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ABSTRACT

Addressing the challenges of rare diseases is difficult, especially with the limited number of reference
images and a small patient population. This is more evident in rare skin diseases, where we encounter
long-tailed data distributions that make it difficult to develop unbiased and broadly effective models.
The diverse ways in which image datasets are gathered and their distinct purposes also add to these
challenges. Our study conducts a detailed examination of the benefits and drawbacks of episodic
and conventional training methodologies, adopting a few-shot learning approach alongside transfer
learning. We evaluated our models using the ISIC2018, Derm7pt, and SD-198 datasets. With minimal
labeled examples, our models showed substantial information gains and better performance compared
to previously trained models. Our research emphasizes the improved ability to represent features
in DenseNet121 and MobileNetV2 models, achieved by using pre-trained models on ImageNet
to increase similarities within classes. Moreover, our experiments, ranging from 2-way to 5-way
classifications with up to 10 examples, showed a growing success rate for traditional transfer learning
methods as the number of examples increased. The addition of data augmentation techniques
significantly improved our transfer learning based model performance, leading to higher performances
than existing methods, especially in the SD-198 and ISIC2018 datasets. All source code related to
this work will be made publicly available soon at the provided URL.

Keywords Few-shot learning · Long-tail distribution · Medical image classification · Skin disease classification ·
Transfer learning

1 Introduction

Over the past decade, the field of medical image analysis has witnessed remarkable advancements, primarily driven by
the development of deep convolutional neural networks and the availability of extensive labeled image datasets. These
advancements have notably impacted various tasks, including organ segmentation [1, 2], tumor segmentation [3, 4],
and disease detection [5, 6]. Although abundant data exists for common diseases, a significant gap persists in data
availability for the over 6,000 known rare diseases, affecting approximately 7% of the global population [7]. The
diagnosis of these rare diseases, including some skin conditions, presents unique challenges, particularly due to the
limited number of clinical examples available for training deep learning models. The automatic classification of skin
lesions exemplifies these challenges, as it is complicated by the long-tailed distribution of skin disease datasets, the
subtle variations in lesion appearances, and the overall scarcity of sufficient image data [8].

Various studies have been conducted to address the problem of skin disease classification using deep learning approaches.
Recent advancements in this field are mainly in three categories: methods based on transfer learning [12, 13], those
relying on few-shot learning [8, 14–19], and approaches using cross-domain few-shot learning [20]. The state of the art
models in this domain, such as Meta-DermDiagnosis, MetaMed, and PCN models [8, 14, 18], are designed to extract
and learn high-level, domain-specific features during their training process.

ar
X

iv
:2

40
4.

16
81

4v
1 

 [
cs

.C
V

] 
 2

5 
A

pr
 2

02
4

https://github.com/zeynepozdemir/MetaTransfer


Figure 1: The figure illustrates the distributions of the datasets used in this study, namely SD-198 [9], Derm7pt [10]
and ISIC2018 [11] . The observed data distribution exhibits a long-tailed nature, and an examination reveals that some
classes have very few instances. The base classes (common diseases) used during the training process include the train
(green) and validation (yellow) classes. Novel classes (new/rare diseases) are indicated with the test label (red). In
the Derm7Pt dataset, classes with a significantly low number of examples are displayed as deleted (grey) and deemed
unusable.

In their study on the ISIC2018 dataset, Li et al. (2020) introduced the Difficulty Aware Meta-Learning (DAML) model,
recognizing that randomly selected tasks vary in difficulty [15]. They proposed optimizing the meta-optimization
process by dynamically assessing the significance of challenging tasks. Similarly, Mahajan et al. (2020) developed
the Meta-DermDiagnosis model, experimenting with the SD-198, Derm7pt, and ISIC2018 datasets [8]. This model
innovatively replaced traditional convolutional layers in Prototypical Networks and Reptile with Group Equivariant
Convolutions, enhancing resistance to data transformations like symmetry and rotation, thus yielding robust features.
However, this method received critique for its reliance on datasets with symmetric orientation. On a related note,
Singh et al. (2021) highlighted the efficacy of MixUp, CutOut, and CutMix as data augmentation techniques in the
medical field when integrated with the MAML algorithm in their MetaMed model, particularly on the ISIC2018
dataset [18]. Both MetaMed and Meta-DermDiagnosis models aim to enhance feature representation by broadening
data augmentation and diversification. Further, Prabhu et al. (2019) proposed the Prototypical Clustering Networks
(PCN) model, designed to effectively handle intra-class variability in few-shot learning scenarios [14].

The studies previously discussed have employed episodic learning as a means to acquire knowledge that can be
transferred to new classes. This approach involves the arrangement of learning problems into episodes, each composed
of small training and validation subsets, designed to simulate the scenarios encountered during evaluation. However, [21]
criticized this method, arguing that the constraints of episodic learning are unnecessary and that using training groups
in this manner is data-inefficient. Similarly, [22] argued that in tasks involving rare classes, the effectiveness of rapid
adaptation is more attributable to the quality of the learned representation than to the few-shot learning algorithm itself.
They incorporated self-supervised learning in their model to enhance this representation. In a similar context, [23]
proposed the concept of Meta-transfer learning, which is aimed at refining the learned representation. They conducted
various experiments to compare the effectiveness of fine-tuning pre-trained Deep Neural Network (DNN) models with
and without episodic learning. Their findings underscore the significance of integrating transfer learning with few-shot
learning methodologies.

The existing literature consistently highlights the ongoing challenge of effectively managing the issue of long-tailed
data distribution in skin disease studies [8, 24, 25]. Although current methods show promise in specific dataset contexts,
their ability to generalize broadly remains limited. Most research in this field has been directed towards developing
dataset-specific solutions, addressing the unique challenges and sensitivities arising from variations in class counts, data
formats, and other critical characteristics.

In our study, we aim to conduct an in-depth analysis of the benefits and drawbacks of integrating few-shot learning,
episodic learning, and transfer learning. Our main focus is on developing a foundational framework specifically
designed to utilize the inherent properties of long-tailed skin datasets. While acknowledging the potential benefits of
performance-enhancing methods, our base approach distinctly diverges from such techniques.

In this context, we implemented four distinct training methods, each evaluated using consistent metrics for newly
introduced classes. Our first method, Few-Shot Episodic Transfer Learning (FETL), involves adapting the model for
the dataset through fine-tuning weights that were initially pre-trained on ImageNet, coupled with episodic few-shot
learning. The second strategy, Few-Shot Episodic Learning (FEL), diverges from the first by employing episodic
learning on models without any pre-training. The third approach, Deep Transfer Learning (DTL), focuses on fine-tuning
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models using deep neural networks (DNN) with pre-trained ImageNet weights, but notably omits episodic learning.
Lastly, our fourth method, Deep Learning (DL), acts as a baseline, utilizing pre-trained ImageNet weights without
additional adjustments or fine-tuning. Following the establishment of our approach, we aimed to enhance performance
by incorporating well-known data augmentation techniques such as CutMix, MixUp, and ResizeMix into the DTL
model.

To evaluate the effectiveness of our proposed methodologies, we carried out extensive testing across three benchmark
skin disease datasets: SD-198, Derm7pt, and ISIC2018. This comprehensive analysis provided us with critical insights
into the most effective strategies for tackling the challenge of long-tailed data distribution in skin diseases. The key
contributions of our study are summarized as follows:

• We introduce a novel methodology designed to evaluate various model training approaches, using a consistent
benchmark test set specifically made for long-tail distributions in rare skin diseases. This evaluation is
conducted through episodic testing. To the best of our knowledge, this is the first time such a thorough
methodological analysis has been conducted in this domain.

• By comparing episodic and traditional training methods, our findings indicate that traditional training becomes
increasingly beneficial as the number of shots (training examples) grows.

• We demonstrated that combining transfer learning with few-shot learning significantly enhances both the
learned representation and the testing performance in the context of rare skin diseases. Using our proposed
model based on transfer learning, along with augmentation techniques like MixUp, CutMix, and ResizeMix,
has helped us surpass state-of-the-art results in some settings on the SD198 and ISIC2018 datasets.

2 Related Works

2.1 Transfer Learning for Medical Image Domain

In deep learning, a powerful transfer learning method involves adapting a pre-trained model for a new task, commonly
referred to as fine-tuning (FT). Models that have been pre-trained on extensive datasets have demonstrated superior
generalization performance compared to models initialized randomly [26]. Various techniques are employed to facilitate
the transfer of knowledge between different source-target domains [27–30].

Transfer learning (TL) is frequently applied in addressing the classification problem of skin diseases. For instance, [31]
aimed to improve performance on the ISIC2018 dataset by using ISIC2016 and ISIC2017 as source datasets and
EfficientNetB0/B1, SeReNext50 as backboned models. [32] performed transfer from the ImageNet dataset to the
ISIC2018 dataset using ResNet50. Similarly, [33] employed ImageNet, ResNet, and DenseNet architectures for transfer
to the ISIC2017 dataset. [34], with a similar objective, experimented with the VGG16 architecture. A common inference
drawn from these studies is that the use of transfer learning, particularly when ImageNet or various dermatological
datasets are used as source datasets and supported by architectures like ResNet or DenseNet, contributes significantly to
addressing this problem. A more comprehensive literature discussion is provided in [35].

In addition to traditional learning methods, transfer learning has also been explored in the Few-Shot Learning (FSL)
domain for the classification problem of skin diseases. For instance, the MetaMed study [18], working with FSL
algorithms on the ISIC2018 dataset, compared and interpreted the results of models trained through TL with their
proposed method. In this process, they employed a shallow-layered architecture in the TL model and conducted training
using only base classes. In contrast, as indicated in the literature, we adapted the MobileNet and DenseNet architectures
to the Few-Shot Learning domain by utilizing pre-trained weights from ImageNet. We discussed detailed comparison
results in Section 5.3.

2.2 Few-Shot Learning in Computer Vision

Few-shot learning (FSL) aims to recognize novel classes with only a few labeled examples, leveraging a substantial
number of examples from base classes. FSL algorithms can be broadly categorized into three groups: initialization-based
methods, metric learning-based methods, and hallucination-based methods.

In this context, initialization-based methods take a learning to fine-tune approach. They aim to acquire an effective
model initialization, specifically the neural network parameters. This facilitates the adaptation of classifiers with limited
labeled examples through a few gradient update steps for new classes [36–38]. Another strategy involves distance
metric learning methods, embracing a learning to compare paradigm for few-shot classification. These methods are
foundational approaches utilizing encoded feature vectors and a distance measurement metric based on the nearest-
neighbor principle to assign labels. For instance, Prototypical Networks [39] utilizes Euclidean distance, Matching
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Networks [40] employs cosine similarity, and Relation Networks [41] utilizes its own CNN-based measurement module
for this purpose [42]. Additionally, hallucination-based methods directly address data scarcity through learning to
augment. Here, hallucination involves generating data not derived from real examples or direct observations. The
generator’s objective is to transfer appearance variations present in the base classes to novel classes [43, 44].

The mentioned FSL methods adopt an episodic training approach during the training of the data (base classes). However,
some studies have shown that training the data by dividing it into tasks leads to inefficient use of the available
data [21, 22]. Additionally, [45] has demonstrated, contrary to the prevailing notion, through experiments conducted
with benchmark datasets and fundamental FSL algorithms, that an increase in task diversity, proportional to the increase
in classes and data, does not lead to an improvement in success. Therefore, we can categorize FSL approaches into two
groups based on their training processes: meta-learning-based and transfer-learning (TL)-based methods. Among TL
methods, S2M2-R [46], Baseline [47], PT-MAP [48], and Meta-Transfer Learning [23] train on base classes using a
standard classification network and fine-tune the classifier head on episodes generated from new classes. These methods
aim to train a powerful feature extractor that produces transferable features for the new class. Experimental methods
have demonstrated that these approaches can achieve more effective and higher performance compared to previous FSL
methods, utilizing a simpler and more efficient process. Due to the superior performance of TL-based methods, we
explored this approach in conjunction with Prototypical Networks as a way to predict rare skin diseases.

2.3 Few-Shot Learning for Skin Disease Classification

The imbalanced distribution of skin disease classes and factors such as limited image availability in rare diseases neces-
sitate the application of few-shot learning methods. As a solution to this challenge, [15] proposed the Difficulty-Aware
Meta-Learning (DAML) model based on Meta-Learning. This model adjusts the losses for each task, increasing the
weight of challenging tasks while decreasing that of easier tasks, thereby emphasizing and increasing the importance of
difficult tasks. This study, aiming to highlight more distinctive features for each class, can be categorized as initialization-
based FSL. On the other hand, the model named MetaMed, evaluated in both initialization and hallucination-based FSL
categories, by [18], combines advanced data augmentation techniques such as mixup, cutout, and cutmix with the reptile
model during training to enhance its generalization capabilities. Working with the ISIC2018 dataset, they compared the
transfer learning approach of their proposed model with other studies, reporting an average improvement of up to 3% in
performance. In the metric-based branch, several methods have been proposed. [17] advocated for the superiority of the
Query-Relative loss over the Cross-Entropy loss commonly used in FSL. Additionally, [49] suggested the utilization
of Temperature Networks alongside Prototype Networks. They adapted specific temperatures for different categories
to reduce intra-class variability and enhance inter-class dispersion. Moreover, they applied penalization based on the
proximity of query examples. [8] introduced a model named Meta-DermDiagnosis, aiming to obtain invariant features
after various transformations by replacing traditional convolutional layers with group-equivariant convolutions, similar
to Prototypical Networks and Reptile.

In the context of transfer-learning-based algorithms, [25] proposed a model named PFEMed, suggesting a dual-encoder
structure. This brings about one encoder with fixed weights pre-trained on large-scale public image classification
datasets and another encoder trained on the target medical dataset. On the other hand, [24] designed a dual-branch
framework and improved performance using a model employing prototypical networks and contrastive loss. To address
the challenge of observing diverse subgroups within dermatological disease clusters, [19] introduced the Sub-Cluster-
Aware Network (SCAN) model. SCAN utilizes a dual-branch structure to enhance feature explanation, learning both
class-specific features for disease differentiation and subgroup-related features.

In this study, we integrate Prototypical Networks from Few-Shot Learning (FSL) algorithms with transfer learning
techniques. This fusion involves adapting MobileNetV2 and DenseNet121 backbone architectures, coupled with
pretrained ImageNet weights, specifically to tackle the challenge of rare skin disease identification. Our experimental
analysis highlights the limitations of episodic training in optimally leveraging data. Central to our approach is the
establishment of a foundational framework that relies solely on the inherent properties of the long tailed datasets,
without the necessity for supplementary data. This includes strategies aimed at enhancing model performance, such
as extensive data augmentation techniques like MixUp, CutMix, and ResizeMix. The utilization of these techniques
contributes to achieving our research objectives.

3 Datasets and Evaluation

The SD-198 dataset [9] comprises 198 detailed categories of skin diseases, including eczema, acne, rosacea, and
various cancer conditions. These categories contain 6584 clinical images contributed by patients and dermatologists,
showcasing diverse characteristics like color, exposure, lighting, and size. The dataset captures a wide range of patients
in terms of age, gender, disease location, skin color, and disease stage. Originally divided into a 50% training set and a
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Figure 2: Some sample images from skin disease classification datasets

50% test set, the images are captured at 1640 × 1130 pixels using digital cameras or mobile phones. To align with the
comparison criteria set by Meta-DermDiagnosis [8] and SCAN [19], we resized all data to 224 x 224 pixels. For testing,
we focused on 70 classes representing rare diseases, each having fewer than 20 images, while the remaining 128 classes
were used for training. The dataset distribution is visualized in Figure 1, and sample images are provided in Figure 2-a.

The Derm7pt dataset [10] comprises over 2,000 clinical and dermoscopy images grouped into 20 distinct classes. This
dataset, comprising both clinical and dermoscopic images, provides predictions based on a 7-point checklist for the
malignancy of skin lesions, making it suitable for training and evaluating computer-aided diagnosis (CAD) systems. The
original images have dimensions of 768 × 512 pixels; however, for the purpose of our experimental studies, they have
been resized to 224 × 224 pixels. To facilitate the comparison of our experimental results with the Meta-DermDiagnosis
and SCAN study, we adopted similar train-test set differentiations. Within the Derm7pt dataset, two categories are
excluded from our experiments: ’miscellaneous’ (encompassing unspecified skin diseases) and ’melanoma’ (due to
its solitary instance, preventing a train-test division). Among the 18 lesion categories in this dataset, 13 classes are
allocated for training, while the remaining categories are reserved for testing. The novel set consists of 5 classes, with
each class containing 10 to 34 images. This distinction strategy aims to mimic the ability to generalize to infrequent
skin diseases by placing classes with limited data in the test set. For visual reference, selected examples of skin lesion
images can be found in Figure 2-b. The dataset distribution is also shared in Figure 1.

The ISIC 2018 Skin Lesion dataset [11] comprises 10,015 dermoscopic images that are categorized by expert
pathologists into seven distinct skin lesion classes. Within this dataset, 7,515 images are allocated to the training set,
while the remaining 2,500 images constitute the test set, following a standardized partition. Dermoscopic images often
position the target lesion at the center. We adhered to similar scaling and data partitions as the Meta-DermDiagnosis [8]
and PFEMed [25] study for our experiments. Consequently, the image resizing process transforms images from 600 ×
450 pixels to 224 x 224 pixels, and a subset comprising four base classes and three novel classes is selected to form
few-shot classification tasks. Refer to Figure 2-c for exemplar images drawn from the dataset. For data distribution,
please see Figure 1.

4 The Methodology

This section outlines the core methodologies deployed in our study, starting with the Meta-Transfer Derm-Diagnosis
Framework. This framework is pivotal for assessing four distinct model training strategies that are particularly valuable
in scenarios with limited data samples. These strategies are Few-Shot Episodic Transfer Learning (FETL), Few-Shot
Episodic Learning (FEL), Deep Transfer Learning (DTL), and Standard Deep Learning (DL).

5



Figure 3: Overall framework of our pipeline: Meta-Transfer Derm-Diagnosis. a) Episodic learning is combined with
DenseNet and MobileNet architectures without the use of ImageNet weights. b) ImageNet pre-trained weights are
utilized along with the application of an episodic learning strategy. c) Pre-trained weights and all base class data are
employed for fine-tuning with ImageNet. d) Only ImageNet weights are utilized without fine-tuning. e) Detailed
diagram illustrating the use of episodic learning and prototypical networks. It is applied in the continuation of parts a
and b. f) Common evaluation scheme using novel data across segments a, b, c, and d.

Figure 4: The flowchart illustrating the components and the training strategies of the FEL, FETL, DTL, and DL models
within the proposed framework.

We implement a precise evaluation process, employing a combination of the selected benchmark datasets (Section
3), and a specialized testing approach. This ensures a comprehensive and fair analysis of each training method.
Subsequently, we provide an overview of Prototypical Networks and Transfer Learning.

4.1 Meta-Transfer Derm-Diagnosis Framework

The proposed Meta-Transfer Derm-Diagnosis Framework is used to effectively combine few-shot training methods
with transfer learning. This integration is specifically designed to improve model performance for tail classes, which
often have limited data, thereby leveraging the complementary strengths of both methodologies.

Few-shot classification operates with two distinct datasets: the base dataset, denoted as Dbase, and the novel dataset,
denoted as Dnovel. The novel dataset, Dnovel, is utilized for the actual classification task, while the base dataset, Dbase,
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helps in training the classifier by transferring essential knowledge from it. Additionally, during training, ImageNet
dataset is also used and will be referred to as the domain Dimgnet. For clarity and coherence, let us include two definitions
adapted to our framework from prior literature [42] that are related to our study’s context in few-shot learning. These
definitions will help in framing our approach and methodology.

Definition 1. For the training and testing phases, the novel dataset Dnovel is split into two subsets: the support set (DS)
and the query set (DQ). In a typical few-shot classification scenario, the support set DS contains only a few samples per
class, often ranging from 1 to 5. The primary goal in few-shot classification is to train a classifier, f : Xnovel → Ynovel,
using the limited data in DS . This classifier should then be able to accurately categorize instances in the query set DQ.
If DS includes N distinct classes with K labeled examples per class, this scenario is defined as an N -way K-shot
classification. The case with only one labeled example per class is termed one-shot classification.

Definition 2. A few-shot classification task is referred to as cross-domain few-shot classification when the train dataset
Dtrain and the novel dataset Dnovel are sourced from distinct domains.

To further clarify our methodology, we define the datasets used. The base dataset is defined as Dbase = {(xi, yi);xi ∈
Xbase, yi ∈ Ybase}Nbase

i=1 , where xi represents the feature vector of the i-th image, and yi is its corresponding class label.
The novel dataset is similarly represented as Dnovel = {(x̃j , ỹj); x̃j ∈ Xnovel, ỹj ∈ Ynovel}Nnovel

j=1 . It is crucial to note
that the class labels in Dbase and Dnovel are mutually exclusive, i.e., Ybase ∩ Ynovel = ∅. In a similar manner, Dimgnet is
represented as: {(x̄k, ȳk); x̄k ∈ Ximgnet, ȳk ∈ Yimgnet}

Nimgnet

k=1 .

To rigorously evaluate the framework we devised, detailed in Figure 3, we maintained a consistent evaluation by keeping
Dnovel fixed. Here, Dtrain denotes the datasets used during training. We formulated four distinct training methodologies,
each independently designed: FETL, where Dtrain = Dimagenet +Dbase∗ ; FEL, where Dtrain = Dbase∗; DTL, where
Dtrain = Dimagenet +Dbase; and DL, where Dtrain = Dimagenet. The notation Dbase∗ indicates episodic training, while the
others involve traditional large-scale training approaches for the corresponding datasets in that domain.

In accordance with these definitions, as is summarized in Figure 4, our FETL, FEL, and DTL models utilize Dbase
and Dnovel classes from the same domain for training and testing as specified in Definition 1. On the other hand, the
proposed DL model utilizes two separate domains for training and testing, hence it aligns with Definition 2. Therefore,
three out of our four proposed analysis include adapted few-shot training and testing methodologies considering the data
extracted carefully from the same long-tail distributions (FETL, FEL and DTL), while the last one (DL) corresponds to
a cross-domain evaluation.

Algorithm 1 N -Way K-Shot Classification Evaluation.

Require: Dtrain = {(xi, yi);Xi ∈ Xtrain, Yi ∈ Ytrain}Ntrain
i=1 .

Require: Dnovel = {(x̃j , ỹj); x̃j ∈ Xnovel, ỹj ∈ Ynovel}Nnovel
j=1 .

Require: Number of episodes E
1: for e = 1, ..., E do
2: Randomly select N classes from Ynovel.
3: Randomly select K samples from each class as the support set D(e)

S .
4: Randomly select M samples from the remaining samples of N classes as the query set {(x̃(e), ỹ(e))}.
5: Record predicted labels ŷ(e) = f(x̃(e)|Dtrain, D

(e)
S ).

6: Compute accuracy a(e) = 1
M

∑M
m=1 1[ŷ

(e) = ỹ(e)]
7: end for
8: Compute: Avg_Acc = 1

E

∑E
e=1 a

(e)

9: return Avg_Acc

The evaluation of our classifier in N -way K-shot classification is outlined in Algorithm 1. This process includes a
series of episodes, each presenting a unique classification task, allowing for a thorough assessment of the classifier’s
performance. In this procedure, as the initial step, we randomly select N classes from the novel set. Following this,
we randomly choose K samples from each of these N classes to constitute a support set. Concurrently, we select M
samples from the remaining instances in these classes to form a query set. For each episode, denoted as the e’th episode,
the query set’s instances and labels are represented as x̃(e) and ỹ(e), respectively. A learning algorithm is then applied,
utilizing the model that is pretrained with Dtrain and tuned to the support set of the e’th episode, D(e)

S . This algorithm
yields a classifier that predicts labels for the instances in the query set. To quantify the classifier’s performance, we
calculate the classification accuracy for each episode, referred to as a(e). The overall effectiveness of the learning
algorithm is then determined by averaging these classification accuracies across all episodes.
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4.2 Prototypical Networks

As depicted in Figure 3 (top right section), we used Prototypical Networks [39] for both episodic training and testing. It
is a meta-learning approach, which is designed to represent each class through a prototype vector, based on distance
metrics. This vector is an average of embedded instances in a support set, specifically linked to that class. Formally, for
a set of N classes, the support set S = {(x1, y1), ..., (xN , yN )} is constructed, where each xi ∈ RD is a D-dimensional
feature vector, and yi is its corresponding label in the range {1, ...,K}.

Each class prototype ck ∈ RM is computed as the mean vector of its associated embedded instances, using an embedding
function fϕ : RD → RM with learnable parameters ϕ. The prototype for class k is derived as:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

fϕ(xi). (1)

The network utilizes a distance function d : RM × RM → [0,+∞) to calculate the probability distribution across
classes for a query point x, based on the softmax of distances between the query point and class prototypes:

pϕ(y = k|x) = exp(−d(fϕ(x), ck))∑
k′ exp(−d(fϕ(x), ck′))

. (2)

Training involves minimizing the negative log likelihood J(ϕ) = −logpϕ(y = k|x) of the true class k, using Stochastic
Gradient Descent (SGD).

4.3 Regularization via Image Augmentation

Regularization techniques are essential in preventing overfitting and enhancing the generalization capabilities of deep
models. Among these techniques, image augmentation stands out as a crucial method in supervised learning, well-
known for its efficacy in regularization. While conventional augmentation methods like rotation, horizontal flips, and
vertical flips are widely used, they often prove inadequate in domains characterized by limited data, such as medical
imaging. Consequently, advanced approaches such as MixUp [50], CutMix [51], and ResizeMix [52] have received
significant attention due to their ability to address the challenges posed by data scarcity and variability.These methods
provide advanced solutions that extend beyond conventional techniques, facilitating the generation of diverse training
samples and enhancing model robustness from various perspectives.

MixUp

MixUp generates synthetic samples by blending features and labels from two different images using weighted blending.
Let (xi, yi) and (xj , yj) represent the features and labels of two images, respectively. MixUp combines these two
images with weighted blending to create a new synthetic sample:

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj

Here, λ ∈ [0, 1] is a random weight value.

CutMix

CutMix creates synthetic samples by replacing regions of an image with patches from another image, controlled by a
cut ratio (λ). Let (xi, yi) and (xj , yj) denote the features and labels of two images, respectively. CutMix blends these
two images according to the cut ratio to create a new synthetic sample:

x̃ = M · xi + (1−M) · xj

ỹ = λyi + (1− λ)yj

Here, M is a mask matrix, and λ is a random cut ratio.
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ResizeMix

ResizeMix merges images of different sizes by resizing them and then blending them using weighted blending. Let
(xi, yi) and (xj , yj) represent the features and labels of two images, respectively. ResizeMix resizes one image to the
size of the other and blends them with weighted blending to create a new synthetic sample:

x̃ = λxi + (1− λ)resize(xj , size(xi))

ỹ = λyi + (1− λ)yj

Here, resize(xj , size(xi)) resizes xj to the size of xi, and λ ∈ [0, 1] is a random weight value.

5 Experiments and Discussion

Figure 5: The graph compares the accuracies of the models based on the number of shots. It illustrates the results for a)
SD-198, b) Derm7pt, and c) ISIC2018.

5.1 Implementation Details

The implementation of our study is carried out using the Python programming language with the PyTorch library. Nvidia
1080Ti GPU is employed during the model development. To ensure a fair comparison with the Meta-DermDiagnosis [8]
model, we aligned the distinctions between base and novel classes in the datasets and ensured the similarity of deleted
classes. All datasets are resized to 224x224x3 dimensions. ISIC2018 consists of 4 base and 3 novel classes, Derm7pt
includes 13 base and 5 novel classes, and SD-198 encompasses 128 base and 70 novel classes. In contrast to the
Meta-DermDiagnosis study, we partitioned the SD-198 base classes into training and validation sets. Classes with fewer
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Table 1: Performance comparison of the proposed models on the SD-198 skin lesion dataset for 2-way and 5-way
classification tasks. Accuracy (%) values are presented.

Exp MobileNetV2 DenseNet121
FEL FETL DTL DL FEL FETL DTL DL

2W-1S 82.66 84.77 82.42 77.77 82.91 82.83 81.21 75.70
2W-2S 87.41 89.57 88.34 85.98 87.77 88.26 87.88 84.39
2W-3S 89.77 91.73 91.43 89.52 90.23 90.82 91.38 88.63
2W-4S 90.72 93.05 93.38 91.44 91.90 92.47 93.16 90.48
2W-5S 91.49 93.66 94.40 92.96 92.95 93.58 94.56 91.86
2W-6S 91.85 93.81 95.09 93.65 93.63 94.19 95.26 92.58
2W-7S 92.61 94.41 95.73 94.68 94.20 94.75 96.02 93.71
2W-8S 92.85 94.79 96.21 95.35 94.55 95.22 96.67 94.27
2W-9S 93.02 94.89 96.46 95.48 94.79 95.56 96.88 94.64
2W-10S 93.19 95.10 96.77 95.69 95.05 95.74 97.07 94.94
5W-1S 61.73 65.85 64.06 56.93 63.61 64.81 62.61 54.25
5W-2S 69.93 75.02 75.72 71.07 72.15 73.95 75.30 68.56
5W-3S 73.97 79.04 80.88 76.81 76.97 78.47 80.73 74.57
5W-4S 76.47 81.48 84.32 80.88 80.06 81.95 84.53 78.51
5W-5S 78.16 83.22 86.67 83.24 82.05 84.02 86.95 81.03
5W-6S 78.84 83.97 88.10 85.31 83.62 85.59 88.78 83.16
5W-7S 79.76 85.04 89.17 86.52 84.68 86.60 90.22 84.58
5W-8S 80.36 85.50 90.09 87.47 85.52 87.35 91.05 85.55
5W-9S 81.14 85.94 90.83 88.55 86.30 88.32 91.91 86.50
5W-10S 81.40 86.36 91.37 89.35 86.77 88.51 92.57 87.33

Table 2: Performance comparison of the proposed models on the Derm7pt skin lesion dataset for 2-way and 5-way
classification tasks. Accuracy (%) values are presented.

Exp MobileNetV2 DenseNet121
FEL FETL DTL DL FEL FETL DTL DL

2W-1S 59.37 61.38 59.65 58.65 61.40 60.99 60.00 59.42
2W-2S 63.87 66.20 65.15 64.53 65.83 66.13 67.45 65.46
2W-3S 66.45 69.22 68.67 68.60 69.21 70.21 71.17 69.88
2W-4S 68.21 71.07 72.27 71.36 70.83 72.24 74.31 72.99
2W-5S 69.18 72.34 75.41 74.15 72.46 74.12 77.25 75.89
2W-6S 70.37 73.57 77.07 75.97 73.34 75.21 79.23 77.56
2W-7S 71.11 74.69 78.81 77.29 74.50 76.83 80.90 79.15
2W-8S 71.40 74.82 80.07 78.44 74.66 76.67 81.69 79.98
2W-9S 72.25 75.81 81.59 79.87 75.21 77.98 83.54 80.99
2W-10S 71.98 76.38 82.43 80.34 75.68 78.28 83.90 81.68
5W-1S 32.38 32.79 31.80 31.70 31.78 33.74 32.04 31.80
5W-2S 39.16 40.39 41.06 40.65 39.73 41.54 42.78 42.34
5W-3S 41.97 43.96 46.89 46.51 43.35 46.44 49.19 48.67
5W-4S 43.88 45.87 51.82 51.19 45.64 49.92 53.77 53.57
5W-5S 45.38 47.81 55.92 54.69 47.05 52.48 57.68 56.83
5W-6S 46.02 48.83 58.67 57.47 47.87 53.96 60.92 59.56
5W-7S 47.24 50.31 61.42 59.97 48.86 55.65 63.65 61.45
5W-8S 47.70 50.71 63.63 61.78 49.31 56.87 65.93 63.22
5W-9S 48.16 51.49 65.12 63.20 49.81 57.46 67.80 64.51
5W-10S 48.58 52.15 66.33 64.38 50.11 58.56 69.28 65.48

Table 3: Performance comparison of the proposed models on the ISIC2018 skin lesion dataset for 2-way and 3-way
classification tasks. Accuracy (%) values are presented.

Exp MobileNetV2 DenseNet121
FEL FETL DTL DL FEL FETL DTL DL

2W-1S 58.42 58.49 64.83 60.55 57.86 59.04 58.55 60.66
2W-2S 62.62 62.23 73.10 67.99 61.55 62.92 66.60 68.46
2W-3S 63.99 63.86 77.26 71.69 63.63 64.98 71.16 72.34
2W-4S 65.38 65.49 79.81 74.02 64.83 66.55 74.31 74.77
2W-5S 66.94 66.31 81.63 76.42 65.97 67.51 76.69 76.40
2W-6S 67.65 67.01 82.55 77.07 66.17 68.27 78.31 77.24
2W-7S 68.05 67.73 83.52 78.22 67.04 68.49 79.30 78.08
2W-8S 68.08 67.73 84.02 78.55 67.68 68.81 80.27 78.68
2W-9S 68.83 68.13 84.75 79.57 67.54 69.35 80.72 79.45
2W-10S 69.50 68.82 85.18 80.39 68.58 70.07 81.99 80.14
3W-1S 42.33 43.09 49.51 45.61 42.08 42.25 43.63 44.63
3W-2S 45.64 45.85 59.10 52.83 45.44 45.89 52.61 52.89
3W-3S 48.02 48.33 63.98 57.75 47.35 48.68 57.70 57.67
3W-4S 49.65 49.39 67.13 60.55 48.80 50.05 61.93 60.65
3W-5S 50.41 50.92 69.35 63.22 50.39 51.56 64.47 62.72
3W-6S 51.43 51.46 71.06 65.06 50.81 52.49 66.50 64.20
3W-7S 52.04 52.06 72.47 66.54 51.28 53.02 68.27 65.44
3W-8S 52.97 52.56 73.16 67.33 52.09 53.53 69.32 65.99
3W-9S 52.91 52.90 74.21 68.31 52.41 53.61 70.60 67.21
3W-10S 53.76 53.21 75.01 69.07 53.07 53.46 71.38 67.59
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than 20 data points are designated as novel, while those with 20-30 data points are assigned to the validation set. To
ensure a standardized testing environment for the four differently trained models, we employed a seed and deterministic
mode, which worked in allowing each model to be tested on tasks of the same difficulty and order. Hyperparameters
such as batch size used during testing were structured similarly for FETL and FEL models, with the only difference
being the query set size set to 5 due to data insufficiency in novel classes. Data augmentation techniques are not applied
to novel classes. All experiments are conducted using MobileNetV2 and DenseNet121 backboned models.

The sole distinction between the FEL (Few-Shot Episodic Learning) and FETL (Few-Shot Episodic Transfer Learning)
models lies in the use of pretrained ImageNet weights for the backbone models in the FETL model. In contrast,
the FEL model is trained on backbone models with random initialization. Data augmentation techniques such as
RandomResizedCrop, RandomFlip, and ColorJitter are employed. In this framework, our models are trained with a
5-way 5-shot configuration, and all layers of the backbone models are fully opened for training.

Both DTL (Deep Transfer Learning) and DL (Deep Learning) models utilize ImageNet weights, but the DTL model is
fine-tuned with the base classes of the datasets. The DL model, serving as a baseline, is chosen to compare performance
without any fine-tuning, using ImageNet weights. In the DTL model, traditional training methods are employed instead
of episodic training. For instance, in the case of the SD-198 dataset, 10% of the 128-class base section are allocated as
the validation set. The MobileNetV2 model with ImageNet weights are then trained, aiming for the model to learn
generalized features from the dataset. During testing, this model is used with ProtoNet in an episodic structure to
evaluate and compare its performance.

Various augmentation techniques are employed in different training iterations of the DTL model to compare their
effects and success rates. While the DTL-base model utilizes RandomResizeCrop and 50% Horizontal RandomFlip
in the SD-198 and ISIC2018 datasets, Resize and 45% Horizontal and Vertical RandomFlip are used in the Derm7Pt
dataset. Subsequently, the DTL-Base section is kept constant, and batch augmentation techniques such as CutMix,
MixUp, and ResizeMix are added for comparison. Each added technique is labeled in the result tables as DTL-CutMix
or DTL-ResizeMix. Our model named DTL-All-Augment represents a comprehensive model incorporating all three
techniques on top of DTL-Base.

5.2 Experimental Analysis

In order to evaluate our framework and assess the effectiveness of our proposed methods, we performed experiments
using 2-Way 1-Shot to 10-Shot and 5-Way 1-Shot to 10-Shot setups. These tests are conducted using three datasets:
SD-198, Derm7pt, and ISIC2018. The comprehensive results of our model tests are detailed in Tables 1, 2, and
3. Moreover, we executed additional experiments based on the parameters specified in Tables 4, 5, and 6. These
experiments are designed to compare our model’s performance against benchmarks set in prior research, such as
SCAN [19], MetaMed [18], and PFEMed [25], using the datasets referred to in Section [9–11]. In all these tables, the
highest accuracy values are highlighted in bold, and the second highest results are underlined.

The SD-198 dataset contains 198 classes and consists only of clinical images. In contrast, the Derm7pt dataset has
18 classes with a mix of clinical and dermoscopic images. The ISIC2018 dataset, with its 7 classes, mainly features
dermoscopic images. Although each of these three datasets shows a long-tail distribution, their unique features affect
how models perform. Additionally, the number of parameters and the performances of the backbone models also play
essential role in the overall model performance. For instance, MobileNetV2 has approximately 3.4 million parameters,
while DenseNet121 boasts 8.1 million parameters. Furthermore, while episodic learning is employed in FEL and FETL
models, transfer learning based training is utilized in DTL and DL models, a distinction that significantly impacts model
performance. As can be observed in Figure 5, in all three datasets, FETL models consistently outperform FEL models,
while DTL models demonstrate superior performance compared to DL models. Except for some rare cases, depending
on the number of shots and dataset conditions, our experimental results indicate that the most successful approach in the
proposed framework is the deep transfer learning based DTL model. As the number of shots increases, the performance
of transfer learning-based DTL and DL models improves.

When comparing our models without utilizing augmentation techniques, datasets containing relatively large number
of classes, such as SD-198 and Derm7pt, exhibit similar behaviors. Episodic learning-based models tend to be more
successful when the number of shots is low (i.e. 1 or 2 shots), while DTL and DL models show a tendency to outperform
as the number of shots increases. For instance, with MobilNetV2 model on the SD-198 dataset, for a 5-Way 1-Shot
scenario, the FETL model achieved 65.85%, whereas the DTL model achieved 64.06%. For a 5-Way 10-Shot scenario,
the FETL model achieved 86.36%, whereas the DTL model achieved 91.37% (Table 1). The behaviour of the models
are similar in Derm7pt dataset as well (Table 2). The reason behind this phenomenon lies in the adaptability of episodic
learning, which performs better in scenarios with fewer shots due to the large number of classes. Additionally, clinical
images inherently encapsulate various differences, making models trained in an episodic manner more inclined to
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Table 4: Comparison of our models and the SOTA methods. Values in the table are F1-scores of the corresponding
models on the SD-198 dataset.

Method Backbone 2 Way 5 Way
1 Shot 5 Shot 1 Shot 5 Shot

PCN
Conv4

70.78±1.61 85.87±1.12 45.59±1.03 65.70±1.02
SCAN 78.00±1.51 91.01±0.90 55.60±1.07 75.65±0.87
SCAN Conv6 77.64±1.50 88.28±1.03 54.07±1.24 74.73±0.92
NCA

WRN-28-10

71.27±1.50 84.23±1.19 45.91±1.08 62.83±1.01
Baseline 76.64±1.56 89.66±0.97 52.54±1.11 74.71±0.96
S2M2_R 77.15±1.59 90.97±0.89 55.49±1.13 78.17±0.84
NegMargin 77.98±1.45 90.65±0.92 56.04±1.14 77.75±0.87
PT+NCM 78.86±1.47 90.90±0.93 56.91±1.11 78.12±0.88
PEMbE-NCM 78.70±1.49 90.94±0.95 57.42±1.11 78.78±0.90
EASY 79.44±1.51 91.43±0.96 57.77±1.12 79.53±0.89
SCAN 81.21±1.46 92.08±0.85 58.75±1.14 81.43±0.77
DTL-Base(Ours)

MobileNetV2

80.54±0.53 94.10±0.29 61.32±0.40 86.04±0.26
DTL-CutMix(Ours) 81.10±0.53 94.51±0.28 62.78±0.41 87.05±0.26
DTL-MixUp(Ours) 80.34±0.53 94.20±0.28 61.71±0.41 86.61±0.26
DTL-All-Augment(Ours) 81.44±0.53 94.76±0.28 63.22±0.41 87.48±0.25
DTL-ResizeMix(Ours) 83.06±0.51 95.05±0.27 65.40±0.40 88.08±0.25

Note:(1) The results of the SOTA models are taken from the SCAN [19]. (2) The complete references for the mentioned works in the
table are as follows: PCN [14], SCAN [19], NCA [53], Baseline [47], S2M2_R [46], NegMargin [54], PT+NCM [48], PEM
bE-NCM [53], EASY [55].

tolerate these diversities. As the number of shots increases, models trained non-episodically become more successful in
classifications.

Since the ISIC2018 dataset comprises dermoscopic data, the discriminative power of domain-specific features becomes
more crucial. Hence, transfer learning-based DTL and DL models outperform FETL and FEL models. For instance,
for MobileNetV2, the accuracy rates are 58.49% for 2-Way 1-Shot with FETL and 64.83% with DTL, and 68.82%
for 2-Way 10-Shot with FETL and 85.18% with DTL (Table 3). Episodic learning-based methods tend to remain
superficial in training. Additionally, in parallel with the SD-198 dataset, models tend to become more successful as
the number of shots increases in ISIC2018 and Derm7p datasets. The MobileNetV2 and DenseNet121 models tend
to yield complementary outcomes. DenseNet121, with its greater parameter count, is more susceptible to overfitting
while training. Conversely, MobileNetV2, with its simpler architecture, is better suited for practical applications in this
setting.

In all three datasets we studied, transfer learning methods generally perform better than episodic few-shot training in
learning distinct features, except in cases where there is only one example provided. This observation suggests that even
though episodic few-shot training is a more intricate approach, it may not be as effective as transfer learning in most
scenarios. The exception is when extremely limited data is available, which is when episodic few-shot training can
be valuable. This finding is consistent with recent research ( [21]) that questions the practicality of complex few-shot
training methods.

5.3 Comparison with Current State-of-the-Art

We also included a thorough analysis aimed at understanding how different skin disease datasets, each with unique
features and conditions, influence the training process. We arranged the datasets in our research in a manner similar to
SCAN [19] and PFEMed [25] studies for a fair comparison of the model performances. Specifically, we examined the
performance benchmarks set by the SCAN model on the SD-198 and Derm7pt datasets, and by the PFEMed model on
the ISIC2018 dataset.

In our research with the SD-198 dataset, we enhanced our Deep Transfer Learning (DTL) model by integrating various
augmentation techniques, and compared these models with other state-of-the-art models in the field, particularly
focusing on the SCAN model (Table 4). The SCAN model, which incorporates an unsupervised cluster branch, has
been previously contrasted with the Meta-DermDiagnosis study. Our comparison also extended to various transfer
learning-based Few-Shot Learning (FSL) methods; including the models like NCA [53], Baseline [47], S2M2_R [46],
NegMargin [54], PT+NCM [48], PEMbE-NCM [53], and EASY [55]. Notably, the SCAN model reported better results
than these approaches in tests on the SD-198 dataset. The EASY model, which achieved results comparable to the
SCAN model, used an ensemble technique and augmented images with a random resize crop method. Our approach,
however, is different; we employ the MobileNetV2 model, leveraging ImageNet pre-trained weights instead of the
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Table 5: Comparison of our models and the SOTA methods. Values in the table are Accuracies (%) of the corresponding
models on the ISIC2018 dataset.

Method Backbone 2 Way 3 Way
3 Shot 5 Shot 10 Shot 3 Shot 5 Shot 10 Shot

Meta-DermDiagnosis Conv6 64.50 73.50 79,70 - - -
MetaMed - Transf. Learn.

Conv4

66.88 73.88 81.37 54.83 59.33 69.75
MetaMed - Normal Aug. 72.75 75.62 81.37 54.83 59.33 69.75
MetaMed - CutOut 70.37 77.62 81.87 55.5 65.41 69.75
MetaMed - MixUp 75.37 78.25 84.25 58.5 61.25 71
MetaMed - CutMix 73.25 76.87 80.62 58.66 61.5 66.5
PT-MAP

WRN

68.15 70.87 74.19 53.17 55.61 59.57
Baseline+ 64.77 70.27 74.67 53.2 54.16 57.87
NegMargin 71.33 72.67 75.17 60.69 57.58 63.04
Baseline 68.77 71.03 76.97 56.8 59.2 65.22
PFEMed 81.69 83.87 85.14 66.94 69.78 73.81
DTL-Base(Ours)

MobileNetV2

77.26 81.63 85.18 63.98 69.35 75.01
DTL-CutMix(Ours) 77.71 81.79 85.97 64.37 69.86 75.73
DTL-MixUp(Ours) 79.02 82.95 86.4 66.84 71.15 76.48
DTL-ResizeMix(Ours) 78,02 82.75 86.69 65.56 70.87 76.97
DTL-All-Augment(Ours) 78,96 83.21 86.83 66.12 71.28 76.94

Note: (1) The results of the SOTA models are taken from the PFEMed [25]. (2) The complete references for the mentioned works in
the table are as follows: Meta-DermDiagnosis [8], MetaMed [18], PT-MAP [48], Baseline [47], NegMargin [54], PFEMed [25].

Table 6: Comparison of our models and the SOTA methods. Values in the table are Accuracies (%) of the corresponding
models on the Derm7pt dataset.

Method Backbone 2 Way
1 Shot 5 Shot

PCN
Conv4

59.98±1.28 70.62±13
SCAN 61.42±1.49 72.58±1.28
Meta-DermDiagnosis

Conv6
61.8 76.9

SCAN 62.80±1.34 76.65±1.21
NCA

WRN-28-10

56.32±1.29 67.18±1.15
Baseline 59.43±1.34 74.28±1.14
S2M2_R 61.37±1.33 79.83±1.34
NegMargin 58.00±1.44 70.12±1.30
PT+NCM 60.92±1.68 74.33±1.48
PEMb E_NCM 60.40±1.72 72.63±1.48
EASY 61.02±1.67 75.98±1.41
SCAN 66.75±1.35 82.57±1.13
PFEMed 71.15 80.27
DTL-Base(Ours)

DenseNet121

60.00±0.39 77.25±0.41
DTL-CutMix(Ours) 61.57±0.41 78.65±0.40
DTL-MixUp(Ours) 62.56±0.40 81.00±0.39
DTL-ResizeMix(Ours) 61.09±0.38 79.18±0.39
DTL-All-Augment(Ours) 60.88±0.40 78.30±0.40

Note: (1) The results of the SOTA models are taken from the SCAN [19]. (2) The complete references for the mentioned works in
the table are as follows: PCN [14], Meta-DermDiagnosis [8], SCAN [19], NCA [53], Baseline [47], S2M2_R [46], NegMargin [54],
PT+NCM [48], PEM bE-NCM [53], EASY [55], PFEMed [25].
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typically used WRN-28-10 model. Our augmentation strategy is more varied; we combined traditional techniques like
Random Flip and Random Resize Crop with advanced methods such as CutMix, MixUp, and ResizeMix (as used by
MetaMed model). This approach enabled our models to exceed the existing state-of-the-art results. Even though we
used simple transfer learning based methodology, with the data augmentations our model could efficiently learn and
transfer feature embeddings from base classes to novel classes.

Similarly, the PFEMed study compared its results on the ISIC2018 dataset with benchmarks set by studies like
MetaMed [18], Meta-DermDiagnosis, PT-MAP [48], Baseline, and NegMargin. The PFEMed approach involved a
comprehensive model with a dual-encoder structure combined with a Variational Autoencoder, distinguishing between
general and specific features, and achieving state-of-the-art results. In contrast, the MetaMed study explored models
employing augmentation techniques (such as CutOut, CutMix, and MixUp) during episodic training with Reptile model,
and compared these to Meta-DermDiagnosis. In this dataset, observing the potential success of our DTL model trained
with MobileNetV2, we applied similar augmentation techniques to the training data. The experiment results depict that
our model performs comparable results with the state-of-the-art models; producing second best results in 3-Shot and
5-Shot cases. Moreover, we obtain best results when the number of samples is increased (i.e. 10-Shot case) (Table 5).

We also compared our models with leading models on the Derm7pt dataset. The unique features of this dataset played a
key role in improving performance, especially the sub-cluster aspect in the SCAN model. We included findings from
the PFEMed study in our comparison. By using the DTL-MixUp model, based on the DenseNet121 framework, we
achieved results that align with existing benchmarks in the 2-Way 5-Shot scenario, where our model ranked second in
accuracy. Similar to what we observed in our early experiments without data augmentations, in one-shot settings, the
DTL model didn’t perform as well compared to other models (see Figure 5). It’s important to note that our method
relies solely on transfer learning techniques and enhances the pretrained ImageNet model with data augmentations.
These outcomes indicate that this fundamental approach remains effective in managing long-tail distributions, without
the need for intricate training methods.

6 Conclusion and Future Work

In this study, we explore the effectiveness of episodic and traditional training methods combined with few-shot learning
through transfer learning for classifying rare skin diseases in situations with limited data. Current literature emphasize
that datasets with long-tail distributions present specific challenges, highlighting the necessity for specialized training
approaches to achieve successful outcomes. But there is a lack of research combining basic few-shot training models
with well-known transfer learning methodologies in this domain. Our study seeks to fill this gap by evaluating these
established training methods on major datasets often used as benchmarks for long-tail distributions in skin diseases.
In this context, we presented evaluations of three publicly available skin image datasets using the FETL, FEL, DTL,
and DL models. Notably, the DTL model, which integrates transfer learning with conventional training techniques,
consistently outperformed others in these datasets. By enhancing our models with MixUp, CutMix, and ResizeMix
techniques, as recommended in existing literature, we were able to reach leading performance on the SD-198 and
comparable performances with the state-of-the-art methods in ISIC2018 and Derm7pt datasets.

These findings underline the effectiveness of transfer learning, a well-established method, in the context of few-shot
learning for long-tail distributions in skin disease classification. We suggest that further improvements in accuracy and
robustness can be achieved through expanded data augmentation and exploring different model architectures. Based on
the insights gained from this study, we believe that further research is crucial, especially for dermoscopic datasets facing
data scarcity. Moreover, applying these findings to a broader range of medical imaging datasets, including X-rays, CT
scans, and MRIs, could be helpful in detecting and diagnosing new diseases.
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