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Abstract

We propose a test problem for Navier–Stokes solvers based on the flow around a cylinder.
We choose a range of Reynolds numbers for which the flow is time-dependent but can be charac-
terized as essentially two-dimensional. The test problem requires accurate resolution of chaotic
dynamics over a long time interval. It also requires the use of a relatively large computational
domain, part of which is curved, and it requires evaluation of derivatives of the solution and
pressure on the curved boundary. We review the performance of different finite element meth-
ods for the proposed range of Reynolds numbers. These tests indicate that some of the most
established methods do not capture the correct behavior.

We present a classic fluids problem, flow around a cylinder, as a challenge for numerical schemes.
As reviewed in [35], there is ample experimental data with which to compare simulations. To make
the challenge more tractable, we focus on 2D simulations and lower Reynolds numbers. We list
some references where the computations are at variance with existing information.

Flow around a cylinder is not only a fundamental problem in fluid dynamics but also a practical
problem of interest in energy generation. So-called bladeless turbines [3, 9, 11] have been proposed
as a viable energy generation method. The design of such systems requires accurate simulations of
the flow around cylinders.

We review some published examples where erroneous results were obtained. We also show that
some commonly used techniques fail to give acceptable results at Reynolds numbers of interest. As
computational simulation has emerged as a new form of experimentation in physics, it is essential
to have some benchmarks that give guidance, which we use here. For many flow problems, there is
no dispute regarding the Navier–Stokes equations as a suitable model, as we do here. However, this
requires reliable methods to decide fundamental physics questions, such as whether the resulting
flow is chaotic at a given Reynolds number.

Flow around a cylinder has been proposed as a test problem before [30, 18]. What is different
here is that we focus on a range of Reynolds numbers for which the flow appears to be chaotic
[35]. Thus, different metrics must be used to compare different numerical methods. Moreover, the
time interval for the simulation is quite long, so this simulation evaluates the ability of different
discretizations with regard to accumulation of numerical error and challenges the implementations
with regard to efficiency.

We focus on simple metrics so that different methods can be compared easily. The lift and
drag on a cylinder are two scalar quantities computed by many methods and measured in many
experiments. Another metric is the Strouhal number or period of the time-dependent flow. In
[35], a simple approach was used to estimate the periodicity of chaotic flow. We present a slightly
improved method compared to [35] for evaluating the Strouhal period that provides an indication
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Figure 1: Relfdata compared to the data computed in [35] computed with the SV-CNAB scheme and the new data
presented here.

of the transition to chaos. Additional metrics, such as the Lyapunov exponent and the fractal
dimension of the attractor, provide a finer level of detail regarding the flow dynamics [35].

When the Reynolds number is more than 104, the flow becomes three-dimensional [17]. Thus,
we restrict ourselves to Reynolds numbers in the range [102, 104] for simplicity. Three-dimensional
effects of a different kind are seen [38] at lower Reynolds numbers due to the finite length of
cylinders used in experiments. However, these are potentially like so-called blocking effects in
two-dimensional flow [29], which become less significant at higher Reynolds numbers.

In this work, We consider several methods that are well-studied and have a solid theoretical base.
We compare their performance to a fifth method used in [35], and we find that the simulations in [35]
were under-resolved for higher Reynolds numbers. Our main conclusion is that high-order methods
are necessary to obtain reliable results at higher Reynolds numbers. Surprisingly, the commonly
used, lowest-order Taylor–Hood method is not accurate enough to be used in such settings. It
appears that methods that result in exactly divergence-free velocity solutions have a significant
advantage at higher Reynolds numbers, even though the one we investigate is non-conforming.

One of the main conclusions from [35] was that the simulation drag values differ substantially
from experiments, as shown in Figure 1. We confirm this conclusion here, suggesting that cylinder
vibration likely plays a significant role in practice [39].

1 Setting the problem and model equations
Suppose that (u, p) is a solution of the time-dependent Navier–Stokes equations in a domain Ω ⊂ Rd

containing an obstacle with boundary Γ ⊂ ∂Ω. This fulfills the equations

∂tu − ν∆u + u · ∇u + ∇p = 0 in Ω,

∇· u = 0 in Ω,
(1)

with the kinematic viscosity ν, and together with boundary conditions

u = g on ∂Ω\Γ, u = 0 on Γ. (2)

For the well-posedness of these equations, see [12].
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Figure 2: Left: Left section of mesh for the TH and MCS methods with h = 8. Right: Zoom in to the cylinder of the
same mesh.

1.1 Problem Set-up

For our simulations, we consider the domain

Ω =
{

(x, y) : −30 < x < 300, |y| < 30, x2 + y2 > 1
}

. (3)

The boundary condition is set as g = (1, 0)T and the cylinder diameter as the reference length, the
Reynolds number is given by Re = 2/ν. We consider the time interval [0, 500].

1.2 Weak formulation of the Navier-Stokes equations

While this test problem is not limited to finite-element simulations, we expect many will be done
with finite elements. To this end, we require a variational formulation of (1). The Navier-Stokes
equations can be written in a weak (or variational) form as follows:

Find v ∈ (H1
g (Ω))d and p ∈ L2

0(Ω) such that

(∂tu, w)L2(Ω) + a(u, w) + b(w, p) + c(u, u, w) = 0 ∀w ∈ (H1
0 (Ω))d,

b(u, q) = 0 ∀q ∈ L2
0(Ω).

(4)

The space H1
g (Ω) is the space of H1 functions with trace g on the (outer) boundary, H1

0 (Ω) is the
space of H1 functions with trace 0 on the boundary and L2

0(Ω) is the space of L2 functions with
mean zero. The bilinear forms a(·, ·) and b(·, ·) are defined as

a(v, w) =
∫

Ω

ν

2D(v) : D(w) dx, b(v, q) = −
∫

Ω
q(∇ · v) dx,

respectively, where D(v) = ∇v + ∇vt and the colon (:) indicates the Frobenious inner-product of
matrices. The convective (nonlinear) term takes various forms. By default, we take it to be

c(u, v, w) = cconv(u, v, w) =
∫

Ω
(u · ∇v) · w dx.

For divergence-free functions, the various forms of the convective term are equivalent. Hence,
we may take the above so-called convective form of the trilinear form for exactly divergence-free
methods. However, for non-divergence-free methods, other forms are beneficial, see below.
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1.3 Drag and lift evaluation

The flow of fluid around an obstacle generates a force called drag, which is a fundamental concept
in fluid dynamics [22]. It plays a critical role in determining the behavior of objects in flight and
has been studied since the time of d’Alembert [13]. Drag is composed of two components: pressure
drag βp and viscous drag βv, which can be calculated by evaluating the following functions using
v = (1, 0):

βv(v) =
∮

Γ

(
(νD(u))v

)
· n ds, βp(v) =

∮
Γ

−pv · n ds. (5)

The full drag β is defined by β = βv + βp. Similarly, lift is computed using v = (0, 1).

1.3.1 Alternate drag evaluation

Another way [18] to evaluate β is to test the weak formulation of (1) (see (4) below) with a
non-conforming test function. This results in the functional

ω(v) =
∫

Ω
∂tu v dx +

∫
Ω

ν

2D(u) : D(v) + (u · ∇u) · v − p∇· v dx, (6)

Then ω(v) = β(v) for all v ∈ H1(Ω)d [18, 14]. This form is potentially more accurate, but it
requires an accurate approximation of the time derivative ∂tu.

This approach may be traced back to [2]. It is also known, that for the case of strongly imposed
Dirichlet boundary conditions, this approach of testing the residual with a non-conforming test-
function doubles the rate of convergence for the drag and lift, see, for example [4] for the proof in
the steady case.

Having two ways to compute drag and lift provides a valuable internal check of the accuracy of
the simulation.

2 Challenge computation
The data in Figure 1 suggests a significant disagreement between computation and experiment.
This could be for a variety of reasons. The most obvious is some flaw in the computational scheme.
Thus, we propose this problem as a computational challenge to see what other methods predict.

Another reason for the disagreement could be that the model is wrong. Experimentalists have
raised the issue that the cylinders used could vibrate. In particular, the Relf data is based on flows
past thin wires, used in musical instruments for their vibrational qualities. Thus, one response to
the challenge is to allow the cylinder to vibrate back and forth in response to the oscillating lift
and drag. The question would be to evaluate how oscillations of the cylinder change parameters
describing the flow, such as drag, lift, and Strouhal number, representing the frequency of the
generated vortices. One study with forced vibrations [25, Figure 6.9, page 179] suggests that the
change could be substantial.

3 Discretization methods
The simulations in this paper are done using finite element methods. We, therefore, begin py
presenting some details of the finite element approach.
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To discretize the weak formulation (4) with finite element methods, we take a mesh of the
domain Ω with characteristic length h, denoted as Th. Finite element spaces then look to discretize
(4) by approximating the spaces H1(Ω) and L2(Ω) with spaces of piecewise polynomials on each
element of the mesh, with varying degree of discontinuity of these polynomials over element edges.

We utilize two well-established simulation methods for which extensive numerical analysis is
available, establishing not only convergence but also detailed simulation properties.

3.1 H(div) conforming finite element discretization

We consider an H(div)-conforming finite element method based on [16, 15]. This discretization
is based on mass-conserving mixed formulation with symmetric stresses, also known as the MCS
formulation. This approach discretizes the velocity in H(div) using Brezzi–Douglas–Marini (BDM)
elements [34]. That is, the normal component of the velocity is continuous across element bound-
aries, while the tangential component is discontinuous. The pressure is discretized using discon-
tinuous elements. This method is exactly mass conserving and pressure-robust. From a numerical
point of view, pressure-robust methods have several advantages. First, the velocity remains un-
changed by irrotational changes in any external forcing term, a property that most methods do not
preserve on the discrete level [23]. More importantly, pressure-robust methods have the property
that the velocity error is independent of the pressure error [20]. This contrasts classical Galerkin
discretizations of the (Navier)-Stokes equations, where the velocity error depends on 1

ν times the
pressure error. From a physical point of view, exactly divergence-free methods have the advantage
that, in addition to mass, kinetic energy, linear momentum, and angular momentum are conserved
on the discrete level [6, 33].

Furthermore, this method is based on a formulation where an additional variable σ = ν∇u
which is discretised in the function space H(curl div). Thus the energy form is modified to

a′(σ, τ) = 1
ν

∫
Ω

σ : τ dx,

and a new form is defined:

b′(τ, u) =
∑

T ∈Th

∫
T

∇· (τ) · u dx +
∑

e∈Th

∫
e
[τnn]u · n ds,

where Th is the triangular mesh, T denotes triangles in Th, and e denotes edges in Th. The expression
[τnn] denotes the jump in the normal-normal component of the tensor τ across the edge e, and n
is the normal to the edge. Note that the orientation of the normal is not material. Thus the
formulation is

a′(σh, τh) + b′(τh, uh) = 0 ∀τh ∈ Σh,

(∂tuh, vh)L2(Ω) + b′(σh, vh) + c(uh, uh, vh) + b(vh, ph) = 0 ∀vh ∈ Vh,

b(uh, qh) = 0 ∀qh ∈ Qh.

(7)

Here, Σh is a space of discontinuous piecewise polynomials of degree k, whose values are trace-
zero tensors satisfying continuity of the ‘normal-tangential component’ across edges and that the
normal-tangential component is a polynomial of order k − 1 on each edge, Vh denotes the BDMk
finite-element space of order k, and Qh consists of discontinuous piecewise polynomials of degree
k − 1.
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As H(div) spaces are characterized by normal continuity across facets, boundary condition in
the normal components are imposed strongly. The implementation used uses hybridisation for the
tangential component of the velocity. That is, a second finite element space is used to couple the
tangential component across element facets and the tangential part of the boundary condition is
enforced strongly on the facet space.

For time-stepping we use a second order IMEX scheme known as SBDF2 [1]. This scheme
uses the BDF2 scheme to discretise the time-derivative, the Stokes term is fully implicit, and the
non-linear convective term is treated explicitly with a second order extrapolation:

a′(σn
h , τh) + b′(τh, un

h) = 0 ∀τh ∈ Σh, (8a)
1

∆t(
3
2un

h − 2un−1
h + 1

2un−2
h , vh)L2(Ω) + b′(σn

h , vh) + b(vh, pn
h)

+ 2c(un−1
h , un−1

h , vh) − c(un−2
h , un−2

h , vh) = 0 ∀vh ∈ Vh, (8b)
b(un

h, qh) = 0 ∀qh ∈ Qh. (8c)

To regularize the saddle-point system and to fix the pressure constant in the case of pure Dirichlet
boundary conditions, we may add a small perturbation to the lower right pressure block of the
block-system resulting from (8). That is, we modify (8c) to

−
∫

Ω
qh(∇ · un

h) + ϵ

∫
Ω

pn
hqv dx = −

∫
Ω

qh((∇ · un
h) − ϵpn

h) dx = 0, ∀qh ∈ Qh, (9)

with some ϵ > 0. Since our discrete spaces Vh, Qh satisfy the discrete de-Rahm complex [20], we
have the property that ∇ · Vh = Qh. Consequently, we can replace qh with ∇ · vh in (9). This gives
us an equation for the pressure, which we may plug into the second equation in (8). This leads to
the discrete system,

a′(σn
h , τh) + b′(τh, un

h) + 1
∆t(

3
2un

h, vh)L2(Ω) + b′(σn
h , vh) − b(vh, 1

ϵ ∇ · uh). (10)

This is a smaller linear system to solve, and the system is no longer a saddle point problem, making
it an easier system to solve numerically. We want to choose ϵ small to keep the perturbation from
the divergence constraint small. However, this means that the 1

ϵ -scaled term causes the linear
system (10) to be very ill-conditioned. Consequently, we need to use direct linear solvers to handle
these ill-conditioned linear systems, which in turn limits us with respect to the maximal size of the
system we can solve and the parallel scalability. With the small perturbation, the divergence of uh

is no longer exactly zero, but
∥∥∇· un

h

∥∥
L2 ≤ ϵ

∥∥pn
h

∥∥
L2 . In the computations, we chose ϵ = 10−12/ν.

We will refer to approach above as MCSk, where k is the order of the velocity finite element space.
This approach is implemented using Netgen/NGSolve [31, 32] and based on a template available
on github1.

3.2 Taylor-Hood

To compare with more established methods, we also consider Taylor-Hood elements consisting of
H1-conforming finite elements of order k ≥ 2 for the velocity and order k − 1 for the pressure.

To stabilize this scheme, we optionally add grad-div stabilisation to improve the conservation
of mass[26, 7]. That is, we add the term

jh(uh, vh) := γgd

∫
Ω

∇ · uh∇ · vh dx, (11)

1https://github.com/NGSolve/modeltemplates
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to our bilinear form. In our computations, we take γgd = 103, and we refer to this method as gdTHk,
where k is the order of the velocity space. In case no grad-div stabilization is used, we refer to the
method as THk. Furthermore, we note that it is known that for γgd → ∞, the grad-div stabilized
Taylor-Hood solution converges to the Scott-Vogelius solution [5, 24].

For the convective term, there are multiple choices possible, we take the divergence form [19],

cdiv(u, v, w) = cconv(u, v, w) + 1
2

∫
Ω

(∇ · u)v · w dx, (12)

which is equivalent to the standard convective form on the continuous level, but vanishes under
less restrictive conditions for v = w on the discrete level.

Thus the variational formulation takes the form

(∂tuh, wh)L2(Ω) + a(uh, wh) + jh(uh, wh) + b(wh, ph) + cdiv(uh, uh, wh) = 0 ∀wh ∈ Vh,

b(uh, qh) = 0 ∀qh ∈ Qh,
(13)

where Vh is the standard Lagrange space of continuous, piecewise polynomials of degree k ≥ 2, and
Qh is the standard Lagrange space of continuous, piecewise polynomials of degree k − 1.

To discretise in time-we use the fully implicit Crank-Nicolson scheme, that is

1
∆t(u

n
h − un−1

h , wh)L2(Ω) + 1
2

(
a(un

h, wh) + cdiv(un
h, un

h, wh)
)

+ jh(un
h, wh) + b(wh, pn

h)

+1
2

(
a(un−1

h , wh) + cdiv(un−1
h , un−1

h , wh)
)

= 0 ∀wh ∈ Vh,

b(un
h, qh) = 0 ∀qh ∈ Qh,

(14)

Note that we do not take into account the pressure from the previous time step, nor do we add
the grad-div stabilization term from the last time step. This is because the method needs to
correctly reflect that the is Langrange-multiplier to weakly enforce the divergence constraint [28,
Section 4.1.4]. Similarly, the grad-div form is also there to penalize deviations from the divergence
constraint.

We use a quasi-Newton method with line search to solve the nonlinear systems arising in every
time step. More precisely, we only recompute the factorization of the inverse Jacobi-matrix if the
residual decreases by less than a factor of 0.3. The line search consists of a check that the Newton
update has decreased the residual. Otherwise, we reduce the size of the update by half recursively
until the residual has decreased compared to the previous iteration. We start each quasi-Newton
iteration with (uh, ph) from the previous time step. As the scheme is fully implicit, we can use
time steps independent of the mesh size, and as the Jacobi-matrix rarely has to be refactorized,
the method is essentially as efficient as IMEX schemes.

The Taylor–Hood methods are also implemented using Netgen/NGSolve. The meshes used are
constructed as those for the H(div)-conforming method in Section 3.1.

3.3 Scott–Vogelius

As a final method, we also consider the Scott–Vogeluis finite element pair. This finite element pair
is very similar to the Taylor–Hood pair, using H1-conforming finite elements for the velocity but
discontinuous elements of order k − 1 for the pressure. Consequently, we use the same variational
formulation time-stepping scheme used for the unstabilized Taylor-Hood method. For k ≥ 4 in two
dimensions, this method is inf-sup stable on meshes without nearly singular vertices [37, 36] and
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for k ≥ d = 2 on barycentric refined meshes [27, 40]. This method is also exactly divergence-free
and pressure-robust.

There are different ways that the Scott–Vogelius method [34] can be implemented. In [35],
the iterated penalty method was used to avoid explicit knowledge of the pressure space. However,
this approach was plagued by nearly singular vertices [14] in the meshes used. Here, we utilize
the Netgen mesh generator, which, for the cylinder problem, does not have any singular or nearly
singular vertices. Thus, the mixed-method implementation of Scott–Vogelius can be used, and
in this case, there is only one change from the (unstabilized) Taylor–Hood method, namely, the
pressure elements are discontinuous instead of continuous. One drawback of this approach is the
linear systems are larger, and it appears that for Reynolds number 8000 (Table 7), it is no longer
possible to keep the divergence very small. Upon closer examination, it was found that the Newton
step was not converging at a few time steps, and the divergence also spiked there. In general, the
divergence was very small except at these few times. Furthermore, it is worth mentioning that,
unlike the unstabilized Taylor-Hood method, the lack of convergence of Newton’s method did not
lead to a blow-up of the solution.

3.4 Meshes

We used several meshes for our experiments. For the methods described in Section 3, the meshes
are unstructured simplicial meshes constructed using Netgen [31] using a bulk mesh parameter hmax
and a local mesh size hmin = hmax/250 on the boundary of the cylinder. The part of the coarsest
mesh (hmax = 8) around the cylinder is visualized in Figure 2.

For hmax = 8, 4, 2, the Taylor-Hood finite element space has a total of 6994, 163107, and 437439
degrees of freedom (dofs), respectively, for the saddle point system. The Scott-Vogelius saddle point
systems have 87858, 205176, and 551434 dofs, respectively, due to the larger pressure space. On
the same meshes, the MSC method has 95856, 224487, and 604047 dofs for the stress and velocity
space in which we solve the problem. However, we emphasize that a direct comparison of dofs is
not appropriate, as different types of systems must be solved for each method, and the methods
have significant differences regarding their approximation power.

3.5 Computing the period

Following [35], we estimate the period of the drag-lift trajectory as follows. For selected points
along the trajectory (about 100 per period), we consider points from roughly one-half period away
to three-halfs away and determine the point of closest approach. We start with an estimated average
period, and for each initial point we, obtain an estimated period. Histograms of such estimates
are given in Figure 6. Taking the average period from this data gives an estimate of the Strouhal
period that can be used to refine the process, providing a new estimated average period. To allow
for estimates of the period at a finer grain than the individual time steps, we used a quadratic
interpolation of estimated periods to allow for prediction of the period to second order. That is,
we found the trajectory error at the optimal point and then considered the error at the time steps
on either side of this. Fitting this data with a quadratic and finding the minimum of the quadratic
provided an estimated period to within a fraction of ∆t.

8



Figure 3: Vorticity of the flow with Reynolds number 500 at t = 300 computed using the MCS4 method on the mesh
with hmax = 2.

4 Computational experiments
We consider Reynolds numbers between 120 and 8000. The results for Reynolds numbers 120, 250,
500, 1000, 2000, 4000, and 8000 are shown in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6,
and Table 7, respectively. Furthermore, results for Reynolds numbers between 1100 and 1800 are
shown in Table 8. Finally, the vorticity of the resulting flow computed on the finest mesh with
the MSC method is shown for Reynolds numbers 500, 1000, and 2000 in Figure 3, Figure 4, and
Figure 5, respectively.

4.1 Reynolds 120–500

We began with a small Reynolds number (120) to provide a low bar for diverse methods. Neverthe-
less, Table 1 shows that unstabilized, low-order (k = 2) Taylor–Hood, which is commonly thought
of as the workhorse for fluid flow, struggled to get a viable result. By contrast, all of the high-order
methods agree to several digits in the prediction of the Strouhal period and drag. The stabilized
Taylor–Hood for k = 2 is between the high-order predictions and the unstabilized k = 2 results.
Note that at this Reynolds number, stabilization of high-order (k = 4) Taylor–Hood does not make
a difference, except on the size of the divergence error.

Table 2 tells a similar story with Reynolds number 250. The high-order methods are in agree-
ment and the low-order methods are substandard, in particular suggesting chaotic behavior.

For Reynolds numbers 500 and higher, we decided to drop the lowest-order Taylor–Hood simu-
lation data. This is due to the method’s poor performance at the lower Reynolds numbers. In some
cases, the unstabilized did not even continue to time 500, with the Newton iteration failing and
the solution blowing up. For Reynolds number 500, c.f. Table 3, even the stabilized lowest-order
Taylor–Hood simulation data is not viable. For higher Reynolds numbers, we no longer report
results using this method. Finally, the vorticity of the velocity solution from the MCS method on
the finest mesh is shown in Figure 3. Here, we see the periodic flow in the wake of the cylinder for
about 70 spatial units, after which the flow transitions away into more chaotic behavior. However,
since our mesh is very coarse in this part of the domain, compared to the resolution around the
cylinder, we do not claim that this is the fully resolved behavior so far downstream in the channel.

4.2 Reynolds 1000 and higher

For Reynolds numbers 1000 and higher, only three methods remain viable: the pressure-robust
MSC and Scott–Vogelius methods, and the grad-div stabilized high-order Taylor–Hood method.
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Method hmax / hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2(Ω))

MCS4 8 / 0.032 0.005 280 480 1.3486 11.339 ± 0.00073 NA
MCS4 4 / 0.016 0.0025 280 480 1.3485 11.337 ± 0.00085 NA
MCS4 2 / 0.008 0.00125 280 480 1.3482 11.337 ± 0.00098 NA

SV4 8 / 0.032 0.01 280 480 1.3542 11.303 ± 0.00354 2.83 × 10−7

gdTH4 8 / 0.032 0.01 280 480 1.3541 11.304 ± 0.00350 3.44 × 10−3

gdTH4 4 / 0.016 0.01 280 480 1.3492 11.339 ± 0.00005 1.52 × 10−3

gdTH4 2 / 0.008 0.01 280 480 1.3476 11.338 ± 0.00010 5.72 × 10−4

gdTH2 8 / 0.032 0.01 280 480 1.4633 11.139 ± 0.28907 1.35 × 10−2

gdTH2 4 / 0.016 0.01 280 480 1.3222 11.814 ± 0.05813 1.10 × 10−2

TH4 8 / 0.032 0.01 280 480 1.3443 11.379 ± 0.00049 3.74 × 100

TH4 4 / 0.016 0.01 280 480 1.3492 11.339 ± 0.00005 2.57 × 100

TH2 8 / 0.032 0.01 280 380 1.1136 9.518 ± 3.01488 8.61 × 101

TH2 4 / 0.016 0.01 280 480 1.0662 7.898 ± 2.89044 5.42 × 100

TH2 2 / 0.008 0.01 280 480 1.2397 9.368 ± 2.66038 2.35 × 100

Table 1: Reynolds number 120. The consensus values for the average drag is 1.348 and for the Strouhal period is
11.34.

Method hmax / hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2(Ω))

MCS4 8 / 0.032 0.005 280 480 1.3750 9.681 ± 0.00011 NA
MCS4 4 / 0.016 0.0025 280 480 1.3769 9.673 ± 0.00013 NA
MCS4 2 / 0.008 0.00125 280 480 1.3760 9.680 ± 0.00023 NA

gdTH4 8 / 0.032 0.01 280 480 1.3867 9.658 ± 0.01316 5.77 × 10−3

gdTH4 4 / 0.016 0.01 280 480 1.3749 9.679 ± 0.00007 3.84 × 10−3

gdTH4 2 / 0.008 0.01 280 480 1.3765 9.684 ± 0.00009 1.21 × 10−3

gdTH2 8 / 0.032 0.01 280 480 1.3531 9.460 ± 1.79078 1.67 × 10−2

gdTH2 4 / 0.016 0.01 280 480 1.3529 9.732 ± 0.35677 1.47 × 10−2

TH2 2 / 0.008 0.01 280 480 1.0144 9.488 ± 2.64040 1.22 × 102

Table 2: Reynolds number 250. The consensus values for the average drag is 1.376 and for the Strouhal period is
9.680.

Method hmax / hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2(Ω))

MCS4 8 / 0.032 0.002 280 480 1.4464 8.836 ± 0.00004 NA
MCS4 4 / 0.016 0.001 280 480 1.4499 8.811 ± 0.00006 NA
MCS4 2 / 0.008 0.0005 280 480 1.4477 8.822 ± 0.00016 NA

gdTH4 8 / 0.032 0.01 280 450 1.4537 8.823 ± 0.43717 7.82 × 10−3

gdTH4 4 / 0.016 0.01 280 480 1.4488 8.877 ± 0.00796 4.77 × 10−3

gdTH4 2 / 0.008 0.01 280 480 1.4483 8.811 ± 0.00007 2.85 × 10−3

gdTH2 8 / 0.032 0.01 280 480 1.3838 8.966 ± 1.90009 2.09 × 10−2

gdTH2 4 / 0.016 0.01 280 480 1.3753 8.716 ± 1.20772 1.82 × 10−2

Table 3: Reynolds number 500. The consensus values for the average drag is 1.448 and for the Strouhal period is
8.82.
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The results are presented in Table 4 for Reynolds number 1000. Additionally, the vorticity of the
MSC method on the finest mesh at time t = 300 is shown in Figure 4.

At Reynolds number 1000, the drag-lift dynamics are very close to periodic but have a very
small standard deviation in the computed period. In particular, we see in Figure 4 that the solution
remains periodic for about 40 units downstream of the cylinder before the solution transitions into
chaos. However, we again cannot claim high accuracy of the solution in this part of the domain,
compared to close to the cylinder. Furthermore, the gdTH4 and SV4 drag-lift dynamics are only
periodic on the finest mesh considered. Nevertheless, the Scott–Vogelius method on the second
mesh presents a significantly smaller standard deviation of the Strouhal period compared to the
solution of the stabilized Taylor–Hood method. Overall, it is harder to get a close agreement for
the average drag and even harder for the Strouhal period at this and higher Reynolds numbers.

In Table 5, we see for Reynolds number 2000 that the drag-lift dynamics is no longer periodic,
as also observed in [8]. Similar to [8, Fig. 7], we observe an oscillation of the wake of the flow
behind the cylinder in Figure 5.

As the drag-lift dynamics is no longer periodic at Reynolds number 2000, we computed the flow
for a sequence of Reynolds number values between 1000 and 2000 to see how the chaos emerges, as
shown in Table 8. We obtain a plausibly periodic solution at Reynolds number 1125, but with an
ever-increasing standard deviation of the Strouhal period as the Reynolds number increases, even
on the finest meshes.

For Reynolds numbers 4000 and higher, we no longer attempt to provide consensus values for
the Strouhal period or drag; see Table 6 and Table 7. Furthermore, Figure 6 illustrates how the
spread in the computed Strouhal period increases with increasing Reynolds number.

4.2.1 Better to be div-zero than conforming?

As far as we are aware, there are no direct comparisons between conforming and non-conforming
pressure-robust methods, so our results give some data on this issue. A direct comparison between
fully discontinuous Galerkin and a H(div)-conforming method was performed in [10]. Our results
indicate that the H(div)-conforming MCS method is slightly better than stabilized Taylor–Hood in
many cases. This suggests that there is an advantage to being exactly divergence-zero, with little
penalty due to the nonconformity of the velocity. This may be because the MCS method, like Scott–
Vogelius, is pressure robust, i.e., the velocity error is independent of the pressure error. On the
other hand, for Reynolds number 4000 (Table 6), we see that the MCS predictions have a significant
variation with regard to mesh variation. The Scott–Vogelius predictions tend to be smaller than
Taylor–Hood. For Reynolds number 8000 (Table 7), we see that the MCS prediction for the average
drag coefficient differs significantly from the Scott–Vogelius and Taylor–Hood predictions. However,
as noted above, the Newton iteration failed to converge in a few time steps in the Scott–Vogelius
computation, although it did converge in the stabilized Taylor–Hood simulation.

5 Other methods
We survey briefly other methods that have been used for simulating flow around a cylinder.
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Method hmax / hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2(Ω))

MCS4 8 / 0.032 0.001 280 480 1.5420 8.351 ± 0.00005 NA
MCS4 4 / 0.016 0.0005 280 480 1.5504 8.322 ± 0.00036 NA
MCS4 4 / 0.016 0.00025 280 480 1.5384 8.361 ± 0.00318 NA

gdTH4 8 / 0.032 0.01 280 480 1.5343 8.481 ± 1.30527 1.07 × 10−2

gdTH4 4 / 0.016 0.01 280 480 1.5162 8.297 ± 0.42448 6.79 × 10−3

gdTH4 4 / 0.016 0.005 280 480 1.5163 8.302 ± 0.41216 6.78 × 10−3

gdTH4 2 / 0.008 0.01 280 480 1.5444 8.365 ± 0.00169 5.13 × 10−3

SV4 8 / 0.032 0.01 280 480 1.5400 8.550 ± 1.31361 9.78 × 10−6

SV4 4 / 0.016 0.01 280 480 1.5168 8.278 ± 0.24277 4.40 × 10−7

SV4 2 / 0.008 0.01 280 480 1.5444 8.365 ± 0.00157 1.18 × 10−7

Table 4: Reynolds number 1000. The consensus values for the average drag is 1.54 and for the Strouhal period is
8.36.

Figure 4: Vorticity of the flow with Reynolds number 1000 at t = 300 computed using the MCS4 method on the mesh
with hmax = 2.

Method hmax / hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2(Ω))

MCS4 8 / 0.032 0.001 280 480 1.6447 8.441 ± 0.99875 NA
MCS4 4 / 0.016 0.0005 280 480 1.6470 8.417 ± 0.95675 NA
MCS4 2 / 0.008 0.00025 280 480 1.6411 8.407 ± 0.94202 NA

SV4 2 / 0.008 0.01 280 480 1.6603 8.066 ± 0.68569 1.75 × 10−7

gdTH4 4 / 0.016 0.01 280 480 1.5798 8.902 ± 1.27449 9.55 × 10−3

gdTH4 2 / 0.008 0.01 280 480 1.6524 8.365 ± 0.96296 5.61 × 10−3

Table 5: Reynolds number 2000. The consensus values for the average drag is 1.65 and for the Strouhal period is 8.4.

Method hmax / hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2(Ω))

MCS4 8 / 0.032 0.001 280 480 1.7778 7.867 ± 1.32713 NA
MCS4 4 / 0.016 0.0005 280 480 1.5922 9.030 ± 2.33259 NA
MCS4 2 / 0.008 0.00025 280 480 1.7717 7.792 ± 1.32658 NA

SV4 2 / 0.008 0.01 280 480 1.4719 8.904 ± 2.68945 1.28 × 10−6

gdTH4 4 / 0.016 0.01 280 480 1.6283 8.941 ± 2.01980 1.25 × 10−2

gdTH4 2 / 0.008 0.01 280 480 1.5620 8.997 ± 2.61238 9.48 × 10−3

Table 6: Reynolds number 4000.
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Figure 5: Vorticity of the flow with Reynolds number 2000 computed using the MCS4 method on the mesh with
hmax = 2. Top: t = 310, Bottom: t = 350.4.

Method hmax / hmin ∆t tstart tend Drag Period ∥∇ · uh∥ℓ∞(L2(Ω))

MCS4 4 / 0.016 0.0004 280 480 1.6900 8.924 ± 2.46617 NA
MCS4 2 / 0.008 0.0002 280 480 1.7262 9.252 ± 2.32805 NA

SV4 2 / 0.008 0.01 280 480 1.6481 9.353 ± 2.23443 3.52 × 10−3

gdTH4 4 / 0.016 0.01 280 480 1.5174 8.883 ± 2.27784 1.29 × 10−2

gdTH4 2 / 0.008 0.01 280 480 1.6522 9.135 ± 2.38565 1.17 × 10−2

Table 7: Reynolds number 8000

Reynolds number Method hmax / hmin ∆t tstart tend Drag Period

1100 MCS4 8 / 0.032 0.001 280 480 1.5581 8.279 ± 0.00258

1125 MCS4 8 / 0.032 0.001 280 480 1.5628 8.262 ± 0.00822

1150 MCS4 8 / 0.032 0.001 280 480 1.5660 8.245 ± 0.02200

1175 MCS4 8 / 0.032 0.001 280 480 1.5718 8.230 ± 0.07870

1200 MCS4 8 / 0.032 0.001 280 480 1.5743 8.206 ± 0.33194
1200 MCS4 4 / 0.016 0.0005 280 480 1.5811 8.245 ± 0.91742
1200 MCS4 2 / 0.008 0.00025 280 480 1.5728 8.227 ± 0.48112

1400 MCS4 8 / 0.032 0.001 280 480 1.5961 8.534 ± 1.07792
1400 MCS4 4 / 0.016 0.0005 280 480 1.5947 8.576 ± 1.17649
1400 MCS4 2 / 0.008 0.00025 280 480 1.5959 8.536 ± 1.11533

1600 MCS4 8 / 0.032 0.001 280 480 1.6103 8.520 ± 1.15913
1600 MCS4 4 / 0.016 0.005 280 480 1.6137 8.504 ± 1.16444
1600 MCS4 2 / 0.008 0.0025 280 480 1.6136 8.507 ± 1.05176

1800 MCS4 8 / 0.032 0.001 280 480 1.6312 8.462 ± 1.00298
1800 MCS4 4 / 0.016 0.005 280 480 1.6305 8.475 ± 1.06059
1800 MCS4 2 / 0.008 0.0025 280 480 1.6327 8.481 ± 0.98248

Table 8: Investigating at what Reynolds number the flow becomes chaotic.
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Figure 6: Histogram of the computed periods of the flow at Reynolds numbers 1000, 2000, 4000 using the MCS4
method with hmax = 2.

5.1 Vortex blob

The publication [8, Figure 5] suggests that drag and lift for flow around a cylinder is nearly periodic
at R = 1000, in agreement with our findings, with chaotic flow for R ≥ 2000.

5.2 OpenFoam

OpenFoam may not be the ideal discretization approach for low Reynolds numbers. In [21], Strouhal
numbers and frequencies computed with OpenFoam were found to be in error by greater than a
factor of two for R ∈ [55, 161].

6 Conclusions
We considered several finite element methods for solving flow past a cylinder. All of these methods
are well studied both computationally and theoretically. We found that high-order and pressure-
robust methods are necessary to obtain reliable results at higher Reynolds numbers. The widely-
used, lowest-order Taylor–Hood method was not accurate enough to give appropriate results. We
were able to confirm some earlier results by other researchers. Exact incompressibility appears to
be important at higher Reynolds numbers, even though the one such method that we investigated
is non-conforming. We studied in detail how chaos appears to emerge for Reynolds numbers just
above 1000.

Data Availability Statement
The code used to realize the presented results, the raw data generated by this code and videos of
key simulations are available on zenodo at https://doi.org/10.5281/zenodo.11068455.
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