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In previous work [Phys. Rev. X 5, 021020 (2015)], it was shown that stealthy hyperuniform
systems can be regarded as hard spheres in Fourier-space in the sense that the the structure factor
is exactly zero in a spherical region around the origin in analogy with the pair-correlation function
of real-space hard spheres. In this work, we exploit this correspondence to confirm that the densest
Fourier-space hard-sphere system is that of a Bravais lattice. This is in contrast to real-space hard-
spheres, whose densest configuration is conjectured to be disordered. We also extend the virial
series previously suggested for disordered stealthy hyperuniform systems to higher dimensions in
order to predict spatial decorrelation as function of dimension. This prediction is then borne out
by numerical simulations of disordered stealthy hyperuniform ground states in dimensions d = 2-8.

I. INTRODUCTION

Hyperuniform systems are defined by a structure factor
S(k) which approaches zero as the wavenumber k ≡ |k|
approaches zero, yielding density fluctuations that are
anomalously suppressed at long length scales as com-
pared to standard liquids or gases [1]. These systems de-
scribe states that are ubiquitous in nature ranging from
ordered systems, like crystals and quasicrystals, to dis-
ordered systems like perfect glasses, fermionic point pro-
cesses, jammed particle packings, quantum states, plas-
mas, galaxy distributions, and eigenvalues of random ma-
trices [2]. Hyperuniform systems can be classified accord-
ing to the precise way the structure facgtor approaches
zero, which is useful because different classes have dis-
tinctive properties and applications.

Stealthy hyperuniform point-patterns are a sub-class of
hyperuniform states wherein S(k) is precisely zero within
an exclusion region 0 < k ≤ K for some positive K. This
property suggests an analogy: up to two particle cor-
relations, stealthy hyperuniform point patterns can be
regarded as hard spheres in Fourier-space [3] in the sense
that the pair correlation function for hard spheres, g2(r),
has an exclusion region in real space, where g2(r) is pre-
cisely zero for 0 < r ≤ σ, where r is the distance between
particles and σ is the sphere diameter (see Fig. 1 for a
comparison). The analogy breaks down when consider-
ing higher order correlations (gn with n > 2), but the
correspondence is strong enough to deduce several prop-
erties of stealthy hyperuniform systems. While bearing
in mind this qualification, we use the terms stealthy hy-
peruniform point pattern and Fourier-space hard-spheres
interchangeably.
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In considering the analogy, it is natural to extend the
concept of packing fraction for hard spheres in real space
to Fourier space, as in Ref. [3]. For hard-spheres in real
space, the packing fraction is proportional to σd, where
d is the dimension of space. In Fourier space, the efec-
tive packing fraction of stealthy hyperuniform configu-
rations is proportional to Kd [3]. In the special case of
crystalline stealthy hyperuniform systems, K is simply
the location of the first Bragg peak [4], while for disor-
dered stealthy hyperuniform systems, K is the smallest
wavenumber for which S(K) is positive. This suggests a
simple question: is there a direct correspondence between
ideal hard-sphere packings in real-space and in Fourier-
space (i.e. solutions to the densest packing, the covering
problem, or the quantizer problem [5, 6])?

ba

dc

Figure 1. A comparison between (a) real-space hard-disks
with (b) their exclusion region in g2(r) and (c) a disordered
stealthy hyperuniform point pattern (Fourier-space hard-
spheres) with (d) their exclusion region in S(k).
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In real-space, each of these problems is quite difficult.
In particular, the densest packing has only been rigor-
ously proven in dimensions d = 1 (a trivial solution),
d = 2 [7], d = 3 [8], d = 8 [9], and d = 24 [10].
For all other dimensions, only lower [11] and upper
bounds [12, 13] have been proven, though conjectured but
unproven densest packing candidates are often quoted for
d ≤ 48 [5]. Most of these candidates are Bravais lattices,
though notable exceptions exist in d = 10-13 [14], where
the densest known packings are n-component crystals de-
rived through binary codes. The question of the dens-
est crystalline hard-sphere packing in real-space is thus
made more difficult by the existence of infinitely many
non-Bravais lattices (such as the honeycomb lattice in
d = 2 and hexagonal close packing in d = 3). To com-
plicate matters further, it has been conjectured that in
large enough d, the densest packing should be disordered
due to the decorrelation principle [15], which states that
as d → ∞ all unconstrained spatial correlations vanish
beyond the hard-core and all n-particle correlation func-
tions gn for n ≥ 3 can be inferred from g2 and the number
density. However, two other possibilities have been sug-
gested through thermodynamic arguments as discussed
in Ref. [16].

For Fourier-space hard spheres, the densest packing
in any dimension has constraints that do not exist in
real-space, allowing for stronger restrictions on its prop-
erties. In d = 1-4, it was proven [3] that the dens-
est Fourier-space hard-sphere packing in is a Bravais
lattice—specifically the dual to the densest Bravais lat-
tice in real-space. This statement was then conjec-
tured to hold for higher dimensions—which we address in
Sec. III. The densest configuration in Fourier-space thus
does not necessarily correspond to the densest configura-
tion in real-space except in cases where the densest lattice
is self-dual. Here we derive an expression that makes this
statement explicit, thus allowing the full phase diagram
of stealthy systems to be computed.

We also comment directly on the decorrelation princi-
ple as applied to disordered stealthy hyperuniform states.
In Ref. [17], we demonstrated the ability to create large
disordered stealthy hyperuniform systems to ultra high
accuracy by adapting their standard generating protocol
to double-double precision on GPUs. With ultra-high ac-
curacy systems at our disposal, it is then possible to test
the decorrelation principle through g2(r), S(k > K) and
the τ order metric (which measures the degree of trans-
lational order) in d = 2-8. While we cannot simulate
dimensions high enough to show complete decorrelation,
we show a loss of higher order structure that is consistent
with both the decorrelation principle [15] and the mean-
field theory of hard-sphere liquids and glasses [18, 19].
By understanding how structure diminishes in stealthy
hyperuniform systems as a function of dimension, we can
then begin to understand the role of spatial structure in
determining the many novel properties of stealthy hy-
peruniform systems in the physical dimensions d = 1-
3 [17, 20–41].

The goals of this work are then threefold. First, in
Sec. II we give basic definitions and derive the constraints
on all stealthy hyperuniform point patterns—both or-
dered and disordered—imposed by the hard-sphere con-
dition. In Sec. III, we use these constraints to confirm
that the densest Fourier-space configuration (i.e., the
highest value of K for a fixed number density of points)
is a Bravais lattice, as stated in Ref. [3]. Then in Sec. IV,
we discuss disordered stealthy hyperuniform systems and
derive their effective Fourier-space packing fraction from
the virial theorem. This then allows us to compare to nu-
merical results showing decorrelation in Sec. V. Finally,
in Sec. VI, we summarize our results and discuss the im-
plications that this has on glasses.

II. DEFINITIONS

A Bravais lattice Λ ∈ Rd is a subgroup consisting of
integer linear combinations of vectors constituting a basis
for Rd. There are d basis vectors of Λ labelled ai, and
every point on the lattice can be specified as

p =

d∑
i=1

niai (1)

where ni ∈ Z. A Bravais lattice is often simply referred
to as a lattice in mathematics, so to avoid confusion, we
will explicitly state whether a concept applies to Bravais
lattices, non-Bravais lattices, or both. For Bravais lat-
tices, space can be divided into identical regions F called
fundamental cells that each contain a single point p. The
volume of F is denoted vF .

Every Bravais lattice has a dual Bravais lattice Λ∗,
whose points are defined such that that if p ∈ Λ and
q ∈ Λ∗, then p · q = 2πm where m ∈ Z. The dual
fundamental cell F ∗ has a volume vF∗ = (2π)d/vF such
that the number density of the lattice ρΛ and its dual
ρΛ∗ are related as

ρΛρΛ∗ =
1

(2π)d
. (2)

While the concept of a dual lattice can be formally ex-
tended in some cases to periodic point patterns [42, 43]
(i.e., non-Bravais lattices), most periodic point patterns
do not have a formal dual, and Eq. (2) cannot in general
be extended to them.

In addition to lattices and explicit periodic point pat-
terns, we consider disordered point patterns consisting
of N point particles in Rd embedded in periodic boxes F
with volume vF with positions rj . The structure factor
for any of the aforementioned individual systems is given
by

S(k) =
|ñ(k)|2

N
(3)
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where k is a non-zero reciprocal lattice vector of F and
ñ(k) is the complex collective coordinate of the wavevec-
tor k given by

ñ(k) =

N∑
j=1

exp(−ik · rj). (4)

Disordered stealthy hyperuniform systems can be ob-
tained through the collective coordinate procedure [4, 17,
44–47], which searches for a global minimum (ground
state) of a potential related to S(k) via numerical mini-
mization. This potential energy can be derived as [46]:

Φ(rN ) =
N

2vF

[ ∑
0<k≤K

ṽ(k)S(k)−
∑

0<k≤K

ṽ(k)

]
. (5)

where v(r) is a positive, bounded, and integrable func-
tion with compact support over the interval 0 < k ≤ K
whose Fourier transform ṽ(k) exists. In practice, because
the second term is a potential-dependent constant inde-
pendent of the positions of the particles, it is dropped,
and a disordered stealthy hyperuniofrm point pattern is
then given by Φ(rN ) = 0. While numerical simulations
cannot reach this strict bound, they are able to achieve
values of Φ which are indistinguishable from zero [48] to
within double [4, 44–46] or double-double precision [17].

While stealthy hyperuniform systems are characterized
by the linear size of the exclusion region K, it is use-
ful to consider the number of independently constrained
wavevectors for which S(k) = 0, labelled M . The total
number of independent degrees of freedom in a system of
N particles is (N−1)d, and thus the fraction of indepen-
dent degrees of freedom that are constrained, labelled χ,
is

χ ≡ M

(N − 1)d
. (6)

The maximum value of χ for any disordered system is
χ = 1

2 for d ≥ 2 [3, 49] (note also that d = 1 is a
special case—that we do not treat here—for which only
χ < 1

3 are fully disordered; see Refs. [50]. All systems
with χ > 1

2 are therefore ordered. In addition to crys-
talline states, the ordered regime contains stacked slider
phases [4, 47]. Stacked sliders have implicit constraints
that necessitate order (like a crystal), but these states
do not contain Bragg peaks and are not periodic in real-
space (see Refs. [4, 47] for visual examples).

Following the arguments of Ref. [3], χ can be shown to
act as an effective packing fraction of spheres with radius
K in Fourier-space by noting its value in the thermody-
namic limit:

χ =
vdK

d

2dρ(2π)d
, (7)

where vd is the volume of a d-dimensional sphere of unit
radius

vd =
πd/2

Γ(1 + d
2 )

. (8)

III. DENSEST STEALTHY HYPERUNIFORM
CONFIGURATIONS

There are two natural points of interest when dis-
cussing χ as an effective packing fraction: 1) the tran-
sition point between disordered and ordered systems at
χ = 1

2 for d ≥ 2 and 2) the maximum obtainable value of
χ in each dimension, which we denote χmax. In Ref. [3],
it was shown that χmax is associated with the Bravais
lattice that is the dual to the densest Bravais lattice in
real-space. This section is devoted to finding an expres-
sion for χmax that makes this statement more explicit
and that allows the full phase diagram of Fourier-space
hard-spheres to be written in any dimension whose dens-
est real-space lattice is known.

To find the maximum value of χ for a given dimension,
we first consider the maximum value of χ for a given
Bravais lattice Λ, labelled χmax,Λ. Here, we can relate
the number density of the reciprocal lattice to its packing
fraction

ρΛ∗ =
2dφΛ∗

vdKd
, (9)

which—combined with Eq. (7)—yields

χΛ =
2dφΛ∗

2d
=

φ̂Λ∗

2
. (10)

Thus, the numerical value of χ associated with a given
lattice is directly related to the packing fraction of its
dual lattice in real-space. Values of χΛ for several stan-
dard lattices and their duals in d = 1-48 are shown in
Fig. 2. Notably, Eq. (10) makes explicit use of the scal-
ing used to compare disorderd real-space hard-spheres
across dimensions [15, 18, 19, 51, 52]

φ̂ =
2dφ

d
. (11)

This scaling ensures that the minimal jamming pack-
ing fraction, the (avoided [53]) dynamical transition, and
the onset of Fickian diffusion are all O(1) and smoothly
evolve as d → ∞ [54–58]. The appearance of this scal-
ing when considering lattices is a subtle point, which has
been noted elsewhere [56, 57, 59]. Here, it will be used
to make previous statements about the densest Fourier-
space hard-sphere packing more apparent.

From Eq (10), we define the absolute maximum χmax

as the maximum value of χΛ taken over all lattices Λ in
a given dimension,

χmax ≡ max
Λ

(χΛ). (12)

We have two tools which allow for the calculation of χΛ

when the maximum packing fraction of the dual lattice
(φΛ∗) is unknown or when the dual lattice does not exist
(i.e., in non-Bravais lattices). The first of these is an
application of the stacked slider theorem [47]

χ =
vdK

d
m

2d(2π)dρP ρQ
(13)
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Figure 2. Plot showing χ for root lattices, their duals, Kd

and its dual in d = 7-13, and the duals of the laminated
lattices Λd in d = 1-48. We also show the upper bound for
disordered systems, χ = 1

2
(gray line), and the lower bound

for the densest lattice in any given dimension χ = (1− 1
d
)ζ(d)

(black line) [59] showing that the densest Fourier-space hard-
sphere packing in all dimensions is ordered.

where P and Q refer to lower dimensional lattices, for
which dP + dQ = d and Km = min(KP ,KQ). Apply-
ing this recursively allows the calculation of χmax in all
laminated lattices. The second is an application of the
Lemma on additive stealthy systems [3], which states
that for a system made additively from m stealthy sub-
systems, the combined value of χ is

χ =

[ m∑
i=1

χ−1
i

]−1

. (14)

Here, because χi > 0 for all i, we have that χ < χi for
all i. Thus the value of χ for a crystal with an m particle
basis is lower than that of the Bravais lattice with the
same unit cell. In Ref. [3] this was used to show that
the densest lattice in Fourier-space is a Bravais lattice.
From the construction of Eq. (10), it is then clear that the
densest lattice in Fourier-space is the dual of the densest
Bravais lattice in real-space—a statement noted in d = 1-
4 in Ref. [3]. This lattice was also proven to be the unique
ground state in any given dimension [60].

Furthermore, it was shown [3] that the densest lattice
in Fourier-space is more dense than the densest disor-
dered system by logically extending the results of d = 1-
4. The explicit connection to real-space systems from
Eq. (10) allows us to reinforce that proof. While the
best lower [11] and upper bounds [12, 13] on crystal close
packing put the densest real-space Bravais lattice in the
range

max
Λ

(φ̂Λ) ∈
(
65963,

20.401d

d

)
(15)

as d → ∞, a much weaker constructive lower bound is
all that is necessary to prove that the highest χmax is

associated with a Bravais lattice. For any given dimen-
sion, Ball showed that a Bravais lattice ΛB exists with
φ̂ΛB

≥ 2(1− 1
d )ζ(d) where ζ(d) is the Riemann zeta func-

tion [59], and thus

χmax ≥
(
1− 1

d

)
ζ(d) (16)

for d > 1. Note that for d = 1 where ζ(1) diverges,
χmax = 1. For positive integers d, ζ(d) → 1+ as d → ∞,
which converges rather quickly, meaning that χmax > 1

2
in all dimensions.

One caveat, which is clear from Fig. 2, is that while
χmax > 1

2 in all dimensions, individual Bravais lattices
may have χΛ < 1

2 in any dimension, such as Zd for d >
5. Additionally, crystals (i.e., lattices with a basis) may
have χΛ < 1

2 even in low dimensions, such as kagomé
(χ = 0.3022) and honeycomb (χ = 0.4534) crystals in
d = 2 and the pyrochlore (χ = 0.2267) and diamond
(χ = 0.4534) crystals in d = 3 [3].

IV. MAPPING TO REAL-SPACE DISORDERED
SYSTEMS

While we have focused so far on the exclusion region
S(k < K), we would like to predict the behavior of the
structure factor of disordered stealthy hyperuniform sys-
tems outside of the exclusion region, i.e., S(k > K). In
Ref. [3], a subset of stealthy hyperuniform systems was
identified for which this problem was tractable, namely,
entropically favored states (EFS), which are first ther-
mally equilibrated at a low temperature and then rapidly
quenched through energy minimization. The EFS thus
act like equilibrium Fourier-space hard-spheres. Follow-
ing Ref. [3], we use the mapping between a stealthy hy-
peruniform ensemble with S(k) at an effective packing
fraction χ and a real-space hard-sphere ensemble with
gHS
2 (r) at real-space packing fraction φ̂ by

S(k, χ) = gHS
2 (r = k, φ̂), (17)

where χ = b(d)φ̂. Because Eq. (17) is only a statement of
2-point correlators, it should only be accurate for small
values of χ, though it should be increasingly accurate
as d increases and higher order correlations become triv-
ial due to the decorrelation principle [15]. Whether this
mapping is precisely realizable in a given d at any order
of approximation is left as an open question.

To first order in φ̂, the pair correlation function for
equilibrated hard spheres can be written as [61, 62]

gHS
2 (r) = Θ(r − σ)

[
1 + φ̂α(r;R)d+O(φ̂2)

]
(18)

where α(r;R) is the overlap of two spheres of radius R
separated by a distance r [61]

α(r;R) =
2Γ(1 + d

2 )

π1/2Γ(d+1
2 )

∫ cos−1[r/(2R)]

0

sind(θ)dθ. (19)
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The special case r = R, which obtains the maximum
value of α(r;R), is then

α(R;R) =
2F1

(
1
2 ,

1+d
2 ; 3+d

2 ; 3
4

)
Γ(1 + d

2 )
(
3
4

)(1+d)/2

π1/2Γ( 3+d
2 )

(20)

where 2F1 is the ordinary hypergeometric function. In in-
finite dimensions, gHS

2 (r) approaches a step function for
all densities [15, 57, 63], which is reflected in the asymp-
totic form of the coefficient of φ̂ at the maximum value
r = R:

α(R;R)d ∼
√

6d

π

(
3

4

)d/2

. (21)

As expected, this asymptotes to zero for all values of φ̂
as d → ∞, and gHS

2 (r) approaches a step function.
Using the mapping of Eq. (17), we obtain [64]

S(k) = Θ(k −K)
[
1 + b(d)χα(k;K)d+O(φ̂2)]. (22)

In Ref. [3] it was argued that b(d) = [α(K;K)d]−1, noting
the correct limit in d = 1 and a strong fit to d = 2 and
d = 3 data [65]. However, this scaling gives an erroneous
result in the prediction for S(K) yielding S(K) = 1 +
χ+O(χ2). By construction, S(k) should approach a step
function as dimension increases, and thus S(K) should
approach 1 as d → ∞. In Sec. III, we noted that χ could
be compared directly to real-space packing fractions in
hatted units (see Eq. (11)), suggesting that b(d) = 1,
and thus

S(k) = Θ(k −K)
[
1 + χα(k;K)d+O(χ2)]. (23)

Fig. 3, demonstrates that this achieves the appropri-
ate limit to first order in χ, because α(K;K)d → 0
as d → ∞. Over the densities considered in Ref. [3],
the differences between the choices of b(d) = 1 and
b(d) = [α(K;K)d]−1 yield curves which are almost in-
distinguishable, and thus Eq. (23) fits EFS simulation
data well.

It is, of course, important to note that the mapping of
Eq. (17) does not imply that all real-space hard-sphere
properties can be directly transferred to Fourier-space
hard-spheres. In Eq. (17), the mapping is only made at
the two-particle level, which is most relevant at low den-
sities and in high dimensions. We thus expect it to fail
when considering highly correlated systems. It is thus
unsurprising that the configuration with the maximum
effective packing fraction in Fourier-space (Eq. (10)) is
not what might have been expected using a straightfor-
ward substitution φ̂ → χ. Similarly, the freezing point
for Fourier hard spheres appears to be χ = 1

2 , while for
real-space hard spheres, φ̂f ∼ 1 in d = 3-10 (see Ref. [56]
for numerical values) [66].

V. EVOLUTION OF STRUCTURE IN
DISORDERED SYSTEMS

The collective coordinate minimization procedure de-
scribed in Sec. II can be used to create disordered stealthy
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Figure 3. The first order coefficient in the χ expansion of
S(k) for entropically favored states α(K;K)d as a function of
dimension. We see that α(K;K)d ∼ O(1) for d ≲ 20 but it
then rapidly decreases as d → ∞.

hyperuniform systems by minimizing S(k) in the exclu-
sion region. The behavior of the structure factor outside
of the exclusion region S(k > K) and the pair correlation
function g2(r) will then depend largely on the initial con-
ditions and the type of minimizer used [46]. While the
theory of Ref. [3] gives theoretical predictions for both
g2(r) and S(k > K) in EFS, these states are difficult
to obtain when N is large, and the question of how to
create EFS at large scales is left for future work. We
instead focus on states with random initial conditions—
equivalent to an infinite temperature quench (ITQ)—and
ask whether key features predicted in EFS remain.

Fig. 4 shows ITQ data in d = 2-8 for χ = 0.1, 0.2, 0.3,
and 0.4. In d = 2, we see large discrepancies between
the theoretical values of g2(0) and S(K) from EFS as al-
ready noted in Ref. [46] (see Fig. 1 therein) but these dif-
ferences become negligibly small as dimension increases.
For higher values of χ, the non-monotonicity in S(k)
predicted in EFS are present in ITQ ensembles. How-
ever, the oscillations in S(k) at high χ and the spike near
k = K present in ITQ systems both decrease as dimen-
sion increases in agreement with the decorrelation princi-
ple [15]. We also note an apparent exclusion region form-
ing in g2(r) for high values of χ, which has been observed
elsewhere in large but finite systems [4, 46] and exploited
to map to packings of nonoverlapping spheres. [22].

In addition to g2(r) and S(k), we measure the degree of
translational order through the order metric τ [3], given
by

τ ≡ 1

Dd

∫
Rd

[
g2(r)− 1

]2
dr

=
1

(2πD)dρ2

∫
Rd

[
⟨S(k)⟩ − 1

]2
dk, (24)

where angular brackets ⟨. . . ⟩ denote an average over con-
figurations and D is a characteristic length, which we
take to be D = K−1. In an ideal gas τ = 0, and thus τ
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Figure 4. (left) Plots of S(k) (left) and g2(r) (right) at fixed χ. As dimension increases, several prominent features in both
metrics decrease, namely the peaks at low values of k and r respectively and oscillations in S(k) at high values of χ. As d → ∞,
S(k) tends towards a step function for all values of χ, however the dimensional range shown here is not enough for this trend
to be clear, as the first correction to the step function in Eq. (23) is O(1) for d ≲ 20 (see Fig. 3). Instead, the curves appear
to collapse towards a common curve as dimension increases. Noise in low χ high dimensional g2(r) data at small values of r is
due solely to low sampling.

represents the degree of departure from the fully uncor-
related case. To compare systems across dimension, we
define a modified version, labelled τ̂ , which for isotropic
systems (g2(r) = g2(r)) is

τ̂ ≡ vdτ

4d2(2π)d
=

Kdv2d
4d(2π)d

∫ ∞

0

[
g2(r)− 1

]2
rd−1dr

=
Kdv2d

4dρ2(2π)2d

∫ ∞

0

[
⟨S(k)⟩ − 1

]2
kd−1dk.

(25)

For EFS, to first order in χ, this integral can be broken

up into three regions using the form of Eq. (23)

[S(k)− 1]2 =


1 if k < K

χ2α(k;K)2d2 if K ≤ k ≤ 2K

0 if k > 2K.

(26)

The integral over the region k < K is trivially χ2, and
the integral over the region k > 2K is trivially zero. The
integral over the region K ≤ k ≤ 2K can then be reduced
to a nondimensional form to become

Kdv2dχ
2d

4ρ2(2π)2d

∫ 2K

K

α(k;K)2kd−1dk = χ4d3
∫ 2

1

α(t, 1)2td−1dt

= c4(d)χ
4, (27)

where c4(d) can be calculated numerically. We can thus
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write

τ̂ = χ2 + c4(d)χ
4 +O(χ5). (28)

Values of c4(d) rapidly decrease with dimension above
d ≈ 20 (see Fig. 5), meaning that τ̂ → χ2 as d → ∞,
which is the result one would get using S(k) = Θ(k−K).
Given that the χ2 contribution will be common to all
stealthy systems, we examine the excess contribution to
τ̂ as τ̂ − χ2.
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Figure 5. The coefficient c4(d) of the χ4 term in the expansion
of τ̂ in Eq. (28) is plotted as a function of dimension. While
c4(d) ∼ O(1) for d ≲ 20, it then decreases rapidly as d → ∞.
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Figure 6. The excess τ̂ order metric τ̂ − χ2 as a function
of both d and χ from the N = 2 × 106 infinite tempera-
ture quench (ITQ) data (circles). For d > 4, the ITQ data
matches the functional form of the entropically favored state
(EFS) prediction τ̂ − χ2 ≈ c̄χ4 (dashed black line). Lines
between points are kept as a guide to the eye. The prefactor
to the quartic term c̄ also approaches c4(d) as d increases, as
evidenced in the inset, which shows the relative error of c̄.

This can then be compared to the ITQ data (Fig. 6),
where we find remarkable functional agreement with the
EFS prediction as d increases, yielding τ̂ − χ2 ≈ c̄χ4 for
d > 4 with c̄ approaching c4(d) as dimension increases.
As noted in d = 2 [17], this indicates that the integrated

measure of order across length scales is essentially the
same between EFS and ITQ states, despite significant
departures in both S(k) and g2(r), and this is increas-
ingly true as dimension increases.

The decorrelation effects seen in both S(k) and τ indi-
cate that disordered systems are also generally easier to
find as dimension increases. This is borne out through
the collective coordinate minimization procedure, which
becomes significantly faster in higher dimensions, and
which always finds a global minimum. This also strongly
indicates that ground states will continue to exist for all
χ < 1

2 as d → ∞.

VI. CONCLUSIONS

By elaborating on the analogy of stealthy hyperuni-
form points patterns as hard-spheres in Fourier-space,
we have made several connections that allow insight into
real-space packing problems. While the full phase di-
agram for real-space hard spheres is contested in high
dimensions [16], the case for Fourier hard spheres is far
simpler. In all dimensions d ≥ 2, systems with χ < 1

2
are generically disordered ground states, with crystalline
and stacked slider phases comprising a zero-measure set.
For χ > 1

2 , only crystalline and stacked slider phases are
allowed, and we have derived a set of relations which clar-
ify that the densest Fourier hard-sphere packing in any
dimension is the dual to the densest Bravais lattice in
real-space, as previously shown [3]. In d = 1-8, the dens-
est known Fourier-space hard-sphere packing happens to
correspond with the best known solution to the quan-
tizer problem [6], though this correspondence is notably
broken in d = 9 and 10 [67].

Furthermore, features in S(k > K), g2(r), and the τ
order metric of disordered stealthy hyperuniform states
decorrelate as dimension increases, implying that higher
order correlations become trivial. This implies that dis-
ordered stealthy hyperuniform systems should be recon-
cilable with the infinite dimensional mean-field theory
of glasses [18, 19], wherein all pair interactions between
spheres are completely decorrelated. In infinite dimen-
sions, the EFS become the full Fourier-space equivalent
of real-space equilibrium hard spheres, whose dynamics
and phase behavior are well understood within the mean-
field theory. A full investigation of this mapping (and
the existence or non-existence of a Gardner phase [68] in
stealthy hyperuniform systems) is therefore within reach.
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