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Abstract

This paper discusses the results of the third edition of
the Monocular Depth Estimation Challenge (MDEC). The
challenge focuses on zero-shot generalization to the chal-
lenging SYNS-Patches dataset, featuring complex scenes
in natural and indoor settings. As with the previous edi-
tion, methods can use any form of supervision, i.e. su-
pervised or self-supervised. The challenge received a to-
tal of 19 submissions outperforming the baseline on the test
set: 10 among them submitted a report describing their ap-
proach, highlighting a diffused use of foundational models
such as Depth Anything at the core of their method. The
challenge winners drastically improved 3D F-Score perfor-
mance, from 17.51% to 23.72%.

1. Introduction
Monocular depth estimation (MDE) aims at predicting the
distance from the camera to the points of the scene de-
picted by the pixels in the captured image. It is a highly
ill-posed problem due to the absence of geometric priors
usually available from multiple images. Nonetheless, deep
learning has rapidly advanced this field and made it a real-
ity, enabling results far beyond imagination.
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For years, most proposed approaches have been tailored
to training and testing in a single, defined domain – e.g.,
automotive environments [33] or indoor settings [64] – of-
ten ignoring their ability to generalize to unseen environ-
ments. Purposely, the Monocular Depth Estimation Chal-
lenge (MDEC) in the last years has encouraged the commu-
nity to delve into this aspect, by proposing a new benchmark
for evaluating MDE models on a set of complex environ-
ments, comprising natural, agricultural, urban, and indoor
settings. The dataset comes with a validation and a testing
split, without any possibility of training/fine-tuning over it
thus forcing the models to generalize.

While the first edition of MDEC [90] focused on bench-
marking self-supervised approaches, the second [91] addi-
tionally opened the doors to supervised methods. During
the former, the participants outperformed the baseline [30,
92] in all image-based metrics (AbsRel, MAE, RMSE),
but could not improve pointcloud reconstructions [65] (F-
Score). The latter, instead, brought new methods capable of
outperforming the baseline on both aspects, establishing a
new State-of-the-Art (SotA). The third edition of MDEC,
detailed in this paper, ran in conjunction with CVPR2024,
following the successes of the second one by allowing sub-
missions of methods exploiting any form of supervision,
e.g. supervised, self-supervised, or multi-task.

Following previous editions, the challenge was built
around SYNS-Patches [1, 92]. This dataset was chosen
because of the variegated diversity of environments it con-
tains, including urban, residential, industrial, agricultural,
natural, and indoor scenes. Furthermore, SYNS-Patches
contains dense high-quality LiDAR ground-truth, which is
very challenging to obtain in outdoor settings. This allows
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for a benchmark that accurately reflects the real capabilities
of each model, potentially free from biases.

While the second edition counted 8 teams outperforming
the SotA baseline in either pointcloud- or image-based met-
rics, this year 19 submissions achieved this goal. Among
these, 10 submitted a report introducing their approach, 7
of whose outperformed the winning team of the second edi-
tion. This demonstrates the increasing interest – and efforts
– in MDEC.

In the remainder of the paper, we will provide an
overview of each submission, analyze their results on
SYNS-Patches, and discuss potential future developments.

2. Related Work
Supervised MDE. Early monocular depth estimation (MDE)
efforts utilized supervised learning, leveraging ground truth
depth labels. Eigen et al. [26] proposed a pioneering
end-to-end convolutional neural network (CNN) for MDE,
featuring a scale-invariant loss and a coarse-to-fine ar-
chitecture. Subsequent advancements incorporated struc-
tured prediction models such as Conditional Random Fields
(CRFs) [54, 120] and regression forests [82]. Deeper net-
work architectures [80, 109], multi-scale fusion [63], and
transformer-based encoders [8, 16, 79] further enhanced
performance. Alternatively, certain methods framed depth
estimation as a classification problem [6, 7, 28, 51]. Novel
loss functions were also introduced, including gradient-
based regression [53, 104], the berHu loss [50], an ordinal
relationship loss [14], and scale/shift invariance [80].
Self-Supervised MDE. To overcome the dependence on
costly ground truth annotations, self-supervised methods
were developed. Garg et al. [30], for the first time, pro-
posed an algorithm based on view synthesis and photo-
metric consistency across stereo image pairs, the impor-
tance of which for was extensively analyzed by Poggi et
al. [74]. Godard et al. [34] introduced Monodepth, which
incorporated differentiable bilinear interpolation [44], vir-
tual stereo prediction, and a SSIM+L1 reconstruction loss.
Zhou et al. [130] presented SfM-Learner, which required
only monocular video supervision by replacing the known
stereo transform with a pose estimation network. Follow-
ing the groundwork laid by these frameworks, subsequent
efforts focused on refining the depth estimation accuracy
by integrating feature-based reconstructions [89, 119, 124],
semantic segmentation [122], adversarial losses [3], proxy-
depth representations [5, 18, 48, 70, 83, 97, 107], trinoc-
ular supervision [75] and other constraints [9, 61, 103].
Other works focused on improving depth estimates at ob-
ject boundaries [96, 99]. Moreover, attention has also been
given to challenging cases involving dynamic scenarios dur-
ing the training phase, which pose difficulties in providing
accurate supervision signals for such networks. This has
been addressed, for example, by incorporating uncertainty

estimates [48, 73, 112], motion masks [11, 22, 37, 98],
optical flow [59, 81, 118], or via the minimum recon-
struction loss [35]. Finally, several architectural innova-
tions, including 3D (un)packing blocks [38], position en-
coding [36], transformer-based encoders [2, 127], sub-pixel
convolutions [71], progressive skip connections [60], and
self-attention decoders [46, 110, 129], allowed further im-
provements. Among them, lightweight models tailored for
real-time applications with memory and runtime constraints
have also been developed [4, 19, 43, 68, 69, 72, 108].

Generalization and “In-the-Wild” MDE. Estimating depth in
the wild refers to the challenging task of developing meth-
ods that can generalize to a wide range of unknown set-
tings [14, 15]. Early works in this area focused on predict-
ing relative (ordinal) depth [14, 15]. Nonetheless, the lim-
ited suitability of relative depth in many downstream con-
texts has driven researchers to explore affine-invariant depth
estimation [53, 113]. In the affine-invariant setting, depth is
estimated up to an unknown global offset and scale, offering
a compromise between ordinal and metric representations.
Researchers have employed various strategies to achieve
generalization, including leveraging annotations from large
datasets to train monocular depth models [79, 80, 111],
including internet photo collections [53, 113], as well
as from automotive LiDAR [33, 38, 42], RGB-D/Kinect
sensors [17, 64, 95], structure-from-motion reconstruc-
tions [52, 53], optical flow/disparity estimation [80, 109],
and crowd-sourced annotations [14]. However, the vary-
ing accuracy of these annotations may have impacted model
performance, and acquiring new data sources remains a
challenge, motivating the exploration of self-supervised ap-
proaches [116, 125]. For instance, KBR(++) [93, 94]
leverage large-scale self-supervision from curated internet
videos. The transition from CNNs to vision transform-
ers has further boosted performance in this domain, as
demonstrated by DPT (MiDaS v3) [79] and Omnidata [25].
Furthermore, a few works like Metric3D [114] and Ze-
roDepth [40] revisited the depth estimation by explicitly
feeding camera intrinsics as additional input. A notable re-
cent trend involves training generative models, especially
diffusion models [29, 41, 88] for monocular depth estima-
tion [24, 45, 47, 84, 85].

Adverse Weather and Transparent/Specular Surfaces. Exist-
ing monocular depth estimation networks have struggled
under adverse weather conditions. Approaches have ad-
dressed low visibility [89], employed day-night branches
using GANs [100, 126], utilized additional sensors [31], or
faced trade-offs [101]. Recently, md4all [32] enabled ro-
bust performance across conditions without compromising
ideal setting performance. Furthermore, estimating depth
for transparent or mirror (ToM) surfaces posed a unique
challenge [121, 123]. Costanzino et al. [21] is the only work
dedicated to this, introducing novel datasets [77, 78]. Their
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Figure 1. SYNS-Patches Properties. Top: Distribution of images per category in the validation split and the test split respectively.
Bottom: Depth distribution per scene type – indoor scenes are limited to 20m, while outdoor scenes reach up to 120m; natural and
Agriculture scenes contain a larger percentage of long-range depths (20-80m), while urban scenes focus on the mid-range (20-40m).

approach relied on segmentation maps or pre-trained net-
works, generating pseudo-labels by inpainting ToM objects
and processing them with a pre-trained depth model [80],
enabling fine-tuning of existing networks to handle ToM
surfaces.

3. The Monocular Depth Estimation Challenge
The third edition of the Monocular Depth Estimation
Challenge1 was organized on CodaLab [67] as part of a
CVPR2024 workshop. The development phase lasted four
weeks, using the SYNS-Patches validation split. During
this phase, the leaderboard was public but the usernames of
the participants were anonymized. Each participant could
see the results achieved by their own submission.

The final phase of the challenge was open for three
weeks. At this stage, the leaderboard was completely pri-
vate, disallowing participants to see their own scores. This
choice was made to encourage the evaluation on the valida-
tion split rather than the test split and, together with the fact
that all ground-truth depths were withheld, severely avoid-
ing any possibility of overfitting over the test set by con-
ducting repeated evaluations on it.

Following the second edition [91], any form of super-
vision was allowed, in order to provide a more compre-
hensive overview of the monocular depth estimation field
as a whole. This makes it possible to better study the
gap between different techniques and identify possible, fu-
1 https://codalab.lisn.upsaclay.fr/competitions/17161

ture research directions. In this paper, we report results
only for submissions that outperformed the baseline in any
pointcloud-/image-based metric on the Overall dataset.
Dataset. The challenge takes place based on the
SYNS-Patches dataset [1, 92], chosen due to the diversity of
scenes and environments. A breakdown of images per cat-
egory and some representative examples are shown in Fig-
ure 1 and Figure 2. SYNS-Patches also provides extremely
high-quality dense ground-truth LiDAR, with an average
coverage of 78.20% (including sky regions). Given such
dense ground-truth, depth boundaries were obtained using
Canny edge-detection on the log-depth maps, allowing us
to compute additional fine-grained metrics for these chal-
lenging regions. As outlined in [91, 92], the images were
manually checked to remove dynamic object artifacts.
Evaluation. Participants were asked to provide the up-to-
scale disparity prediction for each dataset image. The eval-
uation server bilinearly upsampled the predictions to the tar-
get resolution and inverted them into depth maps. Although
self-supervised methods trained with stereo pairs and su-
pervised methods using LiDAR or RGB-D data should be
capable of predicting metric depth, in order to ensure com-
parisons are as fair as possible, the evaluation aligned any
predictions with the ground-truth using the median depth.
We set a maximum depth threshold of 100 meters.
Metrics. Following the first and second editions of the chal-
lenge [90, 91], we use a mixture of image-/pointcloud-
/edge-based metrics. Image-based metrics are the most
common (MAE, RMSE, AbsRel) and are computed using
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Figure 2. SYNS-Patches Dataset. We show samples from diverse scenes, including complex urban, natural, and indoor spaces. High-
quality ground-truth depth covers about 78.20% of the image, from which depth boundaries are computed as Canny edges in log space.

pixel-wise comparisons between the predicted and ground-
truth depth map. Pointcloud-based metrics [65] (F-Score,
IoU, Chamfer distance) instead bring the evaluation in the
3D domain, evaluating the reconstructed pointclouds as a
whole. Among these, we select reconstruction F-Score as
the leaderboard ranking metric. Finally, edge-based met-
rics are computed only at depth boundary pixels. This
includes image-/pointcloud-based metrics and edge accu-
racy/completion metrics from IBims-1 [49].

4. Challenge Submissions
We now highlight the technical details for each submission,
as provided by the authors themselves. Each submission is
labeled based on the supervision used, including ground-
truth (D), proxy ground-truth (D*), DepthAnything [111]
pretraining (†) and monocular (M) or stereo (S) photometric
support frames. Teams are numbered according to rankings.

Baseline – S
J. Spencer j.spencermartin@surrey.ac.uk
C. Russell chris.russell@oii.ox.ac.uk
S. Hadfield s.hadfield@surrey.ac.uk
R. Bowden r.bowden@surrey.ac.uk

Challenge organizers’ submission from the first edition.
Network. ConvNeXt-B encoder [56] with a base Mon-
odepth decoder [34, 62] from [92].
Supervision. Self-supervised with a stereo photometric
loss [30] and edge-aware disparity smoothness [34].
Training. Trained for 30 epochs on Kitti Eigen-Zhou with
an image resolution of 192× 640.

Team 1: PICO-MR – †D*
G. Zhou zhouguangyuan@bytedance.com
Z. Li lizhengxin17@mails.ucas.ac.cn
Q. Rao raoqiang@bytedance.com
Y. Bao baoyiping@bytedance.com
X. Liu liuxiao@foxmail.com

Network. Based on Depth-Anything [111] with a BEiT384-
L backbone, starting from the authors’ weights pre-trained

on 1.5M labeled images and 62M+ unlabeled images.
Supervision. The model is fine-tuned in a supervised man-
ner, with proxy labels derived from stereo images. The final
loss function integrates the SILog loss, SSIL loss, Gradient
loss, and Random Proposal Normalization (RPNL) loss.
Training. The network was fine-tuned on the CityScapes
dataset [20], resizing the input to 384×768 resolution, while
keeping proxy labels at 1024 × ×2048 resolution. Ran-
dom flipping is used to augment data, the batch size is set
to 16 and the learning rate to 0.000161. The fine-tuning
is carried out to predict metric depth and early stops at 4
epochs, a strategic choice to prevent overfitting and ensure
the model’s robustness to new data.

Team 3: RGA-Robot – †S
D. Kim figure317@rgarobot.com
J. Kim jsk24@rgarobot.com
M. Kim wiseman218@rgarobot.com

Network. It uses the Depth Anything [111] pre-trained
model to estimate relative depth, accompanied by an aux-
iliary network to convert it into metric depth. This latter is
NAFNet [13], processing the final feature maps and relative
depth map predicted by the former model together with the
input image.
Supervision. Self-supervised loss with two main terms: im-
age reconstruction loss and smoothness loss. The former
integrates perceptual loss with photometric loss as used
in monodepth2 [35], with the former using a pre-trained
VGG19 backbone [87], following a similar approach as in
ESRGAN [106].
Training. The train is carried out on Kitti Eigen-Zhou with
batch size 8 and learning rate 1e−4 for 4 epochs. Only
NAFNet is trained, while the Depth Anything model re-
mains frozen.

Team 4: EVP++ – †D

M. Lavreniuk nick 93@ukr.net
Network. The architecture is based on Depth Anything
[111], incorporating a VIT-L encoder [23] for feature ex-
traction and the ZoeDepth metric bins module [8] as a de-
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coder. This module computes per-pixel depth bin centers,
which are linearly combined to produce metric depth.
Supervision. The models were trained in a supervised man-
ner using ground-truth depth information obtained from
various datasets, employing the SILog loss function.
Training. The models were trained on both indoor and out-
door data, respectively on the NYUv2 dataset [64] with an
image size of 392× 518, and on KITTI [33], Virtual KITTI
2 [10], and DIODE outdoor [102] with an image size of
518×1078. The batch size was set to 16, the learning rate to
0.000161, and the maximum depth to 10 for indoor scenes.
For outdoor scenes, the batch size was set to 1, the learning
rate to 0.00002, and the maximum depth to 80. Both models
were trained for 5 epochs.

Team 6: 3DCreators – †D

R. Li lirui.david@gmail.com
Q. Mao maoqing@mail.nwpu.edu.cn
J. Wu 18392713997@mail.nwpu.edu.cn
Y. Zhu yuzhu@nwpu.edu.cn
J. Sun sunjinqiu@nwpu.edu.cn
Y. Zhang ynzhang@nwpu.edu.cn

Network. An architecture made of two sub-networks. The
first model consists of a pre-trained ViT-large backbone [23]
from Depth Anything [111] and a ZoeDepth decoder [8].
The second is Metric3D [115], which uses ConvNext-Large
[57] backbone and a LeRes decoder [117].
Supervision. The first network is fine-tuned with the KITTI
dataset using SILog loss. The second network uses the re-
leased pre-trained weights trained by a diverse collection of
datasets as detailed in [115].
Training. The first network is fine-tuned using batch size 16
for 5 epochs. At inference, test-time augmentation – i.e.,
color jittering and horizontal flipping – is used to combine
the predictions by the two models: the same image is aug-
mented 10 times and processed by the two models, then the
predictions are averaged.

Team 7: visioniitd – D
S. Patni suraj.patni@cse.iitd.ac.in
A. Agarwal aradhye.agarwal.cs520@cse.iitd.ac.in
C. Arora chetan@cse.iitd.ac.in

Network. The model is ECoDepth [66], which provides ef-
fective conditioning for the MDE task to diffusion methods
like stable diffusion. It is based on a Comprehensive Image
Detail Embedding (CIDE) module which utilizes ViT em-
beddings of the image and subsequently transforms them
to yield a semantic context vector. These embeddings are
used to condition the pre-trained UNet backbone in Stable
Diffusion, which produces hierarchical feature maps from
its decoder. These are resized to a common dimension and
passed to the Upsampling decoder and depth regressor to
produce the final depth.

Supervision. Supervised training using the ground truth
depth with SILog loss as the loss function with variance
focus (λ) 0.85. Ground-truth depth is transformed as 1

(1+x) .
Training. Trained on NYUv2 [64], KITTI [33], virtual
KITTI v2 [10] for 25 epochs, with one-cycle learning rate
(min: 3e−5, max: 5e−4) and batch size 32 on 8× A100
GPUs.

Team 9: HIT-AIIA – †D
P. Sun 23s136164@stu.hit.edu.cn
K. Jiang jiangkui@hit.edu.cn
G. Wu gwu@hit.edu.cn
J. Liu hitcslj@hit.edu.cn
X. Liu csxm@hit.edu.cn
J. Jiang jiangjunjun@hit.edu.cn

Network. It involves the pre-trained Depth Anything en-
coder and pre-trained CLlP model. The latter is introduced
to calculate the similarity between the keywords ‘indoor’
or ‘outdoor’ and features extracted from the input image to
route it to two, different instances of Depth Anything spe-
cialized on indoor or outdoor scenarios.
Supervision. Two instances of Depth Anything are fine-
tuned on ground-truth labels, respectively from NYUv2 and
KITTI for indoor and outdoor environments.
Training. The training resolution is 392 × 518 on NYUv2
and 384 × 768 on KITTI. The batch size is 16 and both
instances are trained for 5 epochs.

Team 10: FRDC-SH – †D
X. Zhang zhangxidan@fujitsu.com
J. Wei weijianing@fujitsu.com
F. Wang wangfangjun@fujitsu.com
Z. Tan zhmtan@fujistu.com

Network. The depth network is the Depth Anything
[111] pre-trained model – based on ZoeDepth [8] with a
DPT BEiT L384 – and further fine-tuned.
Supervision. Trained on ground-truth depth, with SILog and
Hyperbolic Chamfer Distance losses.
Training. The model is fine-tuned on NYU-v2 [64], 7Scenes
[86], SUNRGBD [128], DIODE [102], KITTI [33], DDAD
[39], and Argoverse [12] – without any resizing of the image
resolution – for 20 epochs with batch size 32, a learning rate
set to 1.61e-04, and a 0.01 weight decay.

Team 15: hyc123 – D

J. Wang 601533944@qq.com
Network. Swin encoder [55] with skip connections and a
decoder with channel-wise self-attention modules.
Supervision. Trained with ground truth depths, using a loss
consisting of a combination of two L1 losses and an SSIM
loss, weighted accordingly.
Training. The model was trained on Kitti Eigen-Zhou split
using images of size 370× 1224 for 100 epochs.
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Team 16: ReadingLS – †MD*

A. Luginov a.luginov@pgr.reading.ac.uk
M. Shahzad m.shahzad2@reading.ac.uk

Network. The depth network is SwiftDepth [58], a compact
model with only 6.4M parameters.
Supervision. Self-supervised monocular training with the
minimum reconstruction loss [35], enhanced by offline
knowledge distillation from a large MDE model [111].
Training. The model is trained in parallel on Kitti
Eigen-Zhou and a selection of outdoor YouTube videos,
similarly to KBR [93]. Both training and prediction are per-
formed with the input resolution of 192× 640. The teacher
model [111] is not trained on either these datasets or SYNS-
Patches.

Team 19: Elder Lab – D
S. Hosseini smhh@yorku.ca
A. Trajcevski atrajcev@yorku.ca
J. H. Elder jelder@yorku.ca

Network. An off-the-shelf semantic segmentation model
[105] is used at first to segment the image. Then, the depth
of pixels on the ground plane is estimated by predicting
the camera angle from the height of the highest pixel on
the ground. Then, depth is propagated vertically for pixels
above the ground, while the Manhattan frame is estimated
with [76] to identify both Manhattan and non-Manhattan
segments in the image and propagate depth along them in
3D space. Finally, the depth map is completed according
to heat equations [27], with pixels for which depth has
been already estimated imposing forcing conditions, while
semantic boundaries and the image frame impose reflection
boundary conditions.
Supervision. Ground-truth depth is used for training three
kernel regression models.
Training. Three simple statistical models are trained on
CityScapes [20] and NYUv2 [64]: 1) A kernel regression
model to estimate ground elevation angle from the vertical
image coordinate of the highest observed ground pixel.
The ground truth elevation angle is computed by fitting a
plane (constrained to have zero roll) to the ground truth
ground plane coordinates; 2) A kernel regression model
to estimate the depth of ground pixels from their vertical
coordinate, conditioned on semantic class; 3) median depth
of non-ground pixels in columns directly abutting the
bottom of the image frame, conditioned on semantic class.

5. Results

Submitted methods were evaluated on the testing split of
SYNS-Patches [1, 92]. Participants were allowed to submit
methods without any restriction on the supervision or the
predictions by the model, which can be either relative or

metric. Accordingly, to ensure a fair comparison among the
methods, the submitted predictions are aligned to ground-
truth depths according to median depth scaling.

5.1. Quantitative Results

Table 1 highlights the results of this third edition of the chal-
lenge, with the top-performing techniques, ordered using F-
Score performance, achieving notable improvements over
the baseline method. A first, noteworthy observation is the
widespread adoption of the Depth Anything model [111],
pre-trained on 62M of images, as the backbone architecture
by the leading teams, including PICO-MR, RGA-Robot,
EVP++, 3DCreators, HIT-AIIA, FRDC-SH, and Read-
ingLS, demonstrating its effectiveness and versatility.

Specifically, Team PICO-MR, which secured the top
position on the leaderboard, achieved an F-score of 23.72,
outperforming the baseline method by a remarkable 72.9%.
This represents a significant improvement over the previ-
ous state-of-the-art method, DJI&ZJU, which achieved an
F-score of 17.51 in the “The Second Monocular Depth Es-
timation Challenge” [91]. In particular, Team PICO-MR’s
result shows a 35.5% increase in performance compared to
DJI&ZJU, highlighting the rapid progress made in monoc-
ular depth estimation within a relatively short period. This
improvement can be also clearly observed in the other met-
rics considered, both accuracy and error – notably, achiev-
ing the second absolute results on F-Edges, MAE, and
RMSE. Their success can be attributed to the fine-tuning of
the Depth Anything model on the Cityscapes dataset using
a combination of SILog, SSIL, Gradient, and Random Pro-
posal Normalization losses, as well as their strategic choice
of fine-tuning for a few epochs to prevent overfitting and
ensure robustness to unseen data.

Team RGA-Robot, in the third place, achieved an F-
score of 22.79, outperforming the baseline by 66.1%. Their
novel approach of augmenting the Depth Anything model,
maintained frozen, with an auxiliary network, NAFNet, to
convert relative depth predictions into metric depth, com-
bined with self-supervised loss terms, shows the effective-
ness of this approach in enhancing depth accuracy. In terms
of the F-Edges metric, this method achieves the best result.

Team EVP++, ranking fourth, achieved an F-score of
20.87, surpassing the baseline by 52.1%. Their approach
involved training the Depth Anything model on both indoor
and outdoor datasets, adapting image sizes, batch sizes, and
learning rates to each scenario, and highlighting the impor-
tance of tailoring model parameters to the specific charac-
teristics of the target environment. This strategy notably
improves the results in terms of standard 2D error metrics,
yielding the lowest MAE, RMSE, and AbsRel.

Several other teams also surpassed both the baseline
method and the previous state-of-the-art from the second
edition of the challenge. Team 3DCreators achieved an
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Table 1. SYNS-Patches Results. We provide metrics across the whole test split of the dataset. Top-performing entries generally leverage
the pre-trained Depth Anything [111] model. Only a few methods use self-supervised losses or proxy depth labels.

Train Rank F↑ F-Edges↑ MAE↓ RMSE↓ AbsRel↓ Acc-Edges↓ Comp-Edges↓

PICO-MR †D* 1 23.72 11.01 3.78 6.61 21.24 3.90 4.45
Anonymous ? 2 23.25 10.78 3.87 6.70 21.70 3.59 9.86
RGA-Robot †S 3 22.79 11.52 5.21 9.23 28.86 4.15 0.90

EVP++ †D 4 20.87 10.92 3.71 6.53 19.02 2.88 6.77
Anonymous ? 5 20.77 9.96 4.33 7.83 27.80 3.45 13.25
3DCreators †D 6 20.42 10.19 4.41 7.89 23.94 3.61 5.80

visioniitd D 7 19.07 9.92 4.53 7.96 23.27 3.26 8.00
Anonymous ? 8 18.60 9.43 3.92 7.16 20.12 2.89 15.65

HIT-AIIA †D 9 17.83 9.14 4.11 7.73 21.23 2.95 17.81
FRDC-SH †D 10 17.81 9.75 5.04 8.92 24.01 3.16 14.16

Anonymous ? 11 17.57 9.13 4.28 8.36 23.35 3.18 20.66
Anonymous ? 12 16.91 9.07 4.14 7.35 22.05 3.24 18.52
Anonymous ? 13 16.71 9.25 5.48 11.05 34.20 2.57 18.04
Anonymous ? 14 16.45 8.89 5.29 10.53 33.67 2.60 18.73

hyc123 D 15 15.92 9.17 8.25 13.88 43.88 4.11 0.74
ReadingLS †MD* 16 14.81 8.14 5.01 8.94 29.39 3.28 30.28

Baseline S 17 13.72 7.76 5.56 9.72 32.04 3.97 21.63
Anonymous ? 18 13.71 7.55 5.49 9.44 30.74 3.61 18.36
Anonymous ? 19 11.90 8.08 6.33 10.89 30.46 2.99 33.63

Elder Lab D 20 11.04 7.09 8.76 15.86 63.32 3.22 40.61

M=Monocular – S=Stereo – D*=Proxy Depth – D=Ground-truth Depth – †=Pre-trained Depth Anything model

F-score of 20.42, outperforming the baseline by 48.8% by
fine-tuning and combining predictions from the Depth Any-
thing model and Metric3D. Team visioniitd follows sur-
passing the baseline using ECoDepth, which conditions Sta-
ble Diffusion’s UNet backbone with Comprehensive Image
Detail Embeddings. Team HIT-AIIA and FRDC-SH also
achieved notable improvements, with F-score of 17.83 and
17.81, respectively, using specialized model instances and
fine-tuning on diverse datasets.

Finally, the remaining teams outperformed the base-
line either on the F-score or any of the other metrics, yet
not surpassing the winner of the previous edition. Team
hyc123, with an F-score of 15.92, outperformed the base-
line by 16.0% using a Swin encoder with skip connections
and a decoder with channel-wise self-attention modules,
while Team ReadingLS outperforms the baseline by distill-
ing knowledge from Depth Anything to a lightweight net-
work based on SwiftDepth, further improved using mini-
mal reconstruction loss during training. Finally, Team El-
der Lab employed an off-the-shelf semantic segmentation
model and estimated depth using techniques such as pre-
dicting camera angle, propagating depth along Manhattan
and non-Manhattan segments, and completing the depth
map using heat equations. They achieved an F-score of
11.04, 19.5% lower than the baseline score of 13.72, yet
they obtained 3.22 Acc-Edge, beating the baseline.

5.2. Qualitative Results

Figure 3 provides qualitative results for the depth predic-
tions of each submission. A notable trend among the

top-performing teams, such as PICO-MR, RGA-Robot,
EVP++, and 3DCreators, is the adoption of the Depth
Anything model as a backbone architecture. While Depth
Anything represents the current state-of-the-art in monoc-
ular depth estimation, the qualitative results highlight that
there are still significant challenges in accurately estimat-
ing depth, particularly for thin structures in complex out-
door scenes. This is evident in columns 2, 4, 5, and 6
of Figure 3, where objects like trees and branches are not
well-recovered, despite the impressive quantitative perfor-
mance of these methods as shown in Table 1. Interestingly,
Team visioniitd, which employs a novel approach called
ECoDepth to condition Stable Diffusion’s UNet backbone
with Comprehensive Image Detail Embeddings, demon-
strates a remarkable ability to estimate depth for thin struc-
tures. Yet, they are outperformed quantitatively by other
methodologies, suggesting that estimating depth in smooth
regions may be more challenging than in thin structures.

The qualitative results also reveal some method-specific
anomalies. For instance, hyc123 exhibits salt-and-pepper
noise artifacts, while Elder Lab’s method, which ranks last,
generates overly smooth depth maps that lose important
scene objects. These anomalies highlight the importance of
developing robust techniques that can handle diverse scene
characteristics. Grid-like artifacts are observed in the pre-
dictions of top-performers PICO-MR and RGA-Robot,
particularly in regions where the network seems uncertain
about depth estimates. This suggests that further improve-
ments in network architecture and training strategies may
be necessary to mitigate these artifacts.
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Figure 3. SYNS-Patches Depth Visualization. Best viewed in color and zoomed in. Methods are ranked based on their F-Score in
Table 1. We can appreciate how thin structures still represent one of the hardest challenges to any method, such as branches and railings,
for instance. Near depth discontinuities, most approaches tend to produce “halos”, interpolating between foreground and background
objects and thus failing to perceive sharp boundaries. Nonetheless, most methods expose higher level of detail compared to the baseline.

The indoor scenario in the last column shows the strong
performance of methods like PICO-MR, EVP++, HIT-
AIIA, and FRDC-SH in estimating scene structure. This
can be attributed to their use of large-scale pre-training,
fine-tuning on diverse datasets, and carefully designed loss
functions that capture both global and local depth cues.

However, all methods still exhibit over-smoothing issues
at depth discontinuities, manifesting as halo effects. While
they outperform the baseline in this regard, likely due to
their supervised training with ground truth or proxy labels,
there remains significant room for improvement.

A notable limitation across all methods is the inability
to effectively estimate depth for non-Lambertian surfaces,
such as glass or transparent objects. This is evident in the
penultimate right column and the first column, correspond-
ing to the windshield. The primary reason for this limitation
is the lack of accurate supervision for such surfaces in the
training data, highlighting the need for novel techniques and
datasets that explicitly address this challenge.

In conclusion, the qualitative results provide valuable
insights into the current state of monocular depth esti-
mation methods. While the adoption of large-scale pre-
training and carefully designed architectures has led to sig-
nificant improvements, challenges persist in accurately es-
timating depth for thin structures, smooth regions, and non-
Lambertian surfaces. Addressing these limitations through

novel techniques, improved training strategies, and diverse
datasets will be crucial for further advancing this field.

6. Conclusions & Future Work

This paper has summarized the results for the third edition
of MDEC. Over the various editions of the challenge, we
have seen a drastic improvement in performance, showcas-
ing MDE – in particular real-world generalization – as an
exciting and active area of research.

With the advent of the first foundational models for MDE
during the last months, we observed a diffused use of frame-
works such as Depth Anything [111]. This ignited a major
boost to the results submitted by the participants, with a
much higher impact compared to the specific kind of super-
vision chosen for the challenge. Nonetheless, as we can ap-
preciate from the qualitative results, any methods still strug-
gle to accurately predict fine structures and discontinuities,
hinting that there is still room for improvement despite the
massive amount of data used to train Depth Anything.

We hope MDE will continue to attract new researchers
and practitioners to this field and renew our invitation to
participate in future editions of the challenge.

Acknowledgments. This work was partially funded
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