow the original system to be solved more efficiently than by the
standard polyhedral homotopy method [22] by tracking fewer solution paths.

Motivated by the applications above, we consider here the natural problem of
SAGBI basis detection, and provide analogues of the results in [20]. Specifically,
we provide a new SAGBI basis detection method (Algorithm 2), and prove its
correctness (Theorem 3.3.) The result is perhaps surprising, since the theory of
SAGBI bases is not completely algorithmic. Additionally, we analyze the complex-
ity of SAGBI basis detection in the special case of homogeneous algebras, which is
applicable to the polynomial system of solving applicaiton outlined above. Finally,
we provide new implementations of both algorithms for Gröbner basis and SAGBI
detection for both the computer algebra system Macaulay2 [19] and the numerical
computing language Julia [1]. We illustrate our implementations on a variety of
examples coming from applications.
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Outline. In Section 2, we recall some necessary background. In Section 3, we
give a known result of Gritzmann and Sturmfels on Gröbner basis detection and
analogously present an algorithm for SAGBI detection. We then discuss the com-
plexity of these algorithms, as well as the question of an “optimal” term order
when the generators do not form a SAGBI basis for any term order. In Section 4,
we describe the functionality of our packages and give basic examples of their
utilization. Finally, in Section 5, we discuss more involved problems that can be
solved with the given algorithms.

2. Background

For brevity, let us now write Krxs “ Krx1, . . . , xns for a polynomial ring in n

indeterminates. For any given term order ą, every non-zero polynomial f P Krxs
has a unique leading monomial, which is denoted as inąpfq and is determined by
the chosen order ą. For an ideal I Ď Krxs, its initial ideal is defined as

(2) inąpIq :“ xinąpfq | f P Iy.

A finite subset G Ă I is called a Gröbner basis for I with respect to ą if inąpIq is
generated by tinąpgq | g P Gu. The existence of Gröbner basis for any ideal I and
term order ą follows from Hilbert’s Basis Theorem, see eg. [14, Ch.2, Corollary 6].

An analogous notion exists for a finitely generated subalgebra S Ă Krxs. We
define the initial algebra of S to be

(3) inąpSq :“ Krinąpfq | f P Ss.

Definition 2.1. A set of polynomials F Ă S is called a SAGBI basis if the leading
monomials of the elements in F generate the initial algebra inąpSq.

In contrast to the well-known situation for Gröbner bases of ideals, there is cur-
rently no known algorithmic criterion for determining if there exists a term order
for which S has a finite SAGBI basis. It should be noted that the initial algebra
of a finitely generated subalgebra may not necessarily be finitely generated itself.
One well-known example is the algebra Krx`y, xy, xy2s Ă Krx, ys, which does not
admit a finite SAGBI basis for any term order.

2.1. Preliminaries on weight orders. We turn to the representation of term
orders by weight vectors. For any weight vector ω P Rn and f P Krxs, we write
inωpfq for the sum of all terms cαx

α appearing in f such hat the dot product xα, ωy
is maximized. Analogously to (2), inωpIq is the ideal generated by inωpfq for all
f P I. For any given ideal or algebra, the term order used to define the initial ideal
or algebra can be represented concretely by a weight vector, as specified in the
next two lemmas.

Lemma 2.1. [39, Proposition 1.11] For any term order ą and any ideal I Ď Krxs,
there exists some weight ω P Rn

ě0
such that inąpIq “ inωpIq.
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Lemma 2.2. [7, Lemma 1.5.6] Given a finitely generated subalgebra S Ď Krxs,
such that S admits a finite SAGBI basis with respect to ą, there exists a weight ω
such that inąpSq “ inωpSq.

Next, we introduce an equivalence relation on weight orders with respect to an
ideal or a finitely generated subalgebra.

Definition 2.2. We call two weights ω and ω1 equivalent with respect to an ideal I
if and only if inωpIq “ inω1pIq. We write ω „I ω

1.
Much in the same way, we say two weights ω, ω1 are equivalent with respect to

a subalgebra S if and only if inωpSq “ inω1pSq. We write ω „S ω1.

For more details on the weight representation of term orders, see [39, Chapter 1].

2.2. Criteria for Gröbner and SAGBI bases. Buchberger’s well-known S-pair
criterion (see, e.g., [14, Ch.2, Theorem 6]) gives necessary and sufficient conditions
to verify whether a given set of polynomials forms a Gröbner basis.

We now recall the SAGBI analog.

Definition 2.3. Let F “ tf1, . . . , fsu. The following toric ideal

xP P Kry1, . . . , yss | P pinąpf1q, . . . , inąpfsqq “ 0y

is called the ideal of algebraic relations between leading monomials of fi’s.
Every polynomial P py1, . . . , ysq in this ideal produces a polynomial P pFq :“
P pf1, . . . , fsq P S by substituting fi for yi, which we call an S-polynomial of F .

The following theorem gives us a criterion to check whether a given set of poly-
nomials is a SAGBI basis for a specified term order.

Theorem 2.4. [34, Theorem 2.8] Given S “ KrF s Ă Krxs, F is a SAGBI basis
of S if and only if every S-polynomial has F-remainder r “ 0 as in eq. (1).

In fact, it is sufficient to check the conditions of Theorem 2.4 for only those S-
polynomials corresponding to any finite set generating the toric ideal of relations
of leading terms of F . This can in turn be checked using the subduction algorithm.

The toric ideal of relations on leading terms is also the kernel of the map

Kry1, . . . , yss Ñ Krxs

yi ÞÑ inąpfipxqq.

Following the notation of [39], we denote this ideal by IA, where A is the n ˆ s

matrix whose columns are the vectors αi P Nn occuring as leading exponents of
the fi, i.e., inąpfipxqq “ xαi . Similarly, let I be the kernel of the map

(4)
Kry1, . . . , yss Ñ Krxs

yi ÞÑ fipxq,

which defines a unirational variety parametrized by the fi. Here is another strategy
to verify a SAGBI basis for a given term order.
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Theorem 2.5. [39, Theorem 11.4] Let ω P Rn be a weight vector that agrees with
a term order ą on a finite set F Ă Krxs. The set F is a SAGBI basis of S “ KrF s
with respect to ą if and only if inATωpIq “ IA.

Remark. Since ATω is a special weight, the ideal inATωpIq need not be a monomial
ideal and the initial form inATωpfq, i.e., the sum of all terms Cxα, such that the
inner product ATω ¨ α is maximal, need not be a monomial.

2.3. Newton polyhedra.

Definition 2.6. The Newton polytope Newpfq of f “
řd

i“1
cix

αi is a convex hull
of the exponents of its monomials, i.e., Newpfq “ convtα1, . . . , αdu. Its Minkowski
sum with the negative orthant is called the affine Newton polyhedron of f , which
we denote by Newaffpfq :“ Newpfq ` Rn

ď0.

We now generalize this notion to the set of polynomials F “ tf1, . . . , fsu. The
Newton polytope of F is the Minkowski sum of the Newton polytopes Newpfiq:

NewpFq :“ Newpf1q ` ¨ ¨ ¨ ` Newpfsq.

Equivalently, NewpFq “ Newpf1 ¨ ¨ ¨ fsq. And similarly, we define the affine Newton
polyhedron of F to be the Minkowski sum NewaffpFq :“ NewpFq ` Rn

ď0.

Definition 2.7. Consider a finite set of polynomials F “ tf1, . . . , fsu. We call
two term orders ω, ω1 equivalent with respect to F if and only if inωpfiq “ inω1pfiq
for each i “ 1, . . . , s. We write ω „F ω1.

Equivalence classes with respect to a finite set of polynomials enjoy a nice rela-
tionship with the corresponding affine Newton polytope.

Lemma 2.3. [20, Proposition 3.2.1] The vertices of the affine Newton polyhedron

NewaffpFq “ NewpFq ` Rn
ď0

are in one-to-one correspondence with the equivalence classes of term orders with
respect to F . More precisely, the open polyhedral cones of equivalent term orders
are precisely the normal cones of NewaffpFq.

3. SAGBI and Gröbner bases detection

3.1. Gröbner basis detection. Let us consider the following decision problem.
Given a finite set of polynomials G Ă Krxs, we want to decide whether G is a
Gröbner basis for I :“ xGy with respect to any of the term orders on Krxs. Ideally,
we would like an algorithm that somehow identifies all terms orders such that G is
a Gröbner basis. Such an algorithm was originally described in [20]. We produce
pseudocode for their algorithm in Algorithm 1 below.

Theorem 3.1. [20] The following algorithm 1 is correct.
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Algorithm 1: Gröbner Basis Detection

Input: A finite set G Ă Krxs of polynomials.
Output: Term orders ω P Rn for which G forms a Gröbner basis for I.

Compute the Newton polytope NewpGq;

Initialize an empty list ;

for each vertex v of NewpGq do

if the normal cone to v intersects the positive orthant Rě0 then

for any ω in this intersection do
Check if G is a Gröbner basis with respect to ω using
Buchberger’s S-pair criterion;

if G is a Gröbner basis then
Add ω to the list ;

end

end

end

end

return list

3.2. SAGBI basis detection. Similarly, the problem of SAGBI detection is an-
other decision problem. Given a finite set F Ă Krxs of polynomials, we want to de-
cide whether there exists a term order such that F is a SAGBI basis of S :“ KrF s.
The objective is to have an algorithm capable of identifying term orders, preferably
all of them, that meet the Subduction criterion.

In Algorithm 2 presented below we outline the solution to this problem that’s
similar to what we’ve seen in Algorithm 1.

Example 3.2. Consider a subalgebra S “ KrF s “ tx2 ` y2, xy, y2u. The Newton
polytope of F is a segment with endpoints p3, 3q and p1, 5q. We illustrate the affine
Newton polyhedron NewaffpFq with shaded normal cones to its vertices.

p3, 3q

p1, 5q

C

The set F doesn’t form a SAGBI with respect
to any weight ω of the red cone, but it does
form a SAGBI with respect to any weight ω

of the green cone C “ tω | ω1 ą ω2 ě 0u.
The output of the Algorithm 2 for F will be
some ω P C.

Theorem 3.3. The following algorithm 2 is correct.
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Algorithm 2: SAGBI Basis Detection

Input: A finite set F Ă Krxs of polynomials.
Output: Term orders ω P Rn for which F forms a SAGBI basis for S.

Compute the Newton polytope NewpFq;

Initialize an empty list ;

for each vertex v of NewpFq do

if the normal cone to v intersects the positive orthant Rě0 then

for any ω in this intersection do
Check if F is a SAGBI basis with respect to ω using
Theorems 2.4 or 2.5;

if F is a SAGBI basis then

Add ω to the list ;

end

end

end

end

return list

Following the usual definitions used for Gröbner bases, we establish the following
assertions:

Definition 3.4. A finite SAGBI basis H “ th1, . . . , hku with respect to a term
order ą is called reduced if each hi is such that its leading coefficient is 1 and none
of its terms are monomials in any inąphjq.

Proposition 3.1. [27, Section 6.6] Whenever a finite SAGBI basis exists,
a unique reduced SAGBI basis for the same term order also exists.

To prove the above algorithm is correct, we will use the following results.

Lemma 3.2. Consider an equivalence class of weight vectors Crωs with respect to
a finitely generated subalgebra S Ă Krxs, with the property that S admits a finite
SAGBI basis for some ω P Crωs. The set Crws is then a relatively open convex
polyhedral cone in Rn.

Proof. Assume ω „S ω1, i.e., the two finitely generated monomial algebras inωpSq
and inω1pSq are the same. Consider a reduced SAGBI basis H :“ th1, . . . , hku
for inωpSq “ inω1pSq w.r.t. ω. For any polynomial h P H its leading mono-
mial inω1phq lies in the algebra inωpSq and thus can be represented as a monomial
in inωph1q, . . . , inωphkq. If inω1phq is a monomial of h different from inωphq, the
SAGBI basis H is not reduced and we have a contradiction. Therefore, inωphq “
inω1phq for all h P H and each equivalence class of weight vectors is the relatively
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open convex polyhedral cone

(5)
Crωs “tω1 P Rn : inωpSq “ inω1pSqu

“tω1 P Rn : inωphq “ inω1phq for all h P Hu,

cut out by strict linear inequalities in ω1 enforcing that inω1phq is greater than
inω1ptq all other terms t of h for all h P H. �

We observe that if F is a SAGBI basis with respect to ω, we have the inclusion,

tω1 P Rn : inωpfq “ inω1pfq for all f P Fu Ď Crωs

and the preceding proof shows that equality holds when F is reduced. In general,
to obtain a reduced SAGBI basis we may repeatedly apply the following two op-
erations to F : (1) remove all polynomials f P F such that either the leading term
inpfq is products of leading terms of elements from Fztfu, and (2) update any f

whose tail f ´ inpfq contains a term that is a monomial in inωpfq for f P F , we
subduce this tail by F . Note that the second operation does not change the set
of leading terms, and the first operation removes one condition inωpfq “ inω1pfq,
thus weakening the defining inequalities for the cone of equivalence classes „F .
Thus, we have the following corollary.

Corollary 3.3. Let F be a finite set of polynomials and ω „F ω1. If F is a SAGBI
basis of KrF s with respect to ω then F is a SAGBI basis of KrF s with respect to ω1.

Proof. (of Theorem 3.3) The proof is based on Lemma 2.3 and Corollary 3.3.
Algorithm 2 iterates over all normal cones to the vertices of NewaffpFq, checking

all possible equivalence classes with respect to F . Corollary 3.3 states that this
will be enough to find all weight vectors ω with respect to which F is a SAGBI
basis. Indeed, assume there is some ω such that F forms a SAGBI w.r.t. ω and
ω is not in the output of the Algorithm 2. Consider the normal cone of the affine
Newton polyhedron corresponding to ω,

tω1 P Rn : inωpfq “ inω1pfq for all f P Fu.

By Corollary 3.3 F forms a SAGBI with respect to any weight ω1 from this cone
and ω „KrFs ω

1. Thus, some ω1 from the cone (3.2) should be in the output of the
Algorithm 2 and we can consider this weight as a representative of the equivalence
class with respect to the subalgebra KrF s. �

Remark 3.4. As opposed to ideals, not every subalgebra S Ď Krxs has finitely
many distinct initial subalgebras, so there might be infinitely many cones of the
form (5). For such an example, we refer the reader to [28, Example 5.3].

3.3. Connection to tropical geometry. The SAGBI detection algorithm is ap-
plied to answer the question: is there a term order ω such that the given generators
of a finitely generated subalgebra of a polynomial ring are the SAGBI basis with re-
spect to ω? A similar question is addressed by Kaveh and Manon [25] in the more



SAGBI AND GRÖBNER BASES DETECTION 9

Figure 1. The tropical variety T {Qp1, 1, 1q.

general setting of Khovanskii bases. The difference between their approach and
ours comes down to how the input is given. Our input is given by the parametriza-
tion of a unirational variety, while the answer of Kaveh and Manon is given in terms
of the ideal defining this variety.

More precisely, consider a finite set of polynomials F “ tf1, . . . , fsu. Let I be
the kernel of the map (4). The tropical variety T pIq associated to I is the set of
vectors v P Rs whose associated ideal of initial forms invpIq contains no monomials.
T pIq is endowed with the structure of a polyhedral fan since it is supported on
a closed subfan of a Gröbner fan of I. We call v P T pIq a prime point of T pIq
when invpIq is a prime binomial ideal, and the open face σ of the Gröbner fan of I
containing v in its relative interior is a prime cone. Then by [25], the existence of
a term order ω w.r.t. which F is the SAGBI basis is equivalent to the existence
of a prime cone σ in the tropical variety T pIq. Now let ω be from the output of
Algorithm 2 and C be the corresponding intersection of the normal cone to some
vertex of NewpFq with Rě0. Then applying Theorem 2.5 we obtain that AT ¨ C
gives us a prime cone of the tropical variety T pIq, where A is the n ˆ s matrix
whose columns are the vectors αi P Nn occuring as leading exponents of the fi,
i.e., inąpfipxqq “ xαi .

Example 3.5. Consider the projective plane curve given by the solution set of
the equation z1z3 ´ z23 ´ z22 “ 0. The tropical variety T of z1z3 ´ z23 ´ z22 is the
union of the three half-planes Qp1, 1, 1q ` Qě0p0, 1, 0q, Qp1, 1, 1q ` Qě0p1, 0, 0q,
Qp1, 1, 1q ` Qě0p´2,´1, 0q with initial forms z1z3 ´ z2

3
, z2

3
` z2

2
and z1z3 ´ z2

2
,

respectively.
Take the parameterization of the curve given by px, yq ÞÑ rx2 ` y2 : xy : y2s.

From the Example 3.2 we have that the set F “ tx2 ` y2, xy, y2u forms a SAGBI
basis with respect to any weight ω from the cone C is tω | ω1 ą ω2 ě 0u. By

multiplying all such vectors ω by matrix AT “

ˆ

2 1 0
0 1 2

˙

we obtain a half-plane

tp2ω1, ω1 ` ω2, 2ω2q | ω1 ą ω2 ě 0u consisting of vectors opposite to the vectors
from the half-plane Qp1, 1, 1q ` Qě0p´2,´1, 0q. The vectors from this half-plane
define a flat toric degeneration of our curve to the rational normal quadric curve.
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The sign difference results from using max convention for valuation coming from
term order and min convention for the tropical variety.

3.4. Computational Complexity. In this section, we analyze the complexity
of SAGBI basis detection. Our main result is an analogue of [20, Theorem 3.2.6],
which provides upper bounds on the complexity of Gröbner basis detection. This
previous result states that Algorithm 1 runs in Opsn`2m2n´1dp2n`1qnq arithmetic
operations, where s denotes the number of input polynomials, each polynomial has
at most m monomials of total degree at most d, and n is the number of variables.
Thus, under a unit-cost computation model in the regime where the number of
variables n in the input is fixed, Gröbner bases can be detected in polynomial time.

In Theorem 3.6 below, we prove an analogous result for the SAGBI basis de-
tection problem for homogeneous polynomial algebras. Our goal is not to provide
the sharpest upper bounds possible. Rather, we seek to show that SAGBI basis
detection is fixed-parameter tractable, just as in the case of Gröbner bases.

Theorem 3.6. For fixed n, homogeneous SAGBI basis detection can be solved in

O

ˆˆ

s ` s2dn

s

˙

¨ m2n´1 ¨ s4n
2`11n`4 ¨ d2n

3`8n2`5n`1

˙

arithmetic operations.

Proof. By [20, Theorem 2.3.7], we can compute the normal fan of NewpFq in at
most Opsnm2n´1q arithmetic operations. Let ω be a weight vector from one of the
normal cones.

According to Theorem 2.4, to verify that F forms a SAGBI basis with respect
to ω we should find a generating set of binomials for the ideal IA, where A is
the n ˆ s matrix whose columns are the vectors αi P Nn occurring as leading
exponents of the fi, i.e., inωpfipxqq “ xαi . First, we bound the total degree of
generators of IA. For this we consider the Castelnuovo-Mumford regularity regpIAq,
which is the maximum of the numbers degpσq ´ i where σ is a minimal i-th syzygy
of IA. Since the i “ 0-th syzygies are simply the minimal generators of IA, regpIAq
is an upper bound for the maximal total degree of a generator of IA.

Let IA define a nA-dimensional toric variety in Ps´1. By [38, Theorem 4.5],

regpIAq ď s ¨ codimpIAq ¨ degpIAq ď s2 ¨ degpIAq.

The lattice ZA Ă Zn spans a vector space of dimension nA ` 1. By Kushnirenko’s
Theorem, degpIAq equals the normalized volume of convpAq inside of this lattice,
see e.g. [35, Section 3.1.2]. By assumption, |αi| “ αi,1 ` . . . ` αi,n is bounded
by d for each αi, and hence convpAq is contained in a lattice simplex of normalized
volume dnA ď dn. Therefore, generators of IA have degrees at most R :“ s2dn.

A crude estimate for the number of generators of IA is simply the number of
monomials in variables y1, . . . , ys of degree at most R, i.e.,

`

s`R

s

˘

.
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Consider now a single binomial generator of IA with degree at most R. After
substituting each of its variables with the corresponding fi, we obtain a polyno-
mial ppxq of degree at most dR. Applying a single iteration of the subduction
algorithm, we must find (or determine the non-existence of) v1, . . . , vs P Zě0 s. t.

inωpppxqq “ inωpf1pxqqv1 ¨ ¨ ¨ inωpfspxqqvs.

This is equivalent to finding a solution to the integer linear program Av “ b,
where all vi ě 0. Note that the columns of A are the exponents in the monomial
inωpfipxqq and b is the exponent of inωpppxqq. Thus, both A and b have entries
from t0, 1, . . . , dRu. Then, by [33, Corollary 1], there is an algorithm for solving
this integer program which can be carried out in time

Ops2n`2pndRqpn`1qp2n`1qq.

After a subduction step, the new polynomial p1pxq :“ ppxq ´ f1pxqv1 ¨ ¨ ¨ fspxqvs , if
nonzero, has a leading monomial xc with

(6) xw, cy ď xw,dy,

where d P Zn is the leading exponent on the previous subduction step. By [20,
Lemma 3.2.4], we can assume that ω is integral and has coordinates whose absolute
values are bounded from above by p2ndq2n. Thus, the number of subduction steps
is at most the number of solutions in c P Zn

ě0
to the inequality (6). Applying [20,

Lemma 3.2.5], this number is bounded by pn ¨ dR ¨ p2ndq2n ` 1qn.
Carrying out the analysis of subduction for each toric generator of IA, and all

possible choices of ω, we deduce that the total number of arithmetic operations is

Opsnm2n´1q ¨

ˆ

s ` R

s

˙

¨ Ops2n`2pndRqpn`1qp2n`1qq ¨ p22npndq2n`1R ` 1qn “

“ O

ˆˆ

s ` s2dn

s

˙

¨ m2n´1s3n`2pns2dpn`1qqpn`1qp2n`1q ¨ p22npndq2n`1s2dn ` 1qn
˙

.

For a fixed value of n, this is equivalent to

O

ˆˆ

s ` s2dn

s

˙

¨ m2n´1 ¨ s4n
2`11n`4 ¨ d2n

3`8n2`5n`1

˙

.

Thus, under the additional assumptions that s is fixed and all field arithmetic
operations have unit cost, SAGBI detection can be solved in polynomial time. �

3.5. Applications. Our results on the correctness and complexity of homoge-
neous SAGBI basis detection are of potential interest in applications to the theory
of Newton-Okounkov bodies. We briefly recall the highlights of this theory.
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3.5.1. Newton-Okounkov bodies. In this subsection, we assume that the polynomial
subalgebra S “ KrF s is equipped with a positive Z-grading: that is,

S “
à

kě0

Si, S0 “ K, SiSj Ď Si`j .

A natural grading arises when the algebra generators F are homogeneous poly-
nomials. Another common setting arises as follows: given L Ă Krxs, a vector
space over K spanned by finitely-many polynomials, then we may define a graded
algebra via

(7) SL “
à

kě0

tkLk Ă Krt,xs.

Consider a semigroup SpSL,ąq :“ texponent of inąpfq | f P SLu.

Definition 3.7. We define the Newton-Okounkov cone CpSL,ąq to be the closure
of the convex hull of SpSL,ąq. The Newton-Okounkov body ∆pSL,ąq is defined to
be the intersection of the Newton-Okounkov cone CpSL,ąq with the plane t1uˆRn.

When SpSL,ąq is finitely generated, i.e., SL admits a finite SAGBI basis, then
the cone CpSL,ąq is a rational polyhedral cone and ∆pSL,ąq is a rational polytope.

Note that we are conducting our discussion in the special case of finitely gener-
ated subalgebras of a polynomial ring and the corresponding projective unirational
varieties. In general, Newton-Okounkov bodies can be defined for a positively
graded domain equipped with a valuation, see eg. [26] or [30]. Newton-Okounkov
bodies generalize Newton polytopes for toric varieties and contain significant in-
formation about the algebra or the corresponding projective variety.

Theorem 3.5. [26, Corollary 3.2] Let X “ ProjpSLq Ă PdimL´1. Then the
dimension d of the convex body ∆pSL,ąq equals the dimension of the projective
variety X, and the d-dimensional Euclidean volume of ∆pSL,ąq multiplied by

d!

indpSpSL,ąqq

equals the degree of X. Here, indpSpSL,ąqq refers to the index of the sublattice
spanned by SpSL,ąq inside Zn.

3.6. Optimal term orders. For most choices of input, Algorithms 1 and 2 will
return a negative answer. Nevertheless, among all the equivalence classes of term
orders with respect to „F found by these algorithms, it is still possible to choose the
“best” with respect to some criterion. Gritzmann and Sturmfels suggest measuring
how far a set of polynomials is from being a Gröbner basis by looking at the
Hilbert function – see [20, Section 3.3]. Similar ideas work for SAGBI bases in the
homogeneous case. Let F be a set of s homogeneous polynomials on n variables
of total degree at most d, and denote S :“ KrF s. For two non-equivalent term
orders ω1 and ω2, consider the vector

(8)
`

hKrinω1
pFqsptq ´ hKrinω2

pFqsptq
˘

t“1,...,s2dn`1
,
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where hKrinωi
pFqsptq is the Hilbert function of the monomial algebra

Krinωi
pFqs “ Krinωi

pf1q, . . . , inωi
pfsqs.

Analogously to [20, Section 3.3], we say that ω1 is preferable to ω2 if the first
nonzero entry in the vector (8) is positive. We call a term order ω optimal if it is
preferable to any other term order.

Lemma 3.6. The set F is a SAGBI basis of S with respect to a term order ω if
and only if hSptq “ hKrinωpFqsptq for every t “ 1, . . . , s2dn`1.

Proof. If F forms a SAGBI basis, then KrinωpFqs “ inωpSq. We have

hKrinωpFqsptq “ hinωpSqptq “ hSptq

for every t P N, where the last equality is true due to [7, Proposition 1.6.2].
Conversely, suppose that F is not a SAGBI. Then there exists a binomial gener-

ator p of IA such that ppf1, . . . , fsq does not subduce to zero. This means that there
exists a non-zero normal form r of this polynomial as (1) with inωprq R KrinωpFqs.
In the proof of Theorem 3.6, we established that ppf1, . . . , fsq has degree t ď s2dn`1,
as does r. Then, since pKrinωpFqsqt is a proper subspace of pinωpSqqt, we have

dim pKrinωpFqsqt ă dim pinωpSqqt “ dimSt.

This contradicts the fact that hSptq “ hKrinωpFqsptq for every t “ 1, . . . , s2dn`1. �

The next result follows immediately.

Corollary 3.7. Let F be a SAGBI basis with respect to ω, then ω is optimal.

Remark 3.8. Lemma 3.6 gives another criterion for detecting SAGBI bases with
respect to a particular term order. It is often more efficient than using Theorem 2.4.
In our implementation, we have both methods for SAGBI verification.

It is interesting to consider other measures of closeness to being a SAGBI basis.
Fix term order ω and let VpIAω

q be a toric variety corresponding to the ideal IAω

as in Theorem 2.5. Let Pω be the convex hull of all lattice points from Aω.

Definition 3.8. We will call a term order ω1 nicer than ω2 when the dimension
of the projective toric variety VpIAω1

q is greater than that of VpIAω2
q, or when the

dimensions are equal and the degree of VpIAω1
q is greater than that of VpIAω2

q.

Niceness is easier to verify than preferability since one only needs to compute
the degree and dimension of the variety VpIAω

q, which in the case of a toric variety
is just the normalized volume and dimension of the associated polytope Pω.

Assume F forms a homogeneous SAGBI basis for S “ KrF s with respect to some
term order ω. Then the projective varieties VpIAω

q and ProjpinωpSqq coincide. In
particular, their degrees and dimensions are equal. This means that the dimension
of VpIAω

q and the volume of Pω are maximal among all possible values. That is,
the term order ω is the nicest. However, F may not form a SAGBI basis with
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respect to any of the nicest term orders ω1. This is only true if the toric variety
VpIA

ω1
q is normal: the maximal possible dimension and volume of Pω1 will establish

that the polytope Pω1 coincides with the polytope associated to the toric variety
Projpinω1pSqq. In other words, their Ehrhart polynomials must be equal, which for
normal toric varieties is equivalent to the equality of Hilbert functions.

4. Functionality

We have implemented the main Algorithms 1 and 2 in two software packages,
both named SagbiGbDetection [5], [4], for Macaulay2 [19] and Julia [1]. We use
this section to illustrate the basic functionality of both packages.

4.1. Macaulay2 Package. The function weightVectorsRealizingGB takes as in-
put a list of polynomials G “ tg1, . . . , gsu and returns a list of weight vectors (rep-
resenting the equivalence classes of term orders with respect to „G) with respect
to which these polynomials form a Gröbner basis for the ideal xGy. Polyhedral
computations are performed using the package Polyhedra [2], implemented in the
top-level Macaulay2 language, and Buchberger’s S-pair criterion relies on normal
form computation implemented in the core of Macualay2.

Example 4.1. Consider the polynomial ring Qrx, y, z, ws and the ideal defining
the twisted cubic in P3.

i1 : needsPackage "SagbiGbDetection";

i2 : R = QQ[x,y,z,w]; T = minors(2, matrix{{x,y,z},{y,z,w}});

i3 : C = first entries gens T;

i4 : weightVectorsRealizingGB C

o4 = {{6, 4, 4, 6}, {6, 6, 3, 5}, {5, 3, 6, 6}, {3, 6, 6, 3}}

o4 : List

Example 4.2. If the output of weightVectorsRealizingGB is an empty list, then
the given polynomials do not form a Gröbner basis for any term order.

i1 : needsPackage "SagbiGbDetection";

i2 : P = QQ[x,y]; G = {xˆ2+yˆ2-1, 2*x*y-1};

i3 : weightVectorsRealizingGB G

o3 = {}

o3 : List

Similarly, the function weightVectorsRealizingSAGBI takes as input a list of
polynomials F “ tf1, . . . , fsu and returns a list of term orders (representing
the equivalence classes w.r.t. „F) with respect to which these polynomials form
a SAGBI basis for the subalgebra KrF s. This relies on the implementation of
subduction provided by the package SubalgebraBases [9].
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Example 4.3. Let F “ tx, xy´y2, x2yu. Let ą1 be a term order such that y ą1 x,
then F is SAGBI basis for KrF s with respect to ą1. If ą2 is a term order such
that x ą2 y, then the initial algebra iną2

pKrF sq “ Krx, xy, xy2, . . . s is not finitely
generated.

i1 : needsPackage "SagbiGbDetection";

i2 : P = QQ[x,y]; S = {x, x*y-yˆ2, xˆ2*y};

i3 : weightVectorsRealizingSAGBI S

o3 = {{1, 2}}

o3 : List

Example 4.4. If the result of the function weightVectorsRealizingSAGBI is an
empty list, then the given polynomials are not a SAGBI basis for any term order.

i1 : needsPackage "SagbiGbDetection";

i2 : P = QQ[x,y]; F = {x+y, x*y, x*yˆ2};

i3 : weightVectorsRealizingSAGBI F

o3 = {}

o3 : List

4.2. Julia and basic examples. In Julia, we support polynomial rings and
polynomials through the package Singular.jl, an interface to the Singular com-
puter algebra system [15], which handles Gröbner basis computations. Addition-
ally, we rely on Polymake and its Julia interface [18, 23] for polyhedral computa-
tions, and our own top-level implementation of the subduction algorithm.

The two main functions in our Julia package have interfaces similar to the
corresponding Macaulay2 functions.

Example 4.5. The following is [39, Example 3.9].

1using Singular, SagbiGbDetection

2Q, (x,y,z) = Singular.polynomial_ring(Singular.QQ, ["x","y","z"]);

3G = [xˆ5 + yˆ3 + zˆ2 - 1, xˆ2 + yˆ2 + z - 1, xˆ6 + yˆ5 + zˆ3 - 1];

4weightVectorsRealizingGB(G,Q)

1-element Vector{Vector{fmpz}}:

[[12, 15, 27]]

Example 4.6. The algebra of symmetric polynomials has a finite SAGBI basis
with respect to any term order.

1using Singular, SagbiGbDetection

2S, (x,y,z) = Singular.polynomial_ring(Singular.QQ, ["x","y","z"]);

3Q = [x + y + z, x*y + x*z + y*z, x*y*z];

4weightVectorsRealizingSAGBI(Q,S)
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6-element Vector{Vector{fmpz}}:

[[3, 2, 1], [2, 3, 1], [3, 1, 2], [1, 3, 2], [2, 1, 3], [1, 2, 3]]

There are also additional functions: extractWeightVectors, that takes as input
a list of polynomials F and returns a list of term orders representing the equivalence
classes w.r.t. „F , and isUniversalGb (isUniversalSAGBI) which verify if the given
set of polynomials forms a universal Gröbner (SAGBI) basis.

5. Applications

We conclude by illustrating the use of our packages in the context of several
examples coming from applied algebraic geometry. The code examples for this
section have been summarized and are now accessible in the repository [3].

5.1. Examples from Algebraic Statistics. To model conditional independence
statements for random vectors drawn from a multivariate normal distribution,

X “ pX1, . . . , Xnq „ Npµ,Σq

let us define R :“ Rrσij | 1 ď i ă j ď ns, and let Σ “ pσi,jq be a n ˆ n

symmetric matrix whose entries are filled with indeterminates. Given pairwise
disjoint B1, B2, B3 Ď rns, the Gaussian conditional independence ideal [40],

IB1 ( B2|B3
Ď R

is generated by all maximal minors of the submatrix ΣB1YB3,B2YB3
with rows in-

dexed by B1YB3 and columns indexed by B2YB3.When B3 “ H, we have a Gauss-
ian independence ideal corresponding to the independence statement B1 (B2. We
associate an ideal to a finite list of (conditional) independence statements by sum-
ming the ideals associated to each individual statement, as in the next example.

Example 5.1. Let n “ 3, and C “ t1 ( 3, 1 ( 3 | 2u, then

Σ “

»

–

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

fi

fl ,

where IC “ xσ13, σ12σ23 ´ σ22σ13y. Using Algorithm 1, we deduce that the given
generators form a Gröbner basis with respect to ω “ p2, 3, 2, 3q.

An analogous, but more involved, class of examples from algebraic statistics are
the Sullivant-Talaska ideals. Gröbner bases for these ideals have only recently been
understood—we refer to [13] for the definitions and recent results. We consider
the simplest example below.
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Example 5.2. Consider the cycle graph C4 on vertices 1, . . . , 4. Let us pick two
vertices 1 and 3. We obtain a 3 ˆ 3 submatrix r1, 3s ˆ r3, 1s of Σ as follows:

»

—

—

–

σ11 σ12 σ13 σ14

σ12 σ22 σ23 σ24

σ13 σ23 σ33 σ34

σ14 σ24 σ34 σ44

fi

ffi

ffi

fl

.

Similarly, we can generate up 4 such submatrices corresponding to the circular
intervals r1, 3s “ t1, 2, 3u, r2, 4s “ t2, 3, 4u, r3, 1s “ t3, 4, 1u, r4, 2s “ t4, 1, 2u,
whose determinants generate the Sullivant-Talaska ideal I4. Utilizing the package
SagbiGbDetection, we have confirmed that these generators form a Gröbner basis
for 9 classes of term orders. We refer to [3] for the code supporting this observation.

5.2. Grassmannians and their generalizations. A classical result from in-
variant theory [37, Theorem 3.2.9] implies that the maximal minors of the general
matrix of indeterminates pxijq of size kˆn, k ă n, form a SAGBI basis with respect
to any diagonal term order, where a term order on Krxs is called diagonal if the
product of terms on the main diagonal is the leading term of each pk ˆ kq-minor.
The subalgebra generated by all such minors is a homogeneous coordinate alge-
bra of the Grassmannian Grpk, nq of k-dimensional subspaces in an n-dimensional
vector space in its Plücker embedding. For more background, see [32, Chapter 5].

Moreover, the maximal pk ˆ kq-minors form a universal Gröbner basis for the
ideal they generate, i.e., it is a Gröbner basis with respect to all term orders,
see [12]. On the other hand, the Plücker coordinates are a universal SAGBI basis
if k “ 2, but this property fails already for k “ 3, see [36, Corollary 5.6]. More
experiments with algebras of maximal minors are presented in the paper [6].

Example 5.3. For the Grassmannian Grp2, 4q the outputs of the functions
weightVectorsRealizingSAGBI and weightVectorsRealizingGB are identical and
consist of a 24-element vector of weights that represents all possible term orders
up to equivalence, see [3].

In [37, Theorem 3.2.9], the condition that the minors are maximal is essential.
For example, in [39, Example 11.7], Sturmfels shows that the p2 ˆ 2q-minors of a
general p3ˆ3q-matrix do not form a SAGBI basis with respect to the diagonal term
order. The question arises: do these minors form a SAGBI basis for some other
term order? Applying our functions, we can answer this question affirmatively.

Example 5.4. Consider a p3ˆ3q-matrix ptijq and its p2ˆ2q-minors. The outputs
of the functions weightVectorsRealizingSAGBI and weightVectorsRealizingGB

show that the given set of polynomials forms a SAGBI basis for 6 classes of term
orders and a Gröbner basis for 96 classes of term orders, see [3].

Another generalization of Grassmannians is presented in a recent work of
Faulstich, Sturmfels, Sverrisdóttir [16]. The authors explore methods of coupled
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cluster theory [17] arising in quantum chemistry and introduce a new type of pro-

jective unirational algebraic varieties Vσ in Ppn

kq´1, called truncation varieties, one
for each subset σ of rks “ t1, 2, . . . , ku. In particular, [16, Theorem 3.5] states
that Vt1u “ Grpk, nq.

Many nice properties of Grassmannian varieties follow from the result that the
Plücker coordinates form a SAGBI basis. In particular, SAGBI bases give rise to
toric degenerations whose centra fibers are projective toric varieties, see e.g. [22,
Section 2.3] or [11, 31] for details. We checked whether the same property holds
for the truncation variety Vt1,3u.

Example 5.5. Consider the truncation variety Vt1,3u with the parametrization
given by the set of polynomials

Q “ t1, z1, z2, z3, z4, z5, z6, z7, z8, z9,

pz1z5 ´ z2z4q, pz1z6 ´ z3z4q, pz2z6 ´ z3z5q,

pz1z8 ´ z2z7q, pz1z9 ´ z3z7q, pz2z9 ´ z3z8q,

pz4z8 ´ z5z7q, pz4z9 ´ z6z7q, pz5z9 ´ z6z8q,

z10 ` z1pz5z9 ´ z6z8q ´ z2pz4z9 ´ z6z7q ` z3pz4z8 ´ z5z7qu.

See [16, Chapter 3] for the construction of truncation varieties and [16,
Example 2.3] for the parameterization. The output of the function
weightVectorsRealizingSAGBI for t ¨ Q is empty, so t ¨ Q is not a SAGBI ba-
sis for any term order; see [3].

Remark. This example suggests a natural question: does there exist a non-trivial
truncation variety, i.e. not a Grassmannian a linear space, which admits a SAGBI
basis in its exponential parametrization presented in [16].

5.3. Algebras Generated by Principal minors. In this subsection, we illus-
trate how we can sometimes efficiently find a SAGBI basis even if the original
generating set of an algebra does not form one, using our notion of a nice term
order in Definition 3.8. The example concerns the principal minors of an arbitrary
symmetric matrix A P C3ˆ3, which we may think of as a point in P5. Consider the
projective principal minor map

γ : P5 Ñ P7

A “ raijs ÞÑ all the principal minors of A.

The closure of the image γ is a hypersurface in P7. As observed by Holtz and
Sturmfels [21], its implicit equation is given by Cayley’s 2ˆ2ˆ2 hyperdeterminant.
This hypersurface also has an interpretation in computer vision (see [29, §2.1]) as
the locus of flatlander trifocal tensors for three pinhole projections P2

99K P1 with
collinear centers. It has a dimension 6 and a degree 4. We denote by F the set of
8 principal minors multiplied by the scaling variable t, and by S :“ CrF s Ă Crt, as
its homogeneous coordinate ring.
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Using the function weightVectorsRealizingSAGBI, we check that F does not
form a SAGBI basis for any term order. The function extractWeightVectors

computes 14 equivalence classes of term orders with respect to F . Among them,
there are only 5 equivalence classes with respect to S. For each ω of these
5 term orders, we compute the dimension and the degree of the toric variety
Yω :“ SpecpCrinωpFqsq and the SAGBI basis for S with respect to ω.

dimYω deg Yω SAGBI in degree ď 5, ď 6 cardinality of reduced SAGBI basis

6 3 false false —
6 2 true true 9
5 3 false true 11
4 4 false true 14
3 6 false false 25

We see that, in the cases where have verified that the algebra CrinωpFqs is finitely
generated in degree ď 6, we obtain the degree-wise and cardinality-wise smallest
SAGBI basis for the second weight, for which the dimension of dimYω is maximized.
Note, however, that greed is not always good; the first row corresponds to the nicest
class of term orders, but in this case, there is no SAGBI basis in degree ď 6.
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scientifiques de l’École Normale Supérieure, 42(5):783–835, 2009.
[31] Igor Makhlin. Chain-order polytopes: toric degenerations, young tableaux and monomial

bases. 2022.
[32] M. Micha lek and B. Sturmfels. Invitation to nonlinear algebra, volume 211, Graduate Studies

in Mathematics. American Mathematical Society, 2021.

https://macaulay2.com/
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