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In this work, we explore the dynamics of time varying photonic media with an optical Kerr
nonlinearity and an associated phase transition. The interplay between a periodically modulated
permittivity and the nonlinearity induces a continuous transition of electromagnetic waves to a state
with broken spatial and time translation symmetries. This transition gives rise to a lattice-like wave
pattern, in many ways similar to a spatial crystallization in solids. Symmetry breaking triggers the
emergence of soft, Goldstone-like modes, which propagate as deformations of the lattice structure,
as well as massive Higgs-like modes – spatially uniform oscillations of the field amplitude. We extend
the analysis of the non-equlibrium symmetry breaking to 2+1 dimensional time varying media and
discuss pattern formation as well as the connection to discrete time crystals.

I. INTRODUCTION

The propagation of electromagnetic fields through me-
dia with time varying material parameters has been con-
sidered early on [1–3]. More recently, time varying me-
dia have attracted attention in photonics [4], metama-
terials [5, 6], and material science [7], particularly in
the field of epsilon near zero materials [8–11]. They are
viewed as promising candidates for realizing such effects
as momentum-gapped (k-gapped) states, nonreciprocity
[12], time switching [13], time-varying mirrors [11], lasing
and amplification [14]. From a fundamental perspective,
the non-trivial statistical properties of randomly driven
time-varying media [15], their topological [16] and radia-
tive [17, 18] properties have been explored. Beyond op-
tics, hydrodynamic [19, 20] and acoustic [21] time varying
systems have been studied.

In this paper, we study nonlinear photonic time crys-
tals (nonlinear PTCs) – dielectric media with a period-
ically modulated permittivity [22, 23]. It is crucial to
distinguish PTCs from “time crystals” in the sense of
Wilczek [24–28]. While it is important to maintain this
distinction, we demonstrate that, in the presence of a
Kerr term, a PTC evolves to a subharmonic steady state
oscillating at half the driving frequency, and thus breaks
the discrete time translation symmetry of the drive on
long timescales. The steady state is very much akin to
Faraday waves [29–31], which are in many ways similar
to classical discrete time crystals [28, 32, 33].

One of the most striking features of PTCs is the so
called momentum gap (sometimes referred to as k-gap
or q-gap, see Fig. 1a) – an interval of wavenumbers in
which the real part of the dispersion ω (q) becomes flat
and the imaginary part changes sign, leading to expo-
nentially growing modes inside the gap [22]. In nonlin-
ear PTCs and time varying media, the k-gap can lead
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to intriguing effects such as the formation of superlumi-
nal solitons [34–37]. We show that in PTCs featuring a
generic Kerr nonlinearity, this growth heralds an instabil-
ity, leading to the emergence of non-equilibrium, symme-
try breaking steady-states: When the PTC’s permittivity
is modulated at a frequency 2Ω, the field adopts a stand-
ing wave lattice pattern whose wavenumber q∗ and lattice
constant λ = 2π/q∗ are determined by the condition for
parametric resonance q∗ = Ω/c (Fig. 1).

Furthermore, we show that in the symmetry breaking
state, slow, long-wavelength electromagnetic fields propa-
gate through the PTC as distortions of the lattice, locally
contracting or expanding the lattice constant λ (see Fig.
2). This behavior is reminiscent of phonons in a crystal
lattice, and the corresponding distortions can be thought
of as the Goldstone modes of the symmetry broken state.
Additionally, the symmetry broken state hosts spatially
uniform oscillations of the field amplitude at a character-
istic frequency that depends on the driving strength (see
Fig. 2b). These oscillations are gapped, massive modes
that resemble, e.g., the Higgs modes of a superconductor.

II. RESULTS

Symmetry breaking transition.

In this paragraph, we investigate the symmetry break-
ing transition of nonlinear PTCs. We show that the tran-
sition is continuous when the modulation strength of the
dielectric constant exceeds a threshold value determined
by the damping.

The propagation of electromagnetic fields in a non-
magnetic, isotropic, one-dimensional PTC with a generic,
repulsive Kerr-nonlinearity is described by the equation
[36]
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Figure 1. a) Real part of the dispersion relation ω (q) of
the PTC with momentum gaps at q∗ = Ω/c, where 2Ω is
the modulation frequency of the dielectric constant. b) Ef-
fective potential V

(
b̄
)

for the displacement field amplitude
b̄ with minima corresponding to steady states with broken
translational and discrete time translational symmetries (see
Eq. (9)). Here, ϵ is a parameter that encodes the relative
strength of the modulation of the dielectric constant with re-
spect to damping (see Eq. (5)). c) A numerical simulation of
Eq. (1) showing the self organization of electric fields into the
symmetry breaking steady state, corresponding to a minimum
of the potential V

(
b̄
)
. To produce the plot, we choose a mod-

ulation strength close to the threshold yielding ϵ ≈ 0.02. The
t- and x-axes are drawn in units of T = 2π/Ω and λ = 2π/q∗.

where D (x, t) is the displacement field, γ is the decay rate
of the electromagnetic field, c is the speed of light and h
is a dimensionless parameter controlling the modulation
strength of the dielectric constant. In what follows we
assume h > 0. For brevity, we omit vector signs. For a
small h ≪ 1, an approximate solution to Eq. (1) can be
found with the slowly varying envelope approximation.
Anticipating that the time dependent term will lead to a
parametric response at half the modulation frequency Ω
[38], we choose the ansatz

D = a (t) cos (Ωt) cos (q∗x) + b (t) sin (Ωt) cos (q∗x) . (2)

Here q∗ is a critical wavenumber determined by the con-
dition

Ω = c |q∗| . (3)

To first order in h, and projecting the nonlinear term
of Eq. (1) onto the ansatz of Eq. (2), i.e. disregarding
harmonics oscillating at frequencies ±3Ω and faster, we
obtain

ȧ = −γ

2
a− h̃Ωb+ β̃Ωb

(
a2 + b2

)
ḃ = −γ

2
b− h̃Ωa− β̃Ωa

(
a2 + b2

)
, (4)

with h̃ = h/4 and β̃ = 9β/32.
We deduce from the amplitude equations (4) that for

h < hc, where

hc = 2γ/Ω,

the PTC is stable around the trivial fixed point D (x, t) =
0. For h > hc this fixed point becomes unstable, leading
an initially exponential growth of the amplitudes a, b.
The nonlinear terms then become increasingly important,
and force the amplitudes to saturate. Eventually, the
PTC reaches a new fixed point, which corresponds to the
symmetry breaking phase that we want to study.

It is useful to consider two distinct regimes. In the first
regime, which we will call this the near-critical regime,
h is close to the critical threshold value hc. In this case,
both, the transition speed and the amplitudes a, b at the
fixed point are determined by the small parameter

ϵ =
h− hc

hc
. (5)

In the second regime, h ≫ hc holds. Here, the damping
can be disregarded to a good approximation. Let us term
this the weakly-damped regime. With γ set to zero, the
equations (4) can be derived from the Hamiltonian

H (a, b) =
h̃Ω

2

(
a2 − b2

)
+

β̃Ω

4

(
a4 + b4

)
+

β̃Ω

2
a2b2. (6)

Formally, we can think of a as a momentum variable
and b as a coordinate. The phase profile corresponding
to H (a, b) and the trajectories of a and b during the
symmetry breaking phase transition are shown in Fig.
2c. The minima of the Hamiltonian (6) are the stable
fixed points of Eqs. (4), and are located at

a0 = 0, b0 = ±

√
h̃

β̃
. (7)

For a small damping γ ≪ hΩ, the solutions (7) are
slightly modified. To first order in γ/hΩ, we find a0 ≈
∓ γ

Ω
√

8β̃h̃
and b0 ≈ ±

√
h̃
β̃
∓ γ2

16Ω2
√

β̃h̃
. For the most part

(except when studying the transition to the symmetry
breaking state), we will not be interested in the damp-
ing, and only include it for the sake of numerical stability.
For weak damping, the system will evolve to a state de-
scribed by the above solution, and the D-field will be
given by

D0 (x, t) = a0 cos (Ωt) cos (q
∗x) + b0 sin (Ωt) cos (q

∗x) .
(8)

This steady state of the nonlinear PTC breaks the contin-
uous spatial translation, and the discrete time translation
symmetries of Eq. (1). The latter follows from the fact
that the solution D0 (x, t) of Eq. (8) is, unlike Eq. (1)
not invariant under the time translation t → t+ π

Ω .
Let us now turn to the weakly damped regime where

the modulation strength h is close to the instability
threshold hc. This regime is useful to study the transi-
tion dynamics from the trivial to the symmetry breaking
state. In particular, it can be shown that the transition
into the symmetry breaking steady state is a continu-
ous phase transition. To this purpose, we rewrite the
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amplitude equations for a (t), b (t) in therm so the new
variables ā (t) = a (t) + b (t), b̄ (t) = a (t) − b (t). A per-
turbative expansion of Eqs. (4) in the small parameter ϵ
of Eq. (5) (see supplement) then predicts that the tran-
sitional dynamics can be described by a gradient descent
equation for b̄(t):

˙̄b = −
∂V

(
b̄
)

∂b̄
,

where V
(
b̄
)

is an effective double-well potential:

V
(
b̄
)
= −ϵ

h̃cΩ

2
b̄2 +

β̃2Ω

48h̃c

b̄6. (9)

We plot the effective potential for different ϵ in Fig.
1b and conclude that the transition into the symme-
try breaking state is continuous, i.e. the system goes
through a soft bifurcation when h reaches the critical
driving strength hc. In terms of the original a and b, the
potential minima (and approximate fixed points of Eqs.
(4)) are located at

a0 = −b0 = ±

√
h̃c

β̃
(2ϵ)

1/4
. (10)

The result of a numerical simulation of Eq. (1) for
ϵ = 0.005 is depicted in Fig. 1c, showing how the dis-
placement field inside the PTC begins to self organize
itself into the standing wave pattern predicted in Eqs.
(2) and (10). All simulations in this paper were carried
out using the Dedalus software package [39].

Emergent collective modes.

In the previous section, we demonstrated that the un-
stable, exponentially growing modes of a nonlinear PTC
herald the onset of a new phase. After a short transi-
tional period, the nonlinear PTC enters a steady state
with broken spatial translation and discrete time trans-
lation symmetries. In this section, we focus on small
fluctuation around this new state. We demonstrate that
the lattice structure of the electric field supports soft,
wavelike excitations, which propagate through the lat-
tice, similar to phonons in a crystal lattice. These ex-
citations are Goldstone-like modes that stem from the
breaking of the continuous spatial translation symmetry.
Additionally, the steady state exhibits a gapped mode,
which is absent in the symmetric state.

These effects are most pronounced in the weakly
damped regime, where h ≫ hc, to which we will stick
for the rest of this discussion. We begin with the soft
modes. Note that the phase of the spatial part of the
standing wave in Eq. (8) is chosen spontaneously. Re-
placing x → x + ϕ/q∗ in Eq. (8), we obtain another
valid solution to Eq. (1). Following the usual logic
of the Goldstone theorem [40], we expect that, since a

Figure 2. a) Goldstone-like distortions propagating through
the electric field lattice of the PTC in the symmetry bro-
ken state. The displacement field is given by D (x, t) =√

h̃/β̃ sin (Ωt) cos (q∗x+ ϕ (x, t)). An oscillatory boundary
condition of the form ϕ (x = 0, t) = −0.3 sin (ωG (Q) t) is ap-
plied. The propagation of the phase ϕ (x, t) through the
wave-lattice is described by Eq. (11). The dashed black
curves show the nodes of the standing wave D-field, de-
scribed by q∗x + ϕ (x, t) = π/2. b) A Goldstone-like
mode as observed starting with an intitial condition D (x) =√

h̃/β̃ cos (q∗x− 0.2 sin (q∗x/5)) at t = 0. The Goldstone-like
mode propagates according to Eq. (11) (white dashed line),
where small damping γ = 0.0016ω was taken into account.
c) The Higgs-like amplitude mode derived in Eq. (13) is de-
picted. The numerical solution (blue), is plotted against the
amplitude envelope predicted in Eq. (13). The amplitude tra-
jectory corresponding to the amplitude oscillation is shown in
the inlet of subfigure d) d) Phase profiles of the amplitude
Hamiltonian (6). The red curves indicate the two possible
amplitude trajectories a (t), b (t) during the phase transition.
The inlet shows the trajectory corresponding to the damped
Higgs-like oscillation of subfigure b).

uniform offset ϕ is inconsequential for the system’s dy-
namics, a long-wavelength spatial dependence of ϕ will
only have a small impact on the time evolution. It re-
mains to show that a long-wavelength perturbation of the
form ϕ (x, t0) = ϕQe

iQx, where Q ≪ q∗, will propagate
through the system as a wave with frequency ωG (Q), and
that ωG (Q) → 0, as Q → 0, i.e. the dispersion ωG (Q) is
soft. Indeed, we find that this is true (see Supplement):
For |ϕ| ≪ 1, the propagation of the Goldstone-like mode
is described by the equation

1

c2
∂2ϕ

∂t2
=

(
1− 1

3
h

)
∂2ϕ

∂x2
. (11)

The dispersion of the mode is ωG (Q) = cGQ, where
cG =

√
1− h/3c. Fig. 2a shows the numerical

simulation of Eq. (1), where a boundary condition
of the form ϕ (x = 0, t) = −0.3 sin (ωG (Q) t) was ap-
plied. The perturbation at the boundary propagates
as a Goldstone-like mode whose dynamics is described
by Eq. (11), and forms a standing wave, such that
the phase throughout the PTC is given by ϕ (t, x) =
[sin (ωG (Q) t−Qx) + sin (ωG (Q) t+Qx)] /2. For the
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simulation, we chose Q = 2π/Λ, where Λ = 20λ and
λ = 2π/q∗. We also demonstrate the propagation of
the Goldstone-like mode starting from an initial field

D (x) =
√
h̃/β̃ cos (q∗x− 0.2 sin (q∗x/5)) at t = 0. The

propagation of the distortion for long times is shown in
Fig. 2b.

In addition to the soft Goldstone mode, the steady-
state of Eq. (8) supports spatially uniform oscillations of
the amplitudes a and b around the minima of Eq. (7).
This amplitude oscillation can be viewed as a massive
Higgs mode. To derive the oscillation frequency, we ex-
pand the effective Hamiltonian (6) around these minima:

H ≈ − h̃2Ω

4β̃
+ h̃Ω

(
δb2 + δa2

)
. (12)

Hamilton’s equations read

δḃ = 2h̃Ωδa

δȧ = −2h̃Ωδb. (13)

Solving for a (t), we find δä +
(
2h̃Ω

)2

δa = 0. Thus,
the PTC supports uniform amplitude oscillations of fre-
quency 2h̃Ω. For finite γ, the above equations (13) will
obtain a damping term and read δḃ = −γb/2 + 2h̃Ωδa,
δȧ = −γa/2 − 2h̃Ωδb. The solution of these equations
(including damping) is shown in Fig. 2b together with
the field amplitude D (t, 2π/q∗). We point out that if no
dissipative term is included in Eq. (1), the PTC, starting
with an initial field distribution, will not converge to a
fixed point. Instead, the amplitudes a, b will follow the
Hamiltonian dynamics of Eqs. (13).

Symmetry breaking and pattern formation in two
dimensions.

So far we have considered a one-dimensional PTC. A
similar symmetry breaking transition can be observed in
higher dimensions. Here, the spatial second derivative
in Eq. (1) is replaced by a laplacian: ∂2D/∂x2 → ∇2D.
Focusing on the isotropic case, we omit vector signs. The
analytical calculation presented so far can be extended to
higher dimensions. There is, however, a crucial difference
to consider. In one spatial dimension, the only wavenum-
bers for which the resonance condition (3) is fulfilled are
±q∗. Plane waves with these two wavenumbers arrange
themselfs in a standing wave pattern as shown in Fig 1c.
In two dimensions, all wavevectors lying on a circle of
radius q∗ = Ω/c around the origin are resonant. From
studies of Faraday waves, it is known that parametrically
excited waves often arrange themselves in stripes, square
patterns or hexagonal patterns. These arrangements cor-
respond to one, two or three critical wavevectors q∗ that
are chosen spontaneously during the transition to the
symmetry breaking state [41, 42].

Figure 3. In two dimensions, nonlinear PTCs evolve to a
stripe state that breaks the translational and rotational sym-
metries of the system. The figure shows the simulation of
two-dimensional non-linear PTC starting from random ini-
tial conditions on square domain with commensurate peri-
odic boundary conditions. First, the system develops inho-
mogeneities whose length scale is given by the critical q∗. Fi-
nally, a two dimensional stripe pattern, as predicted in Eq.
(15), appears (see supplement for detailed figures).

For the simple nonlinearity of Eq. (1), we expect a
stripe-pattern [41] similar to the one-dimensional sce-
nario. On an infinite domain, the direction of q∗ will be
chosen spontaneously. To show that the wavepattern for
a two dimensional PTC is indeed a stripe arrangement,
we extend the ansatz (2) to N wavevectors q∗

i with a rel-
ative angle θN , such that qi ·qi+1 = qN ·q1 = q∗2 cos θN
with θN = π/N . The driving term in Eq. (1) does
not supply any momentum to the system. Therefore,
each mode with a wavevector q∗

i must be balanced by a
mode with −q∗

i . Finally, we assume that all modes share
the same time dependent amplitude. Summing up, our
ansatz is

D = (a (t) cos (Ωt) + b (t) sin (Ωt))

N∑
i=1

cos (q∗ · x) . (14)

When inserting this ansatz into Eq. (1), the linear terms
can be treated similarly as in the 1D case. The non-
linear term, however, requires additional care. As in
the 1D case, we project the nonlinear part onto the N
resonant modes of the ansatz (14) and ignore fast oscil-
lating, off-resonant terms. The equations of motion for
the amplitudes a and b are similar to Eqs. (4) where
β has to be replaced by β̃N = 9β (2N − 1) /32. Conse-
quently, we have to make the same replacement β̃ → β̃N

in the potential (9). The new potential has minima at

aN = −bN = ±
√
h̃c/β̃N (2ϵ)

1/4. The depth of these min-
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ima depends on the number of modes N :

V
(
b̄N = aN − bN

)
∼ 1

β̃N

∼ 1

2N − 1
. (15)

A similar conclusion can be reached in the weakly
damped regime of Eq. (6). The depth of the min-
imia of the Hamiltonian again behaves as ∼ 1/β̃N . For
more complex nonlinearlities containing a richer struc-
ture of spatial derivatives, the dependence of the nonlin-
ear term on the angle θ can compensate for the tendency
of shallower minima for higher N . Typically θ = π/2,
or θ = π/3 is favored, leading to square, or hexagonal
wave-lattices. In general, one expects that the system
converges to the deepest minimum – in our case, to the
N = 1 minimum, leaving us with a single standing wave.
The orientation and phase are chosen spontaneously.

Finally, we test our prediction of a stripe-pattern for
the field amplitude in the symmetry broken state by per-
forming a simulation. Starting from infinitesimal random
noise on a square domain of size 10λ with periodic bound-
ary conditions, we let the system evolve in time and track
the field amplitude. The results for the near critical case
with ϵ = 0.3 are shown in Fig. 3. Interestingly, before
the PTC reaches the final stripe state, it goes through a
series of nearly-periodic patterns, which can be stable for
many (up to hundreds) oscillation periods.

III. DISCUSSION

Summing up, we investigated the long term behavior
of a photonic time crystal with a generic Kerr nonlin-
earity. We have shown that the initially exponential

growth of unstable gap modes in these systems heralds
the transition to a new symmetry breaking steady state.
In this state, the field configuration is a standing wave
lattice, where the lattice spacing is determined by the
resonant wavenumber q∗, fulfilling the resonance condi-
tion Ω = cq∗. The breaking of continuous spatial trans-
lation symmetry is accompanied by the appearance of
soft Goldstone-like modes, which consist of propagating,
wavelike lattice distortions, similar to phonons in a crys-
tal lattice. In addition, gapped modes that correspond
to amplitude oscillations of the electric field emerge. The
dispersions of these emergent modes depend on the driv-
ing strength, which opens the possibility to use nonlinear
PTCs in the symmetry broken state as tunable metama-
terials. We also investigated the behavior of nonlinear
PTCs in two spatial dimensions, and showed that the
electric fields self-organize to stripe patterns that break
the translational, and rotational symmetries of the sys-
tem. This behavior could help to create controllable,
spatially structured high intensity electric fields.

Furthermore, the predicted steady state exhibits sub-
harmonic response, and breaks the discrete time trans-
lation symmetry of the periodic modulation. This is a
common feature of many types of parametrically driven
nonlinear waves [31, 43], as it has been pointed out in
recent literature on time crystals [28, 32, 33]. Thus the
nonlinear PTC exhibits discrete time crystalline behavior
in the sense of a phase of matter [28].
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SUPPLEMENTARY MATERIAL

A. Expansion close to the instability threshold. Continuity of the phase transition.

Here, we explain the technical details involved in deriving the gradient descent dynamics of Eq. (9) in the near-
critical regime. First, we reformulate the amplitude equations (4) in terms of the small parameter ϵ = (h− hc) /hc =(
h̃− h̃c

)
/h̃c:

˙̄a = −Ωh̃c (2 + ϵ) ā+
β̃Ω

2
b̄
(
ā2 + b̄2

)
˙̄b = Ωh̃cϵb̄−

β̃Ω

2
ā
(
ā2 + b̄2

)
. (S 1)

The small ϵ characterizes the growth of the unstable mode, which defines a slow time scale. We introduce an expansion
in terms of ϵ, such that ā = ϵ1/4ā1 + ϵ3/4ā2..., b̄ = ϵ1/4b̄1 + ϵ3/4b̄2 + ... and ∂t = ∂t0 + ϵ∂t1 . At orders ϵ1/4 and ϵ3/4,
we obtain

∂ā1
∂t0

= −2Ωh̃cā1

∂ā2
∂t0

= −2Ωh̃cā2 −
β̃Ω

2
b̄1

(
ā21 + b̄21

)
.

These equations describe a quick relaxation towards the fixed point

ā1 = 0

ā2 = − β̃

4h̃c

b̄31. (S 2)

At order ϵ5/4, we derive the equation

∂b̄1
∂t1

= h̃cΩb̄1 +
β̃Ω

2
ā2b̄

2
1.

For a small ϵ, we can assume that the relaxation of ā2 towards the value given in Eq. (S 2) is infinitely fast, and write

∂b̄1
∂t1

= h̃cΩb̄1 −
β̃2Ω

8h̃c

b̄51. (S 3)

Restoring the original variables t and b̄ we obtain

∂b̄

∂t
= ϵh̃cΩb̄−

β̃2Ω

8h̃c

b̄5.

This is the gradient descent dynamics described by Eq. (9) of the main text.

B. Goldstone-like Modes

We add a time and space dependent phase to the steady state solution found in the main text for low damping:

Dϕ (x, t) = ±

√
8h

9β
sin (Ωt) cos (q∗x+ ϕ (x, t)) . (S 4)

Here, ϕ (x, t0) ≪ 1. We seek to derive an equation governing the dynamics of the phase ϕ (x, t). To this purpose, we
write

Dϕ (x, t0) =
A

2
sin (Ωt− qx− ϕ (t, x))

+
A

2
sin (Ωt+ qx+ ϕ (t, x)) , (S 5)
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where A =
√
8h/9β. In what follows, we will use the abbreviations sin (Ωt− qx− ϕ (t, x)) = sin (−) and

sin (Ωt+ qx+ ϕ (t, x)) = sin (+) and similar for cos-terms. Inserting Eq. (S 5) into Eq. (1) and comparing the
coefficients in front of the cos (+) terms we find an equation for ϕ (t, x):

1

c2
∂2ϕ

∂t2
=

(
1− 1

3
h

)
∂2ϕ

∂x2
. (S 6)

The same equation follows from the cos (−) terms. The sin (±) terms, on the other hand, give corrections of order Q/q∗

to the solution (S 4). These can be neglected for a smooth, small-Q perturbation of the kind that we are considering.
Compared to the velocity of electromagnetic waves in the undriven medium, the velocity of the Goldstone mode cG
is reduced by a factor that depends on the amplitude of the time varying term in Eq. (1):

cG =

√
1− 1

3
hc.

C. Pattern formation in two dimensions
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Supplementary Figure S 1. Pattern formation in a two-dimensional PTC.
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