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Abstract

As the digital landscape evolves, cybersecurity has become an indispensable focus of IT systems.
Its ever-escalating challenges have amplified the importance of digital forensics, particularly
in the analysis of heap dumps from main memory. In this context, the Secure Shell protocol
(SSH) designed for encrypted communications, serves as both a safeguard and a potential veil for
malicious activities. This research project focuses on predicting SSH keys in OpenSSH memory
dumps, aiming to enhance protective measures against illicit access and enable the development
of advanced security frameworks or tools like honeypots.

This Masterarbeit is situated within the broader SmartVMI project, a collaborative research
initiative with the objective to advance artificial intelligence-based mechanisms for attack detection
and digital forensics. Specifically, this work seeks to build upon existing research on key prediction
in OpenSSH heap dumps. Utilizing machine learning and deep learning models, the study aims
to refine feature for embedding techniques and explore innovative methods for effective key
detection. The objective is to accurately predict the presence and location of SSH keys within
memory dumps. This work builds upon, and aims to enhance, the foundations laid by SSHkex [1]
and SmartKex [9], enriching both the methodology and the results of the original research while
exploring the untapped potential of newly proposed approaches.

The current thesis dives into memory graph modelization from raw binary heap dump files. Each
memory graph can support a range of embeddings than can be used directly for model training,
through the use of classic ML models and graph neural network. The report encapsulates the
progress of a year-long Master’s thesis research project executed between October 2022 and
October 2023. Conducted within the framework of the PhDTrack program between the University
of Passau and INSA Lyon, the research has been supervised by Prof. Dr. Michael Granitzer and
Christofer Fellicious from the University of Passau, as well as Prof. Dr. Pierre-Edouard Portier
from INSA Lyon. It offers an in-depth discussion on the current state-of-the-art in key prediction
for OpenSSH memory dumps, research questions, experimental setups, programs development,
results as well as discussing potential future directions.
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1 Introduction

The digital age has brought with it an unprecedented increase in the volume and complexity of
data that is being generated, stored, and processed. This data is often sensitive in nature, and its
security is of paramount importance, making cybersecurity a critical focus area. This evolving
landscape is fraught with challenges that continue to amplify the importance of digital forensics
in IT systems. One area that stands out for its widespread use and importance is the Secure
Shell protocol (SSH) and its most popular implementation, OpenSSH. SSH is a cryptographic
network protocol widely used for secure remote access to systems. It is also used for secure file
transfer, and as a secure tunnel for other applications. SSH is a key component of IT systems
whose encryption capabilities are critical to the security of IT systems. However, it also presents a
unique set of challenges, most notably the concealment of malicious activities.

A common case is when an unauthorized actor gains access to SSH keys so as to get access
to a system. This can happen through a malicious human actor, but more commonly through
automated processes such as malwares and botnets. This situation presents a formidable and
growing threat to cybersecurity, affecting a broad range of stakeholders from governments and
financial institutions to individual users. In just 2019, the number of Command and Control (C&C)
servers for botnets increased by 71.5%, leading to an estimated $19 billion in advertising theft
[74]. Many malwares and botnets «have in common that they have used as attack vector the
Secure Shell (SSH) remote access service» [74].

At the heart of the issue lies the fact that SSH veils its communications through encryption,
making it difficult to detect malicious activities. To be able to detect those potential malicious
actors, it is possible to replace SSH by a honeypot that enables to monitor pseudo-SSH activities.
There is a range of readily available honeypots, such as Kippo or Cowrie, which are designed
to emulate a vulnerable SSH system and attract attackers [83]. The problem lies that those
honeypots are not able to mimic perfectly a real system, which makes them easy to detect by
experienced attackers. As stated by „Analysis of SSH Honeypot Effectiveness“: «The ability to
collect meaningful malware from attackers depends on how the attackers receive the honeypot.
Most attackers fingerprint targets before they launch their attack, so it would be very beneficial
for security researchers to understand how to hide honeypots from fingerprinting and trick the
attackers into depositing malware. [...] What is certain is that if a cautious attacker believes they
are in a honeypot, they will leave without depositing malware onto the system, which reduces the
effectiveness of the honeypot» [84].

There are other approaches that allow to decrypt SSH connections without relying on a honeypot,
like the man-in-the-middle or binary manipulation with their own set of challenges [1]. Instead of
relying on softwares that mimics or modify a real system, it is possible to use a real unmodified
system directly. The idea is to be able to decrypt SSH connection channels, which is possible if the
SSH keys are known. Since SSH encryption keys are typically stored in the main memory of a
system, it is possible for the administrators to extract them through the exploitation of memory
dumps of a targeted system. In this context, the ability to detect SSH keys in memory dumps, and
specifically OpenSSH keys, is critical to the development of effective SSH honeypot-like systems.
The research introduced by the SmartVMI project with SSHKex, SmartKex, the present thesis and
the future related work could be used to develop such a new type of system-monitoring tools. This
new kind of tools would be very difficult to detect by attackers, increasing their effectiveness,
and wouldn’t require the alteration of the system. The present report is focused on the SSH key
detection in memory dumps, which is a key component allowing to decode SSH communications
such that it becomes possible to intercept malicious communications and to detect malicious
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activities.

1.1 Research Questions

At the very beginning of this thesis, first questions were:

• What is the state of the art in the field of security key detection in heap dump memory?

• What are the challenges of security key detection in heap dump memory?

• How can the existing methods for detecting SSH keys in OpenSSH heap dumps be improved?

The SmartVMI project has already made significant progress in the detection of SSH keys in
OpenSSH heap dumps. An open dataset of memory dumps has been created, and a simple yet
effective method for detecting SSH keys has been developed. The dataset has been used to train
and test simple machine learning algorithms, and the results have been promising. The research
has been published in the form of two papers, SSHkex [1] and SmartKex [9], which is the basis of
this thesis.

However, there is still room for improvement, particularly in the area of machine learning
algorithms. This thesis seeks to build upon the existing research by refining feature extraction
techniques and exploring innovative methods for effective key detection prediction. The objective
is to accurately predict the presence and location of SSH keys within memory dumps. Rooted in
this context, this Masterarbeit aims to address several key research questions:

• Memory graph: How can we develop a memory graph representation to improve the
prediction of SSH keys in memory dumps?

• Memory graph embedding: How can we develop a memory graph embedding representa-
tion to improve the prediction of SSH keys in memory dumps?

• Feature importance: What features are most indicative of SSH keys in memory dumps?

• Feature extraction: How can these features be extracted from memory dumps and used to
train machine learning algorithms?

• ML for key prediction: How can machine learning algorithms be optimized for the predic-
tion of SSH keys in memory dumps?

• Graph Convolutional Networks for key prediction: How can GCN be used to improve the
prediction of SSH keys in memory dumps, and how does it compare to traditional machine
learning algorithms?

By tackling these research questions, this thesis seeks not only to advance the academic
understanding of SSH key prediction and digital forensics but also to provide practical insights
that could lead to the development of more secure and effective systems.
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1.2 Commitment to Open Science and Reproducibility

In alignment with the principles of Open Science, this thesis aims to be not just a scholarly report
but also a comprehensive guide for anyone who wishes to understand, replicate, or extend the
work presented. Open Science is a movement that advocates for the transparent and accessible
sharing of scientific research, data, and dissemination processes [45]. It is built on six fundamental
principles [44]:

1. Open Methodology: Detailed methodologies are provided to ensure that the experiments
can be replicated.

2. Open Source: All code used in this research is available for scrutiny and reuse. As such, all
code including the LATEX code for the present report 1 is properly documented and can be
accessed on GitHub.

3. Open Data: Raw data and the data processing techniques are made publicly available.

4. Open Access: The research is published in a manner that is free for all to read and download.

5. Open Peer Review: The peer review process is transparent. In the case of this Masterarbeit,
the research is reviewed by the supervisors of the project.

6. Open Educational Resources: Any educational content produced is shared openly.

To ensure the highest level of reproducibility and accessibility, this thesis includes what might
seem like exhaustive details, such as hardware or software specifications, precise shell commands
and some code implementations used during the research. These are included to provide a
complete picture and to minimize the friction for those who wish to replicate the experiments,
whatever their level of expertise may be. By adhering to the principles of Open Science, this thesis
aims to contribute to a more transparent, collaborative, and efficient scientific community.

1.2.1 GitHub Repositories

In the context of the present Masterarbeit, a number of GitHub repositories have been created to
facilitate the sharing of code and data. These repositories are listed below:

• masterarbeit_report_onyr: Repository containing the LaTeX code for the report as well as
several scripts related to dataset exploration: https://github.com/passau-masterarbei
t-2023/masterarbeit_report_onyr

• mem2graph: Memory graph creation utility built in Rust, featuring different graph creation
and embedding strategies. Collaboration with Clément Lahoche: https://github.com/pas
sau-masterarbeit-2023/mem2graph

• research-base: Custom Python framework for developing programs that include all the
basics of a research project, such as logging, environment and argument loading, result
keeping, and more. Collaboration with Clément Lahoche: https://github.com/0nyr/rese
arch-base

1The present report repository can be found here: https://github.com/0nyr/masterarbeit_report
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• data_processing: Python program for data processing and machine learning for SSH key
prediction. This repository contains tests on machine learning model training and evaluation
for classical .csv based embedding files from mem2graph : https://github.com/passau-m
asterarbeit-2023/data_processing

• phdtrack_project_3: Legacy repository containing the first version of the memory graph
creation utility and the first version of the dataset creation script. Collaboration with Clément
Lahoche. https://github.com/0nyr/phdtrack_project_3

• memory_graph_gcn: Main Python program and scripts around GCN for SSH key prediction.
This program leverages the modified DOT file with embedding generated by mem2graph :
mem2graph : https://github.com/passau-masterarbeit-2023/memory_graph_gcn

• phdtrack_server_scripts: Scripts for the servers used for computing experiments. This
repository contains the scripts used to install the necessary tooling and run the experiments
on the different servers we used. Collaboration with Clément Lahoche: https://github.c
om/passau-masterarbeit-2023/phdtrack_server_scripts

1.2.2 Datasets

All datasets used in this research are publicly available and can be accessed on the Zenodo. The
datasets are organized in the following manner:

• Original Heap Dumps Dataset: This is the raw dataset used for the research and produced
by the SmartKex team [1]. It contains the original heap dumps in the form of -heap.raw files
with .json annotation files. The dataset is available here: https://zenodo.org/records/6
537904.

• Cleaned Heap Dumps Dataset: This dataset contains heap dumps with annotation files
but has been parsed as described in section 3.2. The dataset is available here: https:
//doi.org/10.5281/zenodo.10514199.

As one can see, and considering the collaborative work effort that has been, it has been decided
to regroup all repositories related to the OpenSSH heap dump exploration in a single GitHub
organization, passau-masterarbeit-2023 https://github.com/passau-masterarbeit-2023.

1.3 Structure of the Thesis

The present thesis is organized in a manner that ensures a coherent and logical flow of information,
following the standard structure of a Masterarbeit report. The structure is designed to gradually
guide the reader from understanding the context and background of the research to the intricacies
of the methods employed, and finally to the interpretation of the results. Below is a breakdown of
each section:

• Background Section: This section serves as an introduction to the research context and
establishes the foundation for the thesis. It outlines the previous work and state of the art,
providing the reader with an understanding of existing knowledge and identifying gaps that
this research aims to address. Key concepts, terminologies, and theories relevant to the
study are introduced, setting the stage for the subsequent sections.
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• Methods Section: This section meticulously describes the methods and approaches em-
ployed during the research. From the creation of the dataset to the selection and imple-
mentation of machine learning algorithms, this section ensures that the research process is
transparent and reproducible.

• Results Section: The results’ section presents the data obtained from the experiments
conducted, outlining both the layout of programs used and the raw results. It provides a
factual account of the findings without delving into interpretation or discussion.

• Discussion Section: This section offers an analysis and interpretation of the results
obtained. It explores the implications of the findings, discusses the limitations of the study,
and contextualizes the results within the broader research landscape.

• Conclusion: The concluding section succinctly recall the salient points of the thesis. It
underscores the contributions made to the field and suggests avenues for future research,
providing a fitting closure to the report.

In structuring the thesis in this manner, the intention is to provide the reader with a comprehen-
sive yet accessible insight into the research undertaken all along this year-long project.
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2 Background

This section is dedicated to the background information needed to understand the work developed
in the thesis. It provides the necessary context for the research, including the problem being
solved, why it’s important, and the related state-of-the-art and background information. It also
includes fundamental concepts and theories, terminology definitions, and a high-level overview
of the problem domain. Likewise, it serves as a primer to the rest of the report, providing the
necessary context for the research and is intended for readers who may not be experts in the
specific area of the research but have some knowledge of the broader field.

2.1 SSH and OpenSSH Implementation

2.1.1 Basics of the Secure Shell Protocol (SSH)

The Secure Shell Protocol, commonly known as SSH, is designed to facilitate secure remote login
and other secure network services over insecure networks. SSH has been designed since its
inception with security in mind, as a successor of the Telnet protocol, which is not secure, and
other «unsecured remote shell protocols such as rlogin, rsh and rexec» [1].

2.1.1.1 SSH design and origin

As stated by the authors of the SSH Annual Report 2018, «The founder of SSH, Tatu Ylönen,
designed the first version of the SSH protocol after a password-sniffing attack at his university
network. Tatu released his implementation as freeware in July 1995, and the tool quickly gained
in popularity. Towards the end of 1995, the SSH user base had grown to 20,000 users in fifty
countries. By 2000, there were an estimated 2,000,000 users of the protocol. Today, more than
95% of the servers used to power the Internet have SSH installed in them. The SSH protocol is
truly one of the cornerstones of a safe Internet.» [75].

SSH is defined in The Secure Shell (SSH) Protocol Architecture [67]. It is divided into three
major components:

• Transport Layer Protocol: This provides server authentication, confidentiality, and integrity.
It can also optionally provide compression. Typically, the transport layer runs over a TCP/IP
connection but can also be used on top of any other reliable data stream.

• User Authentication Protocol: Running over the transport layer, this protocol authenti-
cates the client-side user to the server. Multiple methods of authentication such as password
and public key are supported.

• Connection Protocol: This multiplexes the encrypted tunnel established by the preceding
layers into several logical channels. Channels can be used for various purposes, such as
setting up secure interactive shell sessions or tunneling arbitrary TCP/IP ports.

«The client sends a service request once a secure transport layer connection has been estab-
lished. A second service request is sent after user authentication is complete. This allows new
protocols to be defined and coexist with the protocols listed above» [67].
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2.1.1.2 SSH keys

For the purposes of this Masterarbeit, a comprehensive understanding of SSH’s key exchange
and encryption mechanism is important. As outlined in SSHKex [1], the SSH protocol utilizes a
key exchange procedure that culminates in a derived master key K and a hash value h. These
components are pivotal for encrypting client-server communications and identifying sessions.

During the key exchange process, Diffie-Hellman is employed to negotiate an ephemeral shared
key between the client and the server [67] [66]. The Diffie-Hellman key exchange is a method of
securely exchanging cryptographic keys over a public channel. Proposed by Whitfield Diffie and
Martin Hellman in 1976, this protocol is one of the first practical implementations of public key
exchange. The fundamental principle behind Diffie-Hellman is the difficulty of solving discrete
logarithm problems [37]. This ephemeral key is then signed by the server using either RSA, DSA,
or another suitable signature algorithm (see 2.1.2.2). The signed key confirms to the client that the
negotiated key is indeed from the intended server and not an imposter or a middleman, thereby
preventing man-in-the-middle (MITM) attacks.

In addition, the host key of the server is used to sign the Diffie-Hellman parameters. This key is
not to be confused with the client key listed in the server’s authorized_keys file, which is used
later for client authentication.

The key exchange process results in multiple session keys computed for various purposes:

• Initialization Vectors: Key A and Key B are designated for initialization vectors from the
client to the server and vice versa.

• Encryption Keys: Key C and Key D act as encryption keys for client-to-server and server-to-
client communications, respectively.

• Integrity Keys: Key E and Key F are utilized to preserve the integrity of data transmitted
between the client and server.

This approach provides forward secrecy: if the private key is stolen, it does not compromise
the encryption of old sessions. This is because the Diffie-Hellman parameters are ephemeral and
discarded once they are no longer needed. Therefore, the only long-lasting keypair is used for
authentication purposes.

2.1.1.3 SSH key encryption

These keys are computed using hash functions that take the master key K and a hash value H,
a unique letter (A, B, C, D, E, or F), and the session ID as inputs. This is summarized in „The
OpenSSH Protocol under the Hood“: « The equations used for deriving the above vectors and
keys are taken from RFC 4253 [68]. In the following, the || symbol stands for concatenation, K
is encoded as mpint, K is already a number (hash), ”A” as byte and sessionid as raw data. Any
letter, such as the ”A” (in quotation marks) means the single character A, or ASCII 65.

• Initial IV client to server: HASH(K||H||”A”||sessionid).

• Initial IV server to client: HASH(K||H||”B”||sessionid).

• Encryption key client to server: HASH(K||H||”C”||sessionid).
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• Encryption key server to client: HASH(K||H||”D”||sessionid).

• Integrity key client to server: HASH(K||H||”E”||sessionid).

• Integrity key server to client: HASH(K||H||”F”||sessionid).

» [69]. Details about the hash function are given in the next section.

The most interesting keys are the encryption keys, as they are used to encrypt the communication
between the client and the server. The other keys are used for integrity checks and initialization
vectors. Decrypting encrypted SSH communication necessitates either to retrieve these session
keys and variables so as to recompute the keys, or to retrieve those keys directly, which is the
focus of this Masterarbeit.

2.1.2 OpenSSH Implementation

OpenSSH (OpenBSD Secure Shell) is an open-source implementation written in C of the SSH
protocol suite, and it is the most widely used SSH implementation [69]. It is the default SSH
implementation on most Linux distributions, and it is also available for Windows. OpenSSH is
used for a wide range of purposes, including remote command-line login and remote command
execution. It is also used for port forwarding, tunneling, and transferring files via SCP and SFTP
either manually or via automated processes, such as backup systems, configuration management
tools, and automated software deployment tools.

2.1.2.1 OpenSSH components

OpenSSH is composed of several tools and daemons, including client and server components [73]:

• ssh: The basic client program that allows to log into and execute commands on a remote
machine.

• sftp: An interactive file transfer program that uses SSH to secure the connection.

• sshd: This is the SSH daemon that runs on the server. This is used for connecting to a
remote machine when using the SSH client from another system.

• ssh-agent: The program that holds private keys in memory, so one doesn’t have to enter
one’s passphrase every time.

• ssh-add: A program for adding RSA or DSA identities to the authentication agent.

• ssh-keygen: A utility for creating and managing SSH keys.

• ssh-keyscan: A utility for gathering public SSH host keys from a number of hosts.

• ssh-keychk: A utility for checking the validity of SSH keys.

• Several other tools to support the SSH protocol and the OpenSSH implementation.
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2.1.2.2 OpenSSH hashing

OpenSSH employs a variety of hash functions and algorithms to secure data, most commonly using
SHA1. However, SHA1 is increasingly seen as weak due to its vulnerability to collision attacks
[69]. In light of this, the contemporary standard leans towards SHA512. The hash functions
are used alongside cipher algorithms like «Advance Encryption Standard (AES) Cipher Block
Chaining (CBC), AES Counter (AES-CTR), and ChaCha20» [9]. The Message Authentication Code
(MAC) typically uses either MD5 or SHA1 hash algorithms in combination with a secret key. Since
cybersecurity and cryptography are constantly evolving, so do SSH and OpenSSH. Depending on
the version [69], the available hash options include:

• ssh-dss: (disabled at run-time since OpenSSH 7.0 released in 2015) SSH-1 version using
Digital Signature Algorithm (DSA) from the Digital Signature Standard (DSS). Originally
popular but phased out due to vulnerabilities to collision attacks for DSA Key in a 1024-bit
modulus. As stated by Key Exchange (KEX) Method Updates and Recommendations for
Secure Shell (SSH) : «These attacks are still computationally very difficult to perform, but it
is desirable that any key exchange using SHA-1 be phased out as soon as possible» [10] [17].

• ssh-rsa: (disabled at run-time since OpenSSH 8.8 released in 2021) It refers to the use of
RSA (Rivest-Shamir-Adleman) encryption algorithm. In the context of SSH-1, this version
had to be replaced due to the related to key size issue similar to DSS: «RSA 1024-bit keys
have approximately 80 bits of security strength»... «which may not be sufficient for most
users.» [10] [22].

• ecdsa-sha2-nistp256: (since OpenSSH 5.7 released in 2011) Uses the SHA-2 family for
hashing and the NIST P-256 curve. It is considered secure and efficient, with an Estimated
Security Strength (ESS) of 128 bits [10] [14].

• ecdsa-sha2-nistp384: (since OpenSSH 5.7) Utilizes the SHA-2 family and the larger NIST
P-384 curve for additional security at the cost of performance. It has an ESS of 192 bits [10]
[14].

• ecdsa-sha2-nistp521: (since OpenSSH 5.7) Employs SHA-2 and the even larger NIST P-521
curve for maximal security with an ESS of 256 bits [10]. It is less commonly used due to
performance considerations [14].

• ssh-ed25519: (since OpenSSH 6.5 released in 2014) Known for high security and perfor-
mance efficiency; employs the Ed25519 elliptic curve with an ESS of 128 bits [10] which is
similar to ecdsa−sha2−nistp256, and has been more prevalent following the 2013 suspicions
of NSA backdoors in NIST curves [13] following the Snowden revelations [11] [12] [16].

• rsa-sha2-256: (since OpenSSH 7.2 released in 2016) An upgrade from ssh-rsa, using
SHA-256 (with ESS of 128 bits) for hashing to improve security without major performance
hits [20].

• rsa-sha2-512: (since OpenSSH 7.2) Similar to rsa− sha2− 256 but employs SHA-512 for
even stronger security, albeit with some performance cost [20].

• ecdsa-sk: (since OpenSSH 8.2 released in 2020) Security Key-enabled, uses NIST curves
and is geared towards modern hardware-based authentication [21].

• ed25519-sk: (since OpenSSH 8.2) Similar to ssh-ed25519 but integrates hardware-based
Security Keys for an additional layer of security [21].
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• NTRU Prime-x25519: (since OpenSSH 9.0) A new, highly secure algorithm focused on
post-quantum cryptography, providing future-proof security [70] [65].

These hashes have fixed lengths such that key lengths range between 12 and 64 bytes [9].
Since high-quality random number generation is crucial to ensure that those keys are secure and
difficult to predict, it can thus be assumed that those key have a high entropy [72]. This is a crucial
assumption as it is the basis for the use of both brute force and machine learning algorithms to
predict the presence and location of SSH keys in memory dumps.

The keys generated by these hash functions are pseudo-random numbers stored in the sys-
tem’s RAM. Following the Kerckhoffs’ principle: that «a cryptosystem should be secure, even if
everything about the system, except the key, is public knowledge», the code for the OpenSSH
implementation is open-source and available on GitHub [73]. This allows for the analysis of the
code and the identification of the memory structures where the keys are stored.

2.1.3 The state of SSH security

Since its origins, SSH has been developed with cybersecurity in mind, and is generally considered
a secure method for remote login and other secure network services over an insecure network.
However, as with any technology, it can be exploited if not configured or managed correctly.
The protocol is used by system administrators to manage remote systems, and it is also used by
automated processes to transfer data and perform other tasks. This makes SSH a valuable target
for attackers. In fact, SSH has been a popular target for cyber-attacks. Due to being so prevalent,
it is often used by threat actors either as a vector for initial access, as a means to move laterally
across a network or as a covered exit for exfiltration of sensitive data [82]. The encrypted nature
of its communications makes it an attractive option for attackers, as it can be difficult to detect
malicious activity.

2.1.3.1 SSH security issues

Here are some cases where SSH can involve in cyber-attacks, although it’s important to note that
SSH itself is not inherently insecure:

• SSH Brute-Force Attacks: One of the most common types of attacks involving SSH is a
brute-force attack, where an attacker tries to gain access by repeatedly attempting to log in
with different username-password combinations. These attacks are not sophisticated but
can be effective if strong authentication measures are not in place. For instance, the botnet
Chabulo was used to launch a large-scale brute-force attack «through compromised SSH
servers and IoT devices» in 2018 [75].

• SSH Key Theft: In some advanced attacks, threat actors have stolen SSH keys to move
laterally across a network after initial entry. This allows them to authenticate as a legitimate
user and can make detection much more challenging. It can « occur when users have their
SSH password or unencrypted keys stolen through a variety of methods (sniffed via a key-
logging console program, shoulder-surfed via bad security awareness, poor key management
practices, etc.).» [76].

• Man-in-the-Middle Attacks: Although SSH is designed to be secure, it can be susceptible
to man-in-the-middle attacks if proper verification of SSH keys is not done during the initial
connection setup [69].
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• Misconfiguration: As with any technology, misconfiguration can lead to security issues.
For example, leaving default passwords, using weak encryption algorithms, or enabling root
login can all make an SSH-enabled system vulnerable [74].

2.1.3.2 SSH vulnerabilities

In cybersecurity, it is generally considered that any system that is connected to the Internet will
be attacked at some point. Similarly, it is a common saying that no system is 100% secure. This
is true for SSH as well. Although it is a secure protocol, it can be exploited if not configured or
managed correctly.

Some vulnerabilities have also been discovered in the protocol itself, although these are rare.

• SSH-1 Vulnerabilities: A series of vulnerabilities in the first implementation of SSH were
discovered from 1998 to 2001, with its subsequent fixes leading to unauthorized content
insertion and arbitrary code execution. SSH-1 had many design flows and is now considered
obsolete. [78], [77].

• CBC Plaintext Recovery: A theoretical vulnerability discovered in 2008 affecting all
versions of SSH, allowing the recovery of up to 32 bits of plaintext from CBC-encrypted
ciphertext [79].

• Suspected Decryption by NSA: Leaked information in 2014 suggested that the NSA might
be able to decrypt some SSH traffic, although the protocol itself was not confirmed to be
compromised [80].

2.1.3.3 SSH and cyber-attacks

SSH has been used in many high-profile cyber-attacks and malwares, including the following:

• Operation Windigo: This was a large-scale campaign that infected over 25,000 UNIX
servers. SSH was one of the vectors used for maintaining control over compromised servers.
A report by ESET mentions that the OpenSSH backdoor Linux/Ebury was first discovered in
2011 as a component of the aforementioned operation. «This operation has been ongoing
since at least 2011 and has affected high profile servers and companies, including cPanel - the
company behind the famous web hosting control panel - and Linux Foundation’s kernel.org -
the main repository of source code for the Linux kernel» [81].

• Linux/Hydra: Initially unleashed in 2008, this malware is a fast login cracker that targets a
range of popular protocols including SSH. Hence, SSH is one of its primary vectors to gain
initial access to Internet of Things (IoT) devices. Once a device is infected by Linux/Hydra, it
joins an IRC channel and initiates a SYN Flood attack [83].

• Psyb0t: Discovered in early 2009, Psyb0t is an IRC-controlled malware specifically designed
to target devices with MIPS architecture, such as routers and modems. Notably, it was
responsible for orchestrating a DDoS attack against the DroneBL service, infecting up to
100,000 devices for this purpose. The malware is equipped to conduct UDP and ICMP
flood attacks and employs a brute-force attack mechanism against Telnet and SSH ports.
Remarkably, it uses a pre-configured list of 6,000 usernames and 13,000 passwords to
perform these attacks [83].
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• Chuck Noris: Similar to Psyb0t in its objectives and methods, Chuck Noris targets routers
and DSL modems, focusing on SoHo (small office/home office) devices. However, unlike
Psyb0t, which uses ICMP flood attacks, Chuck Noris deploys ACK flood attacks. The malware
carries out brute-force attacks on Telnet and SSH open ports, drawing parallels to the tactics
employed by Psyb0t but with the specific variation in flooding techniques [83].

It’s worth noting that in many of these cases, SSH was not the initial attack vector but was used
at some stage in the attack lifecycle. Properly configured and managed SSH is still considered
a secure and robust protocol for remote access and data transfer. In all those situations, a tool
monitoring the SSH traffic could have detected the malicious activities and prevented the attack.

2.1.4 The Imperative of SSH Honeypots in Cybersecurity Monitoring

SH (Secure Shell) has become an indispensable protocol for secure communication but can also
conceal malicious agents. This reality underscores the urgency for robust monitoring mechanisms
capable of identifying suspicious activities in real-time. Among various countermeasures, SSH
honeypots have emerged as a particularly effective tool for monitoring and gathering intelligence
on potential threats.

An SSH honeypot is a decoy server or service that mimics legitimate SSH services. The
primary aim is to attract cybercriminals and study their tactics, thereby offering an active form
of surveillance and data collection. Unlike traditional intrusion detection systems, honeypots do
not merely identify an attack; they engage the attacker in a controlled environment, enabling
detailed observation and logging of the intruder’s actions. This allows for the collection of valuable
information, such as the attacker’s IP address, the tools used, and the techniques employed. This
data can then be used to enhance security measures and develop more robust countermeasures
[83].

SSH honeypots serve as an invaluable asset in the cybersecurity arsenal, providing not just
a reactive but a proactive measure against evolving cyber threats. They can collect actionable
intelligence on new hacking methods, malware, and exploitation scripts. This information can be
crucial for proactively securing actual production environments. The data collected can also be
used to trace back to the origin of the attack, facilitating legal pursuits against the perpetrators.
By diverting attackers to decoy servers, honeypots also protect real assets from being targeted,
saving both computational resources and administrative effort needed for post-incident recovery.

Popular SSH honeypots include Kippo, Cowrie, and HoneySSH. Cowrie is a fork of Kippo, with
additional features such as logging of attacker’s keystrokes and file transfer.

• Kippo: Kippo is a medium-interaction honeypot that logs the attacker’s shell interaction. It
specializes in capturing brute force and Telnet-based attacks [83].

• Cowrie: Serving as Kippo’s successor, Cowrie emulates various protocols including SSH,
SFTP, and SCP. It logs events in JSON format, making it particularly useful for detecting
brute force and Telnet-based attacks, as well as spoofing attacks [83].

• IoTPOT: This IoT-focused honeypot supports multiple CPU architectures and can detect a
variety of attacks including brute force, DoS, and sniffing attacks on Telnet, SSH, and HTTP
ports [83].

• HoneySSH: HoneySSH is a low-interaction honeypot that emulates an SSH server and logs
the attacker’s IP address, username, and password [85].
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• Sarracenia (SSHKex): Introduced in 2018, Sarracenia is a high-interaction SSH honeypot
that has been enhanced by SSHKex. Instead of «requiring the VM to be paused for every
incoming or outgoing packet, which degrades the server performance» [1], SSHKex allows
for the extraction of derived SSH session keys. This reduces the performance degradation
significantly, as the VM is paused less frequently [1] [15].

These honeypots are useful tools for gathering intelligence on potential threats. However, they
are not without their limitations.

2.1.5 Research context and motivation for this Masterarbeit

Security and malware detection are active areas of research, with SSH honeypots being a par-
ticularly promising tool for gathering intelligence on potential threats. However, they are not
without their limitations. For instance, they are not able to perfectly mimic a real system, such
that attackers might be able to detect them „Analysis of SSH Honeypot Effectiveness“.

As explained in „Analysis of SSH Honeypot Effectiveness“: «As attackers become more sophis-
ticated with their ransomware and malware campaigns, there is a significant need for security
researchers to assist the greater community by running vulnerable honeypot machines to collect
malicious software». Hetzler, Chen, and Khan explain that «the ability to collect meaningful
malware from attackers depends on how the attackers receive the honeypot. Most attackers
fingerprint targets before they launch their attack, so it would be very beneficial for security
researchers to understand how to hide honeypots from fingerprinting and trick the attackers into
depositing malware.» They conclude that «What is certain is that if a cautious attacker believes
they are in a honeypot, they will leave without depositing malware onto the system, which reduces
the effectiveness of the honeypot for security research.» We can extrapolate this conclusion to
SSH honeypots, which are also vulnerable to fingerprinting and detection by attackers.

Hence, the need for more advanced SSH honeypots-inspired tools that can leverage data forensic
and machine learning techniques so as to be able to use directly a real server as a honeypot,
without the need to emulate a system. The current master’s thesis is aligned with this ongoing
research (see 2.2), further enhancing the state of SSH honeypots. It aims to develop algorithms,
proof of concepts and tools that can extract SSH keys from memory dumps of a real server, and use
them to decrypt SSH traffic. This could lead to the development of new tools for SSH monitoring,
as discussed in the future work section 6.2.

2.2 Previous Work on OpenSSH key extraction

Now that the necessary context has been established, this section will present the related work in
the field of machine learning for memory forensics in the context of OpenSSH. It is divided into
two parts. The first part will present the related work in the field of memory forensics, and the
second part will present the related work in the field of machine learning for memory forensics.

2.2.1 SSHKex

SSHKex is a research project that aims to address the challenges of analyzing encrypted SSH
traffic by leveraging Virtual Machine Introspection (VMI) techniques. Developed by Sentanoe
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and Reiser, the project focuses on extracting SSH keys and decrypting SSH network traffic in
a stealthy, non-intrusive manner while maintaining evidence integrity [1]. This paper is itself a
continuation of the work presented in „Sarracenia: Enhancing the Performance and Stealthiness
of SSH Honeypots Using Virtual Machine Introspection“ [15], which introduced Sarracenia, a
high-interaction SSH honeypot. It is also related to a range of other research projects and papers
[1, section 5.6 and 6].

The SSHKex approach combines standard network traffic capturing methods with dynamic SSH
session key extraction. It assumes that the SSH implementation running on the server is known,
which is crucial for the key extraction process. The project employs VMI tools like LibVMI and
Volatility to gain a complete and untainted view of all guest VM’s state information. This allows to
efficiently locate SSH session keys in the main memory of a Linux machine.

Here is a summary of the SSHKex methodology for key extraction:

1. Data Structure Information: The method leverages detailed knowledge about the data
structures used to store the keys. Specific debugging symbols corresponding to the SSH
implementation version on the target system provide essential offset values to facilitate the
extraction of key material. The structures of interest include struct ssh, struct session_-
state, struct newkeys, and struct sshenc. These structures store a range of information
such as IP addresses, ports, session states, and encryption keys.

2. Tracing OpenSSH Functions: Function tracing is employed to identify the precise locations
of data structures and to extract keys at the right time. The focus is on two key functions:
kex_derive_keys (which initiates key generation) and do_authentication2 (which kicks
off user authentication).

3. Breakpoints Injection: Software breakpoints are intentionally placed in the program
execution to facilitate debugging. SSHKex utilizes Virtual Machine Introspection (VMI) to
inject these breakpoints at the initial points of the two aforementioned key functions.

4. Key Extraction: Upon calling the kex_derive_keys function, SSHKex initially stores the
address of the ssh struct. The actual keys are extracted from memory when the do_-
authentication2 function is subsequently called, adhering to the known structures.

5. Key Indexing: OpenSSH stores client-to-server and server-to-client keys in distinct indices
of the newkeys structure. SSHKex extracts keys based on these specific indices.

6. Handling Multiple Connections: To manage multiple SSH connections, OpenSSH spawns
child processes. SSHKex extends its key extraction strategy to each child process by
identifying them through their unique process IDs.

One of the key strengths of SSHKex is its focus on stealthiness, preservation, and evidence
integrity. The approach aims to be as unobtrusive as possible, avoiding any modifications to the
system under investigation. This is particularly important in forensic contexts, where the integrity
of the evidence is crucial [1].

2.2.2 SmartKex

SmartKex is a direct followup project that focuses on the extraction of SSH keys from heap
memory dumps. Its primary objective is to automate the process of SSH key extraction from
heap memory dumps. The project introduces a machine learning-assisted methodology that
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significantly improves the efficiency and accuracy of key extraction compared to traditional brute-
force methods. This method is also significantly more straightforward to implement compared to
the previous SSHKex approach, which requires detailed knowledge of the SSH implementation
and the ability to inject breakpoints into the program execution.

SmartKex discusses two distinct methods for SSH key extraction:

• Brute-Force Baseline Method: This is a traditional approach that scans through the heap
memory to identify potential keys based on known patterns.

• Machine Learning-Assisted Method: This approach uses a Random Forest algorithm
trained on a highly imbalanced dataset using SMOTE balancing. The machine learning
model is designed to identify SSH keys with high precision and recall rates, but is not exact
as compared to the brute-force method since it is based on a probabilistic model.

2.2.2.1 Baseline brute-force method

Here is a summary of SmartKex’s brute-force method for SSH key extraction from heap dumps [9]:

1. Heap Dump Generation: Heap dump binary files of OpenSSH server process have been
generated (ASK HOW) and serves as the input for the key extraction process. The exact
process and architecture is not described in SmartKex paper, but we suppose it was done on
a linux-x86_64 architecture.

2. Data Reduction: To minimize the heap size, the method removes memory pages that are
irrelevant (empty) based on Hamming distance.

3. Brute-force key search: Starting from the first byte, a key length of 128 bytes is taken from
the heap dump as the potential key. The algorithm iterates over the entire heap, continuously
updating the potential key until the heap’s end is reached.

4. Decryption Attempt: For every potential key, an attempt is made to decrypt network
packets. If decryption fails, the process is repeated with a new potential key.

Although the brute-force approach is exact, it is computationally expensive. It performs poorly
especially when keys are located at the end of the heap dump [9, section 6.2].

2.2.2.2 SmartKex machine-learning method

The real innovation of SmartKex is its machine learning-assisted methodology for SSH key
extraction. At the cost fo exactness, this approach is significantly faster than the brute-force
method and has a high degree of accuracy in identifying encryption keys. It also allows for the
heap size to be reduced to less than 2% of its original size, further optimizing the extraction
process.

Here is a summary of SmartKex’s machine learning-assisted method for SSH key extraction
from heap dumps [9]:

1. Heap Dump inputs: Similarly to the brute-force method, heap dump binary files of OpenSSH
also serve as inputs for the key extraction process.
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2. Preprocessing: The raw heap dump is resized into an N × 8 matrix. High entropy parts of
the heap dump, which are likely to be encryption keys, are identified using the logical AND
operation on the vertical and horizontal differences of adjacent bytes. This creates an array
that flags potential key locations.

3. Training: A Random Forest algorithm is trained on 128-byte slices of the preprocessed heap.
The dataset is imbalanced, with the slices that contain keys being rare. A stacked classifier
approach is used, comprising a high precision classifier and a high recall classifier.

4. Key Identification: The machine learning model is used to predict which 128-byte slices of
the heap dump are likely to contain encryption keys. These slices are then subjected to a
brute-force method to actually extract the keys.

SmartKex is significantly faster than the brute-force method alone and has a high degree of
accuracy in identifying encryption keys. It also allows for the heap size to be reduced to less than
2% of its original size, further optimizing the extraction process.

SmartKex has broad applications in the field of cybersecurity, particularly in memory forensics.
Its machine learning-assisted methodology can be adapted for other types of sensitive data
extraction, making it a versatile tool for researchers and practitioners alike. The project is
open-source, with the code available on GitHub1.

2.2.3 Objectives of the present work

This Masterarbeit can be seen as a direct followup to the paper „SmartKex: Machine Learning
Assisted SSH Keys Extraction From The Heap Dump“. The present work aims to improve the
SmartKex methodology by exploring new machine learning architectures and algorithms. The
goal is to improve the accuracy of the machine learning model and to reduce the computational
complexity of the overall process.

To do so, this work has significantly broadened the research area by exploring entirely new
ways to deal with the dataset by leveraging memory graph representation, feature engineering,
new machine learning and deep learning model architectures, and new training strategies. A
range of different tools and script, with a focus on code quality and reproducibility with careful
packaging using Nix ensure that the present research can be easily extended and reproduced by
other researchers.

2.3 Graph-based memory modelization

In the following section, we present important concepts that will be used for the memory mod-
elization of the heap dump.

Because the dataset used is composed of RAW heap dump files from OpenSSH, it is a critical
aspect to understand how memory works at a low level point of view. This section aims to provide
an in-depth understanding of how memory is managed in C, the language used in the OpenSSH
implementation of SSH, for a linux-x86_64 architecture. We will explore the fundamental concepts
of memory management, including the heap and the stack, memory allocation, and the role of

1https://github.com/smartvmi/Smart-and-Naive-SSH-Key-Extraction
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pointers. These concepts will serve later as the foundation for our graph-based approach to
memory modelization.

This section will also introduce many graph theory and Knowledge Graph (KG) concepts. We
will explore the fundamentals of graph theory, including the definition of a graph, its components,
and its properties. We will also discuss the concept of a Knowledge Graph (KG), which is a type of
graph that stores information in the form of nodes and edges, and its applications in the field of
machine learning.

2.3.1 Defining memory concepts and modelization

Memory management in C is a complex task that requires a deep understanding of the language’s
features, the operating system’s capabilities and the compiler used. In C, memory is primarily man-
aged through two built-in functions: malloc (memory allocation) and free (memory deallocation).
These functions operate on two primary types of memory: the heap and the stack.

• Heap vs Stack: The heap is used for dynamic memory allocation, where variables are
allocated and freed at runtime. In contrast, the stack is used for static memory allocation,
where variables are allocated and deallocated automatically. The stack is faster but has a
limited size, while the heap is more flexible but requires manual management to prevent
memory leaks.

• Heap Dump: A heap dump is a snapshot of the heap’s state at a given time. It provides
valuable information about the memory layout, active pointers, and data stored in the heap.
Analyzing heap dumps can help in debugging memory-related issues and understanding the
program’s behavior.

• Memory Addresses: Each location in memory is identified by a unique memory address.
These addresses are usually represented in hexadecimal notation. Note that the address 0x0

is reserved for the NULL pointer, which is used to indicate that a pointer does not point to
any memory location.

• Pointer: A pointer is a variable that stores the memory address of another variable. It is
used to indirectly access the value of the variable it points to. Pointers are used extensively
in C, particularly for dynamic memory allocation.

• Data Structure: A data structure is a collection of data values, the relationships among
them, and the functions or operations that can be applied to the data. In the context of C
programming, data structures are declared using the keyword struct and are byte aligned.
This means that the size of the data structure is always a multiple of the size of the largest
member of the structure. Structures can be nested within each other, and pointers can be
used to indirectly access the members of a structure. Data structures are often stored in the
heap using malloc.

• Malloc headers: When malloc is called, it allocates a block of memory in the heap and
returns a pointer to the first byte of the block. The heap manager keeps track of these
allocations through metadata, often stored in headers preceding the allocated blocks. These
headers contain information such as the size of the allocated block and whether it is free or
occupied. Note that the pointer returned by malloc in C points to the first byte of the block
of memory that has been allocated for your use, not to the malloc header. The malloc header,
is managed internally by the memory allocator and is not exposed to the programmer, but is
visible in the heap dump.
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2.3.1.1 Endianness

Endianness refers to the byte order used to represent multibyte data types. In a little-endian
system, the least significant byte is stored first, while in a big-endian system, the most significant
byte is stored first. Knowing the endianness of the system is crucial for interpreting the content of
memory [71].

For instance, the hexadecimal value 0x56343a198000 (taken from "HEAP_START" of 3.3) is
represented as 550179058774 (≃ 5.50e+ 11) in decimal basis in a little-endian system, while it is
represented as 94782313037824 (≃ 9.48e+ 13) in a big-endian system.

Little-Endian Conversion The conversion of a hexadecimal number in little-endian format
to a decimal number is given by the following formula:

Decimal =
∑N−1

i=0

(
HexDigiti × 16i

)

Big-Endian conversion And the conversion of a hexadecimal number in big-endian format
to a decimal number is given by following formula:

Decimal =
∑N−1

i=0

(
HexDigitN−1−i × 16i

)

Here, HexDigiti is the value of the i-th digit in the little-endian hexadecimal number, and N is
the number of digits in the hexadecimal number. Note that HexDigiti should be converted to its
decimal equivalent (’A’ becomes 10, ’B’ becomes 11, etc.) before performing the calculation.

These formulas will be used later to convert pointer addresses from hexadecimal to decimal
format in mem2graph.

2.3.1.2 The role of entropy in forensic analysis

Entropy plays a pivotal role in forensic analysis, particularly in the context of memory dumps
analysis. It serves as a measure of uncertainty and randomness, which can be crucial for tasks
such as endianness detection and identifying encrypted keys in memory.

As defined by Shannon in the realm of information theory, it is a measure of the uncertainty or
randomness associated with a set of possible outcomes [71] [25]. In digital applications, when
calculated using the logarithm to base 2, entropy represents the amount of bits of information in a
message.

Entropy Formula The entropy H of a message is calculated using the formula:

H = −
∑n

i=1 pi log2 pi

Where p1, p2, . . . , pn are the probabilities of the set of all possible messages [71].

Endianness, as presented before, refers to the byte order used to represent multibyte data types
in computer memory [71]. It is necessary to know the endianness of the heap dump to correctly
interpret the content of memory, and especially the addresses of potential pointers. In this context,
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entropy can be used to infer the endianness of a system by analyzing the distribution of byte
values in a memory dump, as presented in „Inference of Endianness and Wordsize From Memory
Dumps“ [71].

Entropy is also a key element for encryption key detection, since those should be random byte
sequences with high entropy [9]. By examining 8-byte aligned data for high entropy, it is possible
to detect potential keys in a heap dump. Techniques such as the calculation of discrete differences
and logical operations can further refine this detection as described in „SmartKex: Machine
Learning Assisted SSH Keys Extraction From The Heap Dump“ [9].

2.3.2 Graphs and Knowledge Graphs

In this project, we (i.e. Clément Lahoche and the author) have built a program called mem2graph,
a generic tool developed in Rust for efficiency. It is used to convert a RAW memory dump into a
graph representation. This graph is technically a directed Edge-labeled heterogeneous property
graph, whose concepts are described later. As such, and while it is debatable whether or not
mem2graph can be seen as building Knowledge Graphs (KGs), it relies on many concepts from
the domain, necessitating a proper introduction.

2.3.2.1 Defining Graph Theory concepts

Graph theory is a mathematical field concerned with the study of graphs. It has applications in
various fields, including computer science, social sciences, or linguistics. Graphs are used to model
pairwise relations between objects, and the study of graphs involves analyzing the properties of
these relations. In a few words, a graph is just a collection of nodes and edges.

A graph can be formally defined as: «a pair G = (S,A) where:

• S is a finite set of vertices.

• A is a set of pairs of vertices (si, sj) ∈ S2.

Graphs can be either directed or undirected. In a directed graph, the pairs (si, sj) are ordered,
representing arcs from si to sj . In an undirected graph, the pairs are unordered, representing
edges between si and sj » [18]. Let’s introduce some vocabulary to describe graphs:

• Node (or Vertex): A single entity in the graph, often represented as a circle.

• Edge (or Arc): A connection between two nodes, often represented as a line or arrow.

• Degree: The number of edges connected to a node.

• Path: A sequence of edges that connect two nodes.

• Cycle: A path that starts and ends at the same node.

• Order: The number of vertices in the graph.

• Adjacency: Two nodes are adjacent if there is an edge between them.

• Loop: An edge that connects a node to itself.
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• Weight: A value assigned to an edge.

• Ancestors (parents) and Descendants (children): A node si is an ancestor of sj if there
is a path from si to sj . A node sj is a descendant of si if there is a path from si to sj .

Various other terminologies and concepts exist in graph theory, but these are the most impor-
tant ones for our purposes. For a more in-depth understanding of graph theory, the reader is
encouraged to consult the work by Solnon as a quick introduction, [18] or a more in-depth one by
West et al. [19].

2.3.2.2 Graphs types

Graphs offer a flexible way to conceptualize, represent, and integrate diverse and incomplete
data. Many graph models exist, each with its own advantages and disadvantages, as well as graph
properties 2. Those different types of graphs include:

• Directed Edge-labelled Graphs (DEL): The classic graph, set of nodes and edges that
connect the nodes with in certain way. RDF is a popular DEL data model.

• Heterogeneous Graphs: Each node and edge is assigned one type, allowing for partitioning
nodes according to their type, which is useful for machine learning.

• Property Graphs: Allows a set of property-value pairs and a label to be associated with
nodes and edges. This model is used in Neo4j and offers great flexibility but is harder to
handle and query.

• Graph Dataset: A set of named graphs, with a default graph with no ID. Useful when
working with different sources.

• Hypergraphs: Hypergraphs generalize the concept of graphs by allowing edges, known
as hyperedges, to connect any number of nodes, rather than just pairs. This means that a
single hyperedge can link together two or more nodes, forming a subset of the hypergraph’s
node set. This feature makes hypergraphs particularly useful for modeling relationships in
complex systems where connections are not merely binary. They are widely used in areas
such as database design, combinatorial optimization, and complex network analysis, where
multi-way relationships are prevalent.

A given graph can have a range of properties that give some insights into its structure. Here
are some important properties of graphs:

• Connected Graph: A graph is connected if there is a path between every pair of nodes.

• Disconnected Graph: A graph is disconnected if there is at least one pair of nodes that are
not connected by a path.

• Cyclic Graph: A graph is cyclic if it contains at least one cycle.

• Acyclic Graph: A graph is acyclic if it does not contain any cycles.

• Complete Graph: A graph is complete if there is an edge between every pair of nodes.
2Some parts of the following section are directly from a prior work for Seminar 5369S: Knowledge Graphs, written

during summer 2023. As of the date of writting and to the best of my knowledge, this work has not been published, and
as such, cannot be properly referenced
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2.3.2.3 Graph vs Knowledge Graph

A Knowledge Graph (KG) is a specialized form of graph intended to accumulate and convey
real-world knowledge. As said before, we are not technically building KGs, but we rely on
many concepts from the domain. Research on KG has further accelerated in recent years, and
introduced significant improvement to Graph Theory, especially in the practical applications of
graph construction and use for Machine Learning or Deep Learning [86]. They have a number of
benefits when compared with a relational model or NoSQL alternatives, such as the ability for
data to evolve in a more flexible manner, and the capacity to organize data in a way that is not
hierarchical. They can represent incomplete information, and does not require a precise schema
[86, p.2], which is invaluable in the context of memory analysis, where the structure of the heap is
not known in advance.

While all KGs are graphs, not all graphs are KGs. However, the line between the two is often
blurry, and the distinction is not always clear. The term "knowledge graph" first appeared in
1973, but really gained popularity through a 2012 blog post about Google’s Knowledge Graph [89].
Several definition attempts have been made, but none of them are universally accepted. Below
are listed some of the most common definitions of Knowledge Graphs:

• «A graph of data intended to accumulate and convey knowledge of the real world, whose
nodes represent entities of interest and whose edges represent potentially different relations
between these entities.» [86]

• «A graph of data consisting of semantically described entities and relations of different types
that are integrated from different sources. Entities have a unique identifier. KG entities
and relations are semantically described using an ontology or, more clearly, an ontological
representation.» [88]

In KGs, edges are often labeled and may represent complex relationships like "is a subclass of"
or "is married to", allowing for more expressive power. The very nature of KG makes any definition
attempt difficult. Indeed, KG is a broad concept that can be applied to many domains, use cases
and can have diverse implementations. The definition of KGs is thus very context-dependent, and
it’s debatable where the line between a graph and a KG is drawn.

For the purpose of this thesis, we won’t focus on this distinction and just consider that we deal
with memory graphs, which are graphs that are not necessarily KGs, but that can be used to
represent complex relationships between entities extracted from memory dumps and be leveraged
using KG-related techniques for advance tasks like feature engineering, automated embedding,
inductive reasoning and learning.

2.3.2.4 Ontologies

An ontology is a formal representation of knowledge within a domain, providing a structured frame-
work for organizing and interpreting information. It consists of a set of concepts, relationships,
and rules that define how data is interconnected and how it can be reasoned about. Ontologies are
often used to model a domain and support reasoning about entities and their relationships [87].

Ontologies play a crucial role in the development and utility of knowledge graphs. They
provide a semantic layer to the knowledge graph, enabling machines to understand the meaning
and context of the data. The axioms and rules in an ontology enable automated reasoning,
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allowing the knowledge graph to infer new facts from existing data. Ontologies also help in
maintaining the quality and consistency of data by enforcing constraints and validation rules.
Finally, ontologies enable interoperability by providing a common vocabulary for data exchange
and integration. Different popular ontologies exists, such as Web Ontology Language (OWL) or
Resource Description Framework (RDF).

By incorporating ontologies, knowledge graphs become more than just a collection of nodes
and edges; they become a rich, interconnected web of semantically meaningful information that
can be easily queried, analyzed, and extended. We will be referring to concepts that have been
inspired by ontologies in the next sections, like rdf:Bag.

The rdf:Bag container is a part of the Resource Description Framework (RDF) used to represent
collections where the order of elements is not significant. Unlike other containers such as rdf:Seq
and rdf:Alt, rdf:Bag permits duplicate entries. It can be used to model unsorted collections of
resources or literals. An instance of rdf:Bag can be represented as a graph where each node
connected to the root node represents an item in the collection [8]. For example, consider a root
node named "DataStructure" with a property Address specifying its malloc header address.

DataStructure
Address: malloc header address

Item 1 Item 2 Item 3

Figure 2.1: Graphical representation of an rdf:Bag container.

This small example illustrates how we can represent a container, or a relationship of belonging,
using a graph. This is a concept that will be used later in the memory modelization process.

2.3.2.5 Inductive Reasoning and Learning

Inductive reasoning in Knowledge Graphs (KGs) involves techniques like embedding and Graph
Convolutional Networks (GCNs) to learn the potential underlying structure of the graph. This is
particularly useful for tasks like link prediction, node classification, and clustering.

For the sake of clarity and grouping, we will present the concepts of graph embedding and
GCNs in the next sections, but it is important to note that they are not mutually exclusive. In fact,
GCNs can be used to generate embeddings, and embeddings can be used as input for GCNs. As
such, they are often used together in the context of KGs, or in our case, memory graphs.

2.4 Data preprocessing for Machine Learning

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that focuses on the development
of algorithms that can learn from data and make predictions. It is a powerful tool that has been
used to solve a wide range of problems, including image classification, speech recognition, and
natural language processing. Before we can apply machine learning algorithms to a dataset,
we must first prepare the data by performing various preprocessing steps. In this section, we
will discuss the most common data preprocessing techniques, including data cleaning, feature

22



engineering, and dataset splitting, as well as the importance of feature selection and dimensionality
reduction. All those elements are crucial for the development of effective machine learning models
for key extraction.

2.4.1 Feature engineering

In the realm of machine learning and data science, features refer to individual measurable
attributes or characteristics of the phenomena under study. Those features can be of different
types, and can be used to predict the value of a target variable.

2.4.1.1 Types of Features

Features can be of different types, depending on the nature of the data. The type of feature
determines how it is processed and utilized by the model. The most common types of features
include:

• Numerical Features: These are quantitative attributes representing measurements like
height, weight, or age.

• Categorical Features: These are qualitative attributes representing discrete classes or la-
bels, such as gender (Male, Female) or educational level (High School, Bachelor’s, Master’s).

• Ordinal Features: Similar to categorical features but with an inherent order, like ratings on
a scale of 1 to 5.

• Text Features: These contain textual data and often require special preprocessing steps
like tokenization and vectorization.

• Temporal Features: These are time-based attributes, such as timestamps, requiring special
handling to capture time-dependent patterns.

• Geospatial Features: These attributes represent geographical or spatial coordinates.

Features are pivotal for the performance of machine learning models. The quality and pertinence
of features can significantly influence the model’s capability to discern underlying patterns in the
data. Inadequately chosen, or irrelevant features can lead to a poorly performing model, while
carefully selected, relevant features can result in a robust and accurate model.

2.4.1.2 The Curse of Dimensionality

The curse of dimensionality refers to a set of challenges that arise when dealing with high-
dimensional data. As the number of features, or dimensions, in a dataset increases, the volume of
the feature space grows exponentially. This exponential growth leads to several issues:

• Data Sparsity: In high-dimensional spaces, data points tend to be sparse, making it difficult
for algorithms to identify patterns. The sparsity also means that the notion of "distance"
becomes less meaningful, which is problematic for algorithms that rely on distance metrics.
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• Computational Complexity: The exponential increase in volume demands significantly
more computational power and memory, making it challenging to process and analyze the
data efficiently.

• Overfitting: High dimensionality increases the risk of overfitting, where a model learns the
noise in the data rather than the actual pattern. Overfit models perform poorly on unseen
data.

• Statistical Significance: As dimensions increase, the amount of data required to achieve
statistical significance also increases exponentially, often making it impractical to collect
sufficient data.

• Visualization and Interpretability: High-dimensional data are difficult to visualize and
interpret, making it challenging to derive intuitive insights.

Due to these challenges, many dimensionality reduction techniques have been developed to
transform high-dimensional data into a lower-dimensional form, aiming to preserve as much of the
relevant information as possible. These techniques are discussed in the next section.

2.4.1.3 Feature Engineering techniques

The meticulous process of selecting the most relevant features, or constructing new features
from existing ones, is known as feature engineering. This step can encompass normalization,
transformation, and the creation of interaction terms among features. This complex process
requires a deep understanding of the domain of study and the datasets, and is often a crucial step
in the development of machine learning models [24].

In the context of Machine Learning, features essentially serve as the input variables X that a
machine learning model employs to make predictions or inferences about the output variable Y .
But not all features are equally informative. Some features may be redundant, irrelevant, or even
detrimental to the model’s performance. Irrelevant features are those that do not contribute to
the predictive power of the model, while redundant features are those that are highly correlated
with other features. Feature engineering techniques, can be used to build, transform or eliminate
features, thereby reducing the dimensionality of the data and enhancing model performance [23].

• Scaling and Normalization: Scaling and normalization are techniques used to transform
the features to a similar scale. This is particularly important for algorithms that rely on
distance metrics, such as K-Nearest Neighbors (KNN) and Support Vector Machine (SVM).
Scaling and normalization can also help accelerate the training process by reducing the
number of iterations required for the model to converge. Some common techniques include
min-max scaling, z-score normalization, and log transformation.

• Feature Extraction: This technique involves transforming the original set of features into
a new set of features, which is usually of lower dimensionality. The new features are often
combinations of the original features and aim to capture as much of the information in the
original data as possible. Many methods exits, like Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA) and t-distributed Stochastic Neighbor Embedding (t-SNE)
are often employed to transform high-dimensional data into a lower-dimensional form are
commonly used for feature extraction [23].

• Feature Selection: Unlike feature extraction, feature selection aims to pick a subset of the
most important features from the original set, without changing them [23]. The goal is to
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remove irrelevant or redundant features that do not contribute significantly to the model’s
performance. Techniques like Recursive Feature Elimination (RFE) and using importance
scores from tree-based algorithms like Random Forest are popular methods for feature
selection.

Both techniques have their own advantages and disadvantages, and the choice between the two
often depends on the specific requirements of the task at hand. Feature extraction is generally
more suitable when the original features do not have much interpretability to begin with, or when
transforming features can lead to a more compact and effective representation. On the other
hand, feature selection is often preferred when it is important to maintain the interpretability of
the features, or when computational efficiency is a concern [24].

2.4.1.4 Evaluating Features with Correlation Tests

To assess the quality of features, various statistical measures can be employed. Correlation tests
are statistical tests that measure the strength and direction of the relationship between two
variables. Pearson, Kendall, and Spearman correlation coefficients are commonly used to quantify
the linear or monotonic relationship between each feature and the target variable [27]. A high
absolute value indicates a strong relationship, aiding in feature selection.

• Pearson Correlation: Measures the linear relationship between two variables. It ranges
from -1 to 1, where -1 indicates a strong negative linear correlation, 1 indicates a strong
positive linear correlation, and 0 indicates no linear correlation.

• Kendall’s Tau: A non-parametric test that measures the strength and direction of a mono-
tonic relationship between two variables.

• Spearman’s Rank: Also a non-parametric test, it assesses how well an arbitrary mono-
tonic function can describe the relationship between two variables without making any
assumptions about the frequency distribution.

These techniques are useful for evaluating the relationship between each feature and allows
generating correlation matrices, which can be used to identify redundant features. It’s also
possible to evaluate each feature independently through univariate feature selection techniques.
In Python’s Scikit-learn library [26], methods like F-test and the p-value are often used for this
purpose. "

• F-test value: Measures the linear dependency between the feature variable and the target.
A higher F-test value indicates a more useful feature.

• p-value: Indicates the probability of an F-test value this large arising if the null hypothesis is
true. A smaller p-value suggests rejecting the null hypothesis, making the feature significant.

In summary, features are the foundational elements of any machine learning model. The quality
of these features, along with how they are processed and utilized, can markedly impact the model’s
performance. The significance of feature engineering cannot be overstated. Properly engineered
features can drastically reduce modeling errors, leading to more accurate and reliable predictions.
It serves as a bridge between raw data and predictive models, ensuring that the models are fed
with the most relevant and informative features.

25



2.4.2 Embeddings

Embeddings are low-dimensional vector representations of high-dimensional objects. They are
often used to capture complex relationships between objects and are particularly useful for
machine learning tasks like clustering, classification, and link prediction. Embeddings are
widely used in the field of natural language processing (NLP) to represent words, sentences,
and documents [64]. In recent years, they have also been applied to graphs to learn node
representations [86]. In this section, we will discuss the concept of embeddings and explore some
common techniques for creating them.

2.4.2.1 Embedding Creation vs Feature Engineering

Both embedding creation and feature engineering are techniques used to transform data for
machine learning models. However, they are different in terms of their goals and how they are
achieved.

• Embedding Creation: Embedding creation is the process of learning a low-dimensional
vector representation of a high-dimensional object. This involves mapping discrete objects,
such as words in Natural Language Processing (NLP) or nodes in a graph in our case, to
vectors of continuous values in a lower-dimensional space [64]. The goal is to capture the
semantic or structural relationships between these objects. Specialized algorithms like
Word2Vec for word embeddings or Node2Vec for graph embeddings are often used.

• Feature Engineering: As discussed before, it is a more general practice that involves
creating new features or modifying existing ones to improve the performance of a machine
learning model. While feature engineering can include creating embeddings, it also encom-
passes a wide range of other techniques like normalization, transformation, outlier detection,
and handling missing values.

In general, feature engineering is a more manual process, while embedding creation is more
automated. Feature engineering requires domain knowledge and understanding of the problem,
while embedding creation can be done using a variety of machine learning techniques.

Thus, embedding creation is a specialized form of feature engineering aimed at mapping discrete
objects to continuous vectors of numbers, usually for capturing complex relationships. Feature
engineering, on the other hand, is a broader practice that can involve a variety of techniques,
including but not limited to embedding creation.

2.4.2.2 Embeddings for graphs

Graph embedding techniques aim to map nodes and edges in a graph to vectors in a low-
dimensional space [86]. The primary goal is to preserve the graph’s structural properties, such as
node connectivity and community structure, in the embedded space. These vectors can then be
used for various machine learning tasks like clustering, classification, and link prediction. A quite
complete overview of the different techniques can be found in „Knowledge Graphs“ [86, Section
4.2]. Here are some common and advanced techniques:
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Translational Models The first type of graph embeddings techniques is based around using
transactional models that interpret edge labels as transformations from subject nodes to object
nodes „Knowledge Graphs“.

• TransE: is one of the earliest and most straightforward translational models. It represents
entities as points in a vector space and relations as translations between these points. The
primary idea is that for a valid triple (h, r, t), the equation h+r = t should hold, where h stands
for the head entity, r represents the relation, and t is the tail entity. This model is simple and
computationally efficient but is limited in its ability to capture complex relationships [86].

• TransH: TransH extends TransE by introducing relation-specific hyperplanes. This allows
the model to capture more complex relationships by projecting the entity embeddings onto
these hyperplanes before performing translations [86].

• TransR: TransR goes a step further by not only introducing relation-specific hyperplanes but
also relation-specific translations. This allows for a more flexible representation of relations,
accommodating various types of complexities [86].

• Other improvements include TransD or MuRP, which shows that research in this domain is
still very active.

Tensor Decomposition Models Tensor decomposition models represent entities and relations
as vectors or matrices in a low-dimensional space. These models are based on the assumption
that the relationship between entities can be represented by a bilinear function. They are
computationally efficient and can capture complex relationships, but they are also limited in their
ability to model asymmetric and reflexive relations.

• RESCAL: RESCAL employs a bilinear model where each relation is represented by a full-
rank matrix. This allows for capturing asymmetric and reflexive relations but at the cost of
increased computational complexity [86].

• DistMult: DistMult simplifies RESCAL by assuming that the relation matrices are diagonal.
This reduces the number of parameters and computational complexity, making it more
scalable [86] [87].

• ComplEx: ComplEx extends DistMult by introducing complex-valued embeddings. This
allows the model to capture asymmetric relations effectively while maintaining computational
efficiency [86] [87].

Neural Models Neural models employ neural networks to learn the features of entities and
relations. This provides a more flexible and adaptive approach to graph embeddings.

• ConvKB: ConvKB employs a convolutional neural network to automatically learn the features
of entities and relations. It is technically a translational model as introduced before, but
uses a convolutional layer to capture the interactions between entities and relations. This
provides a more flexible and adaptive approach to graph embeddings [33].

• RotatE: RotatE uses complex rotations in the embedding space to model relations. This
neural model captures the semantics of relations in a more expressive manner [87].
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• SDNE (Structural Deep Network Embedding): SDNE employs a deep autoencoder to
learn complex and non-linear node embeddings while preserving first-order and second-order
proximities. It is particularly effective for capturing intricate patterns and structures in the
graph [34].

• R-GCN: Relational Graph Convolutional Networks (R-GCNs) combine the strengths of GCNs
and traditional embedding methods to capture both topological and semantic information
[35]. A more recent study by Degraeve et al. argues that the main contribution of R-GCN
lies in its message passing paradigm rather than the learned weights. This paper introduces
a variant called Random R-GCN (RR-GCN) [48].

• ConvE: ConvE employs convolutional layers to capture local and global interactions between
entities and relations, offering a more expressive representation [87].

Language Models Language models utilize pre-trained language models to enrich the embed-
dings with contextual information. This approach leverages the recent developments of language
models to capture the semantics of entities and relations.

• BERT for KGE: Utilizing pre-trained BERT models, this approach leverages the power of
language models to enrich the embeddings with contextual information [36].

• BART KGE: Bidirectional and Auto-Regressive Transformers (BART) is a denoising autoen-
coder that can be used for various NLP tasks. This approach utilizes BART to learn entity
and relation embeddings. The paper introducing this also compares other LLM like GPT-2
[38].

• Due to the recent developments in NLP, this domain is still very active, and new approaches
are being developed regularly.

2.4.2.3 Word Embeddings

Word embeddings are vector representations of words in a low-dimensional space. They are often
used as input for machine learning models in natural language processing (NLP) tasks like text
classification, sentiment analysis, and machine translation. Word embeddings are typically learned
from large text corpora using unsupervised learning techniques like Word2Vec and GloVe. These
embeddings can then be used to capture semantic relationships between words and phrases,
which is particularly useful for NLP tasks [64].

• Word2Vec: Word2Vec is a popular algorithm for learning word embeddings from text
data. It employs a shallow neural network to learn the embeddings and is often used as a
pre-processing step for NLP tasks [87].

• GloVe: Global Vectors for Word Representation (GloVe) is another popular algorithm for
learning word embeddings. It is based on the co-occurrence matrix of words and utilizes
matrix factorization to learn the embeddings [87].

Graph Embeddings Graph embeddings are vector representations of nodes in a graph.Graph
embeddings are typically learned using unsupervised learning techniques like Node2Vec and
DeepWalk. These embeddings can then be used to capture structural relationships between nodes,
which is particularly useful for graph analytics tasks [86].
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• One-Hot Encoding: This is a simple technique that represents each node as a vector of 0s
and 1s, where the length of the vector is equal to the number of nodes in the graph. The
vector contains a 1 at the index corresponding to the node and 0s everywhere else. As is,
this method is not really suitable for large graphs as it results in a high-dimensional and
sparse matrix representation [87].

• Node2Vec: This algorithm learns continuous feature representations for nodes by optimizing
a neighborhood-preserving objective. It employs biased random walks and uses the Skip-
gram model to generate embeddings. Node2Vec is particularly effective for capturing local
structures and can be fine-tuned for specific tasks [39].

• DeepWalk: Similar to Node2Vec, DeepWalk uses random walks to generate node sequences.
It employs the Skip-gram model from natural language processing to learn embeddings.
Unlike Node2Vec, it does not use biased walks, making it more suitable for capturing global
structures [49].

• Spectral Clustering: This technique is based on the spectral theory of graphs. It utilizes
the eigenvalues and eigenvectors of the Laplacian matrix of the graph to find an optimal
embedding. Spectral Clustering is particularly useful for community detection and can
capture the global structure of the graph [55] [57].

• LINE: Large-scale Information Network Embedding (LINE) aims to preserve both local
and global network structures. It optimizes two objectives: first-order and second-order
proximities between nodes. LINE is scalable and can handle large graphs efficiently [40].

• Graph Factorization: This method directly factorizes the adjacency matrix of the graph to
learn node embeddings, making it computationally efficient but less capable of capturing
complex structures. It is often used for large-scale graphs where computational resources
are limited [87].

2.4.3 Other preprocessing techniques for Machine Learning

When working with real-world data and datasets, it is common to find issues like missing values,
outliers, and imbalanced classes that can adversely affect the performance of machine learning
models. In this section, we will discuss some common preprocessing techniques used to improve
the quality of data and ensure that the models can learn effectively.

2.4.3.1 Data Cleaning

Data cleaning is the process of detecting and correcting errors in the data. It is a crucial step
in data preprocessing and involves various techniques like outlier detection, handling missing
values, and data normalization. Data cleaning is necessary to ensure that the data is accurate and
consistent, which is essential for machine learning models to learn effectively.

• Outlier Detection: Outliers are data points that deviate significantly from the rest of the
dataset. They can be caused by errors in data collection or genuine variations. Outliers
can skew the model’s learning and should be identified and handled appropriately, either by
removal or transformation.
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• Handling Missing Values: Missing data can lead to biased or incorrect model training.
Techniques for handling missing values include imputation, where missing values are re-
placed with statistical measures like mean, median, or mode, and deletion, where rows with
missing values are removed.

• Data Normalization: Features with different scales can affect the performance of machine
learning algorithms. Normalization rescales the features to a standard range, usually [0, 1],
or transforms them to have a mean of 0 and a standard deviation of 1.

• Encoding Categorical Variables: Many machine learning algorithms require numerical
input and output variables. Categorical variables are converted to numerical format through
techniques like one-hot encoding or label encoding.

• Text Cleaning: In natural language processing tasks, text data may require cleaning to
remove irrelevant characters, correct typos, or standardize text format.

• Duplicate Removal: Duplicate entries can bias the model and should be identified and
removed from the dataset.

• Feature Engineering: While not strictly data cleaning, feature engineering involves trans-
forming existing features or creating new ones to improve model performance.

2.4.3.2 Dataset splitting and sampling

One other typical step is the division of the dataset into training and testing sets. This separation
is crucial for evaluating the generalization performance of a model. The training set is used to
train the model, while the testing set is used to evaluate its performance on unseen data. Failing
to separate these sets can lead to overfitting, where the model performs well on the training data
but poorly on new, unseen data.

Various techniques exist for dataset splitting and sampling, each with its own advantages and
disadvantages:

• Random Split: The dataset is randomly divided into training and testing sets based on a
given ratio, such as 70% for training and 30% for testing. This method is simple but may
result in imbalanced classes in the splits.

• Stratified Split: Similar to random split, but ensures that the distribution of classes is the
same in both training and testing sets. This is particularly useful for imbalanced datasets.

• k-Fold Cross-Validation: The dataset is divided into ’k’ subsets or "folds." The model is
trained on k-1 folds and tested on the remaining fold. This process is repeated k times, each
time with a different fold as the testing set. The average performance metric is used for
evaluation.

• Leave-One-Out Cross-Validation (LOOCV): A special case of k-Fold Cross-Validation where
k is equal to the number of data points. Each data point is used once as the test set while
the remaining points form the training set.

• Bootstrapping: Random samples are drawn with replacement from the dataset to create
multiple training sets. The model is trained and tested on these sets, and the average
performance is calculated.
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2.4.3.3 Dealing with Imbalanced Datasets

Imbalanced datasets are those where the classes are not represented equally. This is a common
issue in machine learning, especially in classification problems. An imbalanced dataset can lead
to a biased model that may not effectively predict the minority class. Therefore, it is crucial to
address this issue during data preprocessing.

• Why it is Necessary: In imbalanced datasets, machine learning algorithms tend to be biased
towards the majority class, ignoring the minority class. This results in poor classification
performance for the minority class, which is often the class of interest in problems like fraud
detection, medical diagnosis, etc.

• Oversampling: This involves adding more copies of the minority class. Oversampling can
be random with replacement, or it can involve generating synthetic samples.

• Undersampling: This involves removing some of the samples of the majority class. This
method is generally not preferred as it can lead to loss of data.

• SMOTE (Synthetic Minority Over-sampling Technique): SMOTE is an oversampling
method that creates synthetic samples in the feature space. It selects two or more similar
instances (using a distance measure) and perturbing an instance one at a time by a random
amount within the difference to the neighboring instances.

• ADASYN (Adaptive Synthetic Sampling): Similar to SMOTE, but it uses a weighted
distribution for different minority class examples according to their level of difficulty in
learning.

• Cost-sensitive Learning: This involves modifying the algorithm to increase the weight of
the minority class during training, thereby making the algorithm more sensitive to it.

• Ensemble Methods: Methods like Random Forest and Gradient Boosting can be used with
techniques like bagging and boosting to handle imbalanced datasets effectively.

• Resampling Methods: These involve randomly partitioning the data into subsets, balancing
each subset, and then aggregating the results.

To conclude this section, data preprocessing is a crucial step in machine learning. The number
of concepts and techniques discussed here is by no means exhaustive, which further highlights
the importance and complexity of data preprocessing.

2.5 Machine Learning and Deep Learning

In the preceding sections, we have discussed the importance of data preprocessing and feature
engineering for machine learning. In this section, we will discuss the machine learning pipeline
and explore some common machine learning algorithms. We will also discuss deep learning and
neural networks especially in the context of graphs, since they have gained popularity in recent
years due to their superior performance on many tasks.
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2.5.1 Machine Learning

Machine learning is a cornerstone in the field of artificial intelligence and has been instrumental
in driving many of today’s technological and scientific breakthroughs. From natural language
processing to computer vision, machine learning algorithms play a critical role in making sense of
large and complex data sets.

2.5.1.1 What is Machine Learning

Machine learning is a subfield of artificial intelligence that provides systems the ability to auto-
matically learn and improve from experience without being explicitly programmed. This learning
process is based on the recognition of complex patterns in data and the making of intelligent
decisions based on them [28].

The machine learning pipeline typically involves several steps including some pre-steps like
data collection, preprocessing, feature extraction that we have already discussed before, usually
followed by model training, evaluation, and deployment. Algorithms are trained on a dataset, and
the learned patterns are used to make predictions or decisions without human intervention. ML
algorithms can be broadly classified into three categories [28]:

• Supervised Learning: Algorithms are trained on labeled data, and the aim is to make
predictions or map inputs to outputs.

• Unsupervised Learning: Algorithms are trained on unlabeled data, focusing on the under-
lying structure or distribution in the data.

• Reinforcement Learning: Algorithms learn to perform an action from state to state to
maximize some type of reward or objective function.

In the following, we will focus on supervised and unsupervised learning, as they are the most
relevant to our work.

2.5.1.2 Model Evaluation

Evaluating the performance of a machine learning model is crucial for understanding its effective-
ness and suitability for a given task. It is not a trivial task as it depends on various factors like the
type of data, the problem at hand, and the model itself [63]. In this section, we will discuss some
common evaluation metrics for classification and regression models.

Precision Precision is the ratio of correctly predicted positive observations to the total
predicted positives. The formula for precision is:

Precision = True Positives
True Positives+False Positives
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Recall Recall is the ratio of correctly predicted positive observations to all the observations
in the actual class. The formula for recall is:

Recall = True Positives
True Positives+False Negatives

F-1 Score The F-1 Score is the weighted average of Precision and Recall, and it ranges from
0 to 1. The formula for the F-1 Score is:

F-1 Score = 2× Precision×Recall
Precision+Recall

Accuracy Accuracy is the ratio of correctly predicted observations to the total observations.
The formula for accuracy is:

Accuracy = True Positives+True Negatives
Total Observations

These are the most common metrics used for evaluating classification models. Other metrics
like the Area Under the Curve (AUC) and the Receiver Operating Characteristic (ROC) curve are
also used for evaluating binary classification models. For regression models, metrics like Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) are
commonly used [26].

2.5.2 Machine Learning Models for Binary Classification

Binary classification is a supervised learning task where the goal is to predict a binary outcome,
i.e., one of two possible classes (0 or 1). This is a truly classical task for a ML model, with a range
of applicable algorithms. As such, we rely on Python’s Scikit-learn library for implementation.

Logistic Regression A specialized form of regression tailored for predicting binary outcomes.
It employs the logistic function to map predicted values between 0 and 1. While straightforward
and interpretable, its performance may be limited on complex, non-linear data [29].

The logistic function is defined as:

P (y = 1|x) = 1
1+e−(β0+β1x)

Where β0 is the intercept and β1 is the coefficient for the predictor variable x.

Decision Trees These are versatile models used for both classification and regression. They
partition the feature space into regions, making decisions at each node. While easy to visualize,
they are susceptible to overfitting [30].
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Decision Trees use metrics like Gini impurity or entropy to make splits:

Gini(T ) = 1−
∑C

i=1 p
2
i

Where T is a node and pi is the proportion of class i instances among the training instances in
node T .

Random Forest An ensemble technique that aggregates predictions from multiple decision
trees. Known for its robustness and ability to handle large, high-dimensional data [31].

The final prediction is an average or majority vote from all trees:

ŷ = 1
n

∑n
i=1 ŷi

Where ŷ is the final prediction and ŷi is the prediction from the ith tree.

Support Vector Machines (SVM) Effective for both classification and regression, SVMs find
the hyperplane that best separates the data into classes. They excel in high-dimensional spaces
[62].

The objective is to maximize the margin between classes:

maxw,b
2

∥w∥

Where w is the weight vector and b is the bias term.

k-Nearest Neighbors (k-NN) An instance-based algorithm that classifies a new point based on
the majority class among its ’k’ nearest neighbors [59].

The distance between points is often calculated using Euclidean distance:

d(x, y) =
√∑n

i=1(xi − yi)2

Where d(x, y) is the distance between points x and y, and n is the number of dimensions.

2.5.3 Deep Learning

Deep learning offers a powerful set of tools for automatically generating embeddings from the
graph representation of heap dumps. Leveraging neural networks, we can build custom models
using PyTorch to perform binary classification tasks, such as predicting key nodes in a heap dump.
In this section, we will explore various neural network architectures that are well-suited for this
task.
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Neural Networks serve as the backbone of deep learning models [61]. They consist of inter-
connected nodes or "neurons" organized into layers. Deep learning extends this architecture by
employing multiple hidden layers, enabling the model to learn complex representations from data.
This is particularly useful when dealing with graph-based heap dump representations, where the
relationships between nodes can be intricate [87].

Choosing Deep Learning models is dependent on the task. As such, we need to present the
different types of neural networks and their advantages and disadvantages. Below are some
common neural network architectures:

2.5.3.1 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) are particularly effective for sequence-based data. In the
context of heap dumps, if the memory addresses or keys exhibit some form of sequential pattern,
RNNs can be employed to capture these temporal dependencies for binary classification [61,
p. 10.2].

• Advantages:

– Good at capturing short-term dependencies in sequence data.

– Relatively simpler architecture.

• Disadvantages:

– Struggles with long-term dependencies due to the vanishing gradient problem.

– May require more data for effective training.

2.5.3.2 Long Short-Term Memory (LSTM)

LSTMs are an extension of RNNs designed to capture long-term dependencies, making them
suitable for more complex sequences [60].

• Advantages:

– Effective in capturing long-term dependencies.

– Less susceptible to the vanishing gradient problem.

• Disadvantages:

– More complex and computationally intensive than RNNs.

– May require fine-tuning of hyperparameters.

2.5.3.3 Gated Recurrent Units (GRU)

Gated Recurrent Units (GRU) offer a compromise between the simplicity of RNNs and the power
of LSTMs. They are effective in capturing both short-term and long-term dependencies but with a
less complex architecture [58].
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• Advantages:

– Simpler architecture compared to LSTM.

– Efficient in capturing long-term dependencies.

• Disadvantages:

– May not perform as well as LSTMs for very complex sequences.

– Still more computationally intensive than basic RNNs.

2.5.3.4 Convolutional Neural Networks (CNN)

Though traditionally used in image processing, CNNs can also be adapted for sequence data like
heap dumps. They are excellent at identifying spatial hierarchies or patterns in the data [61] [32].

• Advantages:

– Highly effective in identifying local patterns.

– Less prone to overfitting due to pooling layers.

• Disadvantages:

– May not capture global dependencies as effectively as RNNs or LSTMs.

– Requires a fixed-size input.

2.5.3.5 Graph Convolutional Networks (GCN)

Graph Convolutional Networks (GCNs) are a specialized form of neural networks designed to
work directly with graphs [87]. They are particularly useful for our task as they can automatically
generate embeddings from the graph representation of heap dumps. These embeddings can then
be used for binary classification to predict key nodes.

• Advantages:

– Capable of capturing both local and global graph structures.

– No need for manual feature extraction from graphs.

• Disadvantages:

– May require fine-tuning and a well-defined graph structure.

– Computationally intensive for large graphs.

Several Python libraries can be used to implement GCNs for our specific task. Some notable
ones are PyTorch Geometric, Spektral, and DGL (Deep Graph Library). These libraries offer
pre-built GCN layers and various utilities to facilitate the embedding and binary classification of
heap dump graphs.
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2.5.4 Graph Neural Networks

A Graph Neural Network (GNN) constructs a neural network that mirrors the structure of the
underlying data graph. In this architecture, nodes are linked according to their relationships in
the data graph. The model is trained in a supervised fashion to map input features of nodes to
their corresponding output features [87]. These output features can either be manually annotated
or sourced from a knowledge graph.

Unlike traditional knowledge graph embeddings, GNNs offer the advantage of end-to-end
supervised learning tailored for specific tasks.

With a dataset of labeled examples, GNNs can classify individual nodes or even entire graphs.
The challenge lies both in how to convert a given graph to a format that can be fed into a neural
network (see 2.4.2.2) and how to design a neural network that can effectively learn from the graph
data. Note that the distinction between the two is not always clear since two problems are often
tackled together. As such, the present classification is not exhaustive and arbitrary, even though it
is based on the literature and meta-analysis of the field, like „Knowledge Graphs (Extended)“ [87]
and „A comprehensive survey on graph neural networks“ [51].

GNNs have been employed in various applications, ranging from traffic prediction, recommender
systems, and software verification [51]. Remarkably, GNNs can also serve as substitutes for
conventional graph algorithms. For instance, they have been used to identify central nodes in
knowledge graphs through supervised learning [87]. The following sections delve into two specific
types of GNNs: Recursive GNNs and Convolutional GNNs.

2.5.4.1 Recursive Graph Neural Networks (RecGNNs)

Recursive Graph Neural Networks (RecGNNs) serve as the foundational approach to graph neural
networks [87]. The model operates by passing messages between neighboring nodes to recursively
compute results. The framework learns the functions that generate the expected output based
on a training set of labeled nodes. Scarselli et al. [54] proposed a seminal GNN model that uses
feature vectors for nodes and edges, along with state vectors for nodes. Two parametric functions,
the transition function and the output function, are used to update the state vectors and compute
the final output for nodes, respectively. These functions are applied recursively until a fixpoint
is reached. The model is highly flexible and can be adapted in various ways, such as defining
neighboring nodes differently or using distinct parameters for each node [54].

Learning Process in GNNs The learning process in GNNs can be divided into three steps:
input computation, node state update, and output computation. These steps are repeated until
a fixpoint is reached, and the final output is computed for each node. Essentially, this involves
finding the optimal parameters w such as for φw to best approximate the data in the learning
dataset L.
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The learning task can be formulated as the minimization of a quadratic cost function ew
through iterative gradient descent [54]:

ew =

p∑
i=1

qi∑
j=1

(ti,j − φw(Gi, ni,j))
2

Where:

• G: The set of graphs.

• N : The subset of nodes.

• D = G ×N : The set of pairs of a graph and nodes.

• Gi = (Ni, Ei) ∈ G: The graph.

• Ni: The set of nodes in graph Gi.

• Ei: The set of edges in graph Gi.

• ni,j ∈ Ni: The jth node of the graph Gi.

• qi ≤ |Ni|: The number of supervised nodes in the graph Gi.

• p ≤ |G|: The number of graphs in the learning set.

• L = {(Gi, ni,j , ti,j)}: The learning set.

• ti,j ∈ Rm: The target output for node ni,j .

• m: The number of outputs.

• Rm: The m-dimensional Euclidean space.

• φw : D → Rm: The function that maps the input to the output.

• ew: Error function.

For graph-focused tasks, a special node is used for the target (t), whereas for node-focused
tasks, supervision can be performed on every node. More information about the learning process
can be found in [54].

2.5.4.2 Convolutional Graph Neural Networks (ConvGNNs)

As introduced before, Graph Convolutional Networks extend the concept of convolution from
images to graphs. «The core idea in the image setting is to apply small kernels (aka filters) over
localized regions of an image using a convolution operator to extract features from that local
region.» [87]. They are designed to work with non-Euclidean data and are particularly useful for
semi-supervised learning tasks on graphs. GCNs aim to learn a function that maps nodes to a
low-dimensional space while considering their local neighborhood and features.
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Convolution filters A Convolutional Neural Network (CNN) is a type of neural network that
uses convolutional filters to extract features from images. These filters are applied to local regions
of the image to capture spatial patterns [42]. The same concept can be extended to graphs, where
the convolution filters are applied to local regions of the graph to capture structural patterns.

The convolution operation on an image is historically defined as follows [47] [56]:

yi,j =
m∑

k=−m

n∑
l=−n

xi+k,j+l × wkl

Where:

• yi,j: The output value at the coordinate (i, j) of the convolution output.

• xi,j: The input value at the coordinate (i, j) of the input image.

• wkl: The weight value (coefficient) of the kernel at the coordinate (k, l).

• m: The kernel width.

• n: The kernel height.

Similar to this, ConvGNNs implement the transition function using convolutions. One of the
challenges in ConvGNNs is defining regions of a graph, as nodes in a graph may have varying
numbers of neighbors. Solutions to this problem involve using spectral or spatial representations
of graphs [57] [87]. An alternative approach employs attention mechanisms to learn the most
important features [41]. Unlike RecGNNs, ConvGNNs apply a fixed number of convolutional layers
and can use different kernels/weights at each distinct step.

Here are some common ConvGNN architectures. I recommend reading „Beyond low-pass filter-
ing: Graph convolutional networks with automatic filtering“ [52] for a more in-depth discussion of
these models:

• Vanilla GCN: The basic GCN model consists of an input layer, one or more hidden layers,
and an output layer. Each layer is associated with a graph convolution operation that updates
the node features based on their neighbors [87].

• GraphSAGE (Graph Sample and Aggregation): This model generalizes the GCN frame-
work by allowing various aggregation functions like mean, LSTM, and pooling to combine
information from a node’s neighbors [50].

• ChebNet: ChebNet uses Chebyshev polynomials to generalize the convolution operation in
the spectral domain. This allows the model to capture a broader range of graph structures
[51].

• GAT (Graph Attention Networks): GAT introduces attention mechanisms into GCNs,
enabling the model to weigh neighbors differently when aggregating information [41].

• MoNet: This model employs a mixture model to generalize the convolution operation,
making it capable of handling graphs with diverse structures [53].
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• Graph Isomorphism Network (GIN): GIN is designed to capture the isomorphism between
different graphs, making it powerful for tasks like graph classification [52].

• Research on the topic is still ongoing, and a lot of new architectures are being proposed:
Cluster-GCN, TAGCN, AutoGCN, and many more [52]. It’s worth noting that many of these
models are not mutually exclusive and can be combined to create more powerful models.

The background chapter has introduced a lot of concepts and techniques that are relevant to our
work. We have discussed the importance of data preprocessing and feature engineering, explored
various machine learning algorithms, and looked at some common neural network architectures.
Although not exhaustive, this overview should provide a solid foundation for the methods, design
and implementation that will be discussed in the next chapters.
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3 Methods

In the preceding chapters, all the necessary background knowledge to understand the methods
have been introduced. In this chapter, we will present an overview of the challenges, the methods,
and the tools we have developed for this thesis. We will first describe the dataset we have used.
Then, we will describe the programs developed for this thesis. Finally, we will describe how we
have packaged and deployed our programs with Nix.

3.1 Hardware and software architecture

Throughout this thesis, we have used a variety of hardware and software architectures.

3.1.1 Hardware development and testing environment

In this section, as a reference for the reader, we will describe shortly the hardware development
environment. All environments are running some Linux x86_64 distribution.

At the start of the project, around the end of 2022, the project started on an old laptop HP
EliteBook Folio 1040 G2, running Ubuntu 22.04 LTS (Jammy Jellyfish) with the following
specifications:

• CPU: 5th Generation Intel Core i7-5600U 2.6 GHz (max turbo frequency 3.2-GHz), 4 MB L3
Cache, 15W

• GPU: Intel HD Graphics 5500

• RAM: 8GB DDR3L SDRAM (1600 MHz, 1.3v)

This device was used for the first experiments, and for the development of the first programs.
However, it was not powerful enough to run the experiments on the whole dataset, and especially
working on ML part. As such, we have moved to a more powerful machine, a TUXEDO InfinityBook
Pro 16 - Gen7 with the following specifications:

• CPU: 12th Gen Intel i7-12700H (20) @ 4.600GHz

• GPU: NVIDIA Geforce RTX 3070 Ti Laptop GPU

• RAM: 64GB DDR5 4800MHz Samsung

For the Operating System, we have switched from Fedora 37 to NixOS 23 (Tapir). This
change was motivated by the fact that NixOS is a Linux distribution that uses a purely functional
package management system [46]. This means that the operating system is built by the Nix
package manager, using a declarative configuration language. It allows to have a reproducible
development environment, and to easily switch between different development environments. This
has proved to be very useful in many areas like work environment isolation, on work collaboration
with Clément Lahoche, and for software deployment to the server.
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Unfortunately, the TUXEDO InfinityBook Pro 16 - Gen7 laptop was not powerful enough to run
the experiments on the whole dataset. Running the python script would have taken more than a
week for some simple ML experiments to run on the whole dataset. Small bash and python scripts
have been run on this laptop, as well as tests of the different developed programs, but all the main
experiments have been run on the server.

In that context, we were provided 2 development servers towards the end of the thesis, around
August 2023. The hardware server is a AS-4124GS-TNR with the following specifications:

• CPU: 2x AMD EPYC 7662 (256) @ 2.000GHz

• GPU: NVIDIA Geforce RTX 3090 Ti

• RAM: 512GB DDR4 3200MHz

On this server, we have been given access to two docker instances running Ubuntu 20.04.6 LTS.
The first instance is called Deathstar and the second one is called Drogon. For this Masterarbeit,
I have mostly relied on Drogon for the final experiments, although Deathstar has been used for
some preliminary experiments.

This server has be provided by the Department of Computer Science of Universität Passau, and
especially the Chair of Data Science of Prof. Dr. Michael Granitzer. We would like to thank them
for their support.

3.1.2 Software, languages and tools

In Computer Sciences, it doesn’t take long to realize that testing hypotheses, diving deeper
in problems and finding solutions to them is a very iterative process that requires a lot of
experimentation. As such, the development of scripts and programs has been a substantial part of
this thesis, from the very beginning to the very end. In this process, we have used a variety of tools
and programming languages, such as Rust, Python, Bash, or Nix just to name the programming
language used.

In this section, as a reference for the reader, we will describe the software architectures,
languages and tools that have been used throughout this thesis.

Throughout the project, we have come to use a range of programming languages. Initial tests
have been done using shell and bash command and simple scripts. However, as the project grew,
we quickly moved to more powerful programming languages.

Python version 3.11 has been the main language for high level data science and ML development.
This new version of python features many improvements over the previous version, and especially
in terms of performance. Better error messages, exception groups, improved support for f-strings,
support for TOML configuration files, variadic generics, improved support for asyncio, and new
modules for working with cryptography and machine learning are just some new features of this
new version of python. While relatively new, this is why we have decided to use this version of
python for the development of the ML part of the project.

Although Python is a popular and powerful language, it is not the most efficient language. As
such, we have used Rust for some parts of the project, especially when no high level library is
needed and when performances are critical to be able to parse efficiently the dataset. Rust is
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a systems programming language that runs blazingly fast, prevents segfaults, and guarantees
thread safety. It is a very powerful language, and is especially useful for low-level programming.
We have used it for the development of the algorithms that are used to extract the data from the
dataset.

3.1.2.1 Packaging and deployment

We made an extensive use of git repositories for version control, with GitHub as a main platform
for hosting the repositories. An ever-growing number of script and programs have been developed
for this thesis. As such, we have needed a way to easily deploy those programs on different
machines.

Rust comes with a handful of tools for managing packages and dependencies. Cargo is Rust’s
build system and package manager. Cargo downloads your Rust project’s dependencies, compiles
your project, makes executables, and runs the tests. It is a powerful tool that allows to easily
manage Rust projects. However, it is not the best tool for deploying programs on different
machines.

On Python’s side of things, things are a bit more complicated. For a long time, we have relied
on virtual environments using the conda package manager. However, it is heavy to use, and it
doesn’t allow to easily export an environment from one Linux distribution to the other.

An example is the library pygraphviz. This library relies on third parties system libraries, that
have different names depending on the Linux distribution:

• Ubuntu: sudo apt-get install graphviz graphviz-dev is needed before a correct install of
the Python pygraphviz library.

• Fedora: sudo dnf install graphviz graphviz-devel is needed before installing pygraphviz

Although it can be seen as a minor issue, this is just one example among dozens of libraries.
This is real problem with conda. This is why we have decided to use Nix for managing python
packages and dependencies. Nix is a purely functional package manager [43]. It allows to easily
manage packages and dependencies, and to easily deploy programs on different machines as it
guarantees reproducible builds. It is also very useful for development, as it allows to easily create
isolated environments for development. This is why we have used Nix for managing the python
packages and dependencies. Gradually, Nix has become a superset of other package managers
like pip, conda, or cargo.

Any Nix project comes with either a shell.nix or a more modern flake.nix. Those files are used
to describe the project, and to list all necessary dependencies. Since we are developing on NixOS,
the integration of Nix with the operating system is very good, and can be easily setup.

Nix is however really straightforward to install on any other distribution through the use of a
single script available online. It can be installed in as little as one command.
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3.2 OpenSSH memory dumps dataset

SmartKex has contributed to the research community by generating a comprehensive annotated
dataset of OpenSSH heap memory dumps [9]. The dataset is publicly available on Zenodo 1.

The dataset is organized into two top-level directories: Training and V alidation with an
additional Performance_Test. The first two main directories are further divided based on
the SSH scenario, such as immediate exit, port-forward, secure copy, and shared connection.
Each of these subdirectories is then categorized by the software version that generated the
memory dump. Within these, the heaps are organized based on their key lengths, providing a
multi-layered structure that aids in specific research queries.

Figure 3.1: Illustration of the Dataset Directory Structure
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Two primary file formats are used to store the data: JSON and RAW. The JSON files contain
meta-information like the encryption method, virtual memory address of the key, and the key’s
value in hexadecimal representation. The RAW files, on the other hand, contain the actual heap
dump of the OpenSSH process.

1https://zenodo.org/record/6537904
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Here is an example of content of a RAW memory dump file, displayed using vim and xxd
commands:

1 00000000: 0000 0000 0000 0000 5102 0000 0000 0000 ........Q.......
2 00000010: 0607 0707 0707 0303 0200 0006 0401 0206 ................
3 00000020: 0200 0001 0100 0107 0604 0100 0000 0203 ................
4 00000030: 0103 0101 0000 0000 0000 0000 0000 0002 ................
5 00000040: 0001 0000 0000 0000 0000 0100 0000 0001 ................
6 00000050: 8022 1a3a 3456 0000 007f 1a3a 3456 0000 .".:4V.....:4V..
7 00000060: f040 1a3a 3456 0000 9032 1a3a 3456 0000 .@.:4V...2.:4V..
8 00000070: 608b 1a3a 3456 0000 9047 1a3a 3456 0000 ‘..:4V...G.:4V..

Listing 3.1: 16 bytes per line visualization of a Hex Dump from Training/basic/V_7_8_-
P1/16/5070-1643978841-heap.raw

The original file contains the raw byte content of the heap dump of a specific version of OpenSSH.
It is a binary file, which means that it is not human-readable. However, it can be converted to a
human-readable format using the xxd command. The first column to the left represents the offset
in hexadecimal. The last column represents the actual content of the bytes, in ASCII format. The
columns in between represent the content of the bytes in hexadecimal format.

Since hexadecimal is a base-16 number system, each byte is represented by two hexadecimal
digits. The ASCII representation of the bytes is displayed on the right, and is only used for
reference, as it is not always possible to convert the bytes to ASCII. For instance, the bytes
at offset 0x10 are not printable characters, and thus cannot be converted to ASCII. Each line
represents 16 bytes, and the offset is incremented by 16 for each line.

For the purpose of this thesis, it will be more interesting to visualize the content of the heap
dump as 8 bytes lines. This can be achieved by using the xxd command with the -c option, as
shown in the following example:

The same example as before, a memory dump file, displayed using vim and xdd -c 8 commands:

1 00000000: 0000 0000 0000 0000 ........
2 00000008: 5102 0000 0000 0000 Q.......
3 00000010: 0607 0707 0707 0303 ........
4 00000018: 0200 0006 0401 0206 ........
5 00000020: 0200 0001 0100 0107 ........
6 00000028: 0604 0100 0000 0203 ........
7 00000030: 0103 0101 0000 0000 ........
8 00000038: 0000 0000 0000 0002 ........
9 00000040: 0001 0000 0000 0000 ........

10 00000048: 0000 0100 0000 0001 ........
11 00000050: 8022 1a3a 3456 0000 .".:4V..
12 00000058: 007f 1a3a 3456 0000 ...:4V..
13 00000060: f040 1a3a 3456 0000 .@.:4V..
14 00000068: 9032 1a3a 3456 0000 .2.:4V..
15 00000070: 608b 1a3a 3456 0000 ‘..:4V..
16 00000078: 9047 1a3a 3456 0000 .G.:4V..

Listing 3.2: 8 bytes per line visualization of a Hex Dump from Training/basic/V_7_8_P1/16/5070-
1643978841-heap.raw

This example shows the exact content of the preceding one.

To this RAW file is associated a JSON file, which contains its annotations.
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Here is an example of content of a JSON annotation file that comes with the previous RAW file:

1 {
2 "SSH_PID": "5070",
3 "SSH_STRUCT_ADDR": "56343a1a4800",
4 "session_state_OFFSET": "0",
5 "SESSION_STATE_ADDR": "56343a1a8d30",
6 "newkeys_OFFSET": "344",
7 "NEWKEYS_1_ADDR": "56343a1aaa40",
8 "NEWKEYS_2_ADDR": "56343a1aab40",
9 "enc_KEY_OFFSET": "0",

10 "mac_KEY_OFFSET": "48",
11 "name_ENCRYPTION_KEY_OFFSET": "0",
12 "ENCRYPTION_KEY_1_NAME_ADDR": "56343a1a9db0",
13 "ENCRYPTION_KEY_1_NAME": "aes128-gcm@openssh.com",
14 "ENCRYPTION_KEY_2_NAME_ADDR": "56343a1a3fb0",
15 "ENCRYPTION_KEY_2_NAME": "aes128-gcm@openssh.com",
16 "key_ENCRYPTION_KEY_OFFSET": "32",
17 "key_len_ENCRYPTION_KEY_OFFSET": "20",
18 "iv_ENCRYPTION_KEY_OFFSET": "40",
19 "iv_len_ENCRYPTION_KEY_OFFSET": "24",
20 "KEY_A_ADDR": "56343a1a3170",
21 "KEY_A_LEN": "12",
22 "KEY_A_REAL_LEN": "12",
23 "KEY_A": "feb5fd4ef0759b034d69b858",
24 "KEY_B_ADDR": "56343a1a33e0",
25 "KEY_B_LEN": "12",
26 "KEY_B_REAL_LEN": "12",
27 "KEY_B": "f50b988297fa19709445c4ee",
28 "KEY_C_ADDR": "56343a1aa1b0",
29 "KEY_C_LEN": "16",
30 "KEY_C_REAL_LEN": "16",
31 "KEY_C": "f5b53280e944db0fe196668d877cd4c0",
32 "KEY_D_ADDR": "56343a1a4010",
33 "KEY_D_LEN": "16",
34 "KEY_D_REAL_LEN": "16",
35 "KEY_D": "ac4f18a963d9e72c857497b7dc9d088d",
36 "KEY_E_ADDR": "56343a1a7d90",
37 "KEY_E_LEN": "0",
38 "KEY_E_REAL_LEN": "0",
39 "KEY_E": "",
40 "KEY_F_ADDR": "56343a1a2f60",
41 "KEY_F_LEN": "0",
42 "KEY_F_REAL_LEN": "0",
43 "KEY_F": "",
44 "HEAP_START": "56343a198000"
45 }

Listing 3.3: Complete JSON example, from Training/basic/V_7_8_P1/16/5070-1643978841.json

Those annotation files contain the meta-information about the heap dump, such as the encryption
method, virtual memory address of the key, and the key’s value in hexadecimal representation.
Those annotations are invaluable for the development of machine learning models used for key
prediction.

The dataset is not just limited to SSH key extraction; it also serves as a resource for identifying
essential data structures that hold sensitive information. This makes it a versatile tool for various
research applications.
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3.2.1 Assumptions

Before we dive in, let’s make some assumptions about the dataset. We will use these assumptions
to guide our exploration of the heap dump file.

• Heap dump file size: We will assume that the heap dump file size is a multiple of 8 bytes.
This is because the heap dump file is a memory dump, and memory is allocated in chunks that
are multiples of 8 bytes. This means that we can expect the heap dump file to be composed
of a sequence of 8 bytes blocks. If this assumption is not met, we will assume that padding
the last block with 0s will not change the results of our exploration.

• Chunk chaining: We will assume that all the heap dump files have been generated using
the same malloc implementation from GlibC. It means that we can expect to find the same
patterns in all the heap dump files. Especially, we expect all the heap dump files to start by a
first allocated in-use chunk. We can then follow the malloc header chaining to explore the
heap dump file allocated memory chunks [6].

• Dataset key annotation format: We will assume that the JSON annotation files have been
generated using the same program. This means that we can expect the same format for all
the JSON annotation files. This is important, as we will use the JSON annotation files to get
the key addresses for annotating memory graphs used for the embedding step. If the format
is not the same, we will assume that the JSON annotation file is corrupted, and we will skip
it.

The chunk chaining assumption is absolutely crucial for the exploration of the heap dump
file. It allows us to follow the malloc header chaining to explore the heap dump file allocated
memory chunks. This assumption is supported by the code where we can find a comment stating
that: «since chunks are adjacent to each other in memory, if you know the address of the first
chunk (lowest address) in a heap, you can iterate through all the chunks in the heap by using
the size information, but only by increasing address, although it may be difficult to detect when
you’ve hit the last chunk in the heap» [5].

In the scripts and programs that have been developed for the following thesis, we have im-
plemented a number of checks and tests to ensure that these assumptions are met. If not, the
programs will raise an error, log the problem and generally skip the data. This behavior is
implemented to ensure that the programs are robust to unexpected data, and to ensure that the
results are reliable. These assumptions and related problems will be discussed and measured at
several locations in the following sections.

3.2.2 Dataset production system information

Neither the paper „SmartKex: Machine Learning Assisted SSH Keys Extraction From The Heap
Dump“ nor the dataset itself provide information about the hardware and software used for its
generation. This is important since we will be exploring allocated raw bytes which depend on
the system and C library used. We obtained some information about the dataset generation by
contacting the authors of the paper.

As specified in a mail from Reiser, Hans, the dataset was generated on a system with the
following command output:
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1 root@debian10:~# ldd --version
2 ldd (Debian GLIBC 2.28-10) 2.28
3 Copyright (C) 2018 Free Software Foundation, Inc.
4 This is free software; see the source for copying conditions. There is NO
5 warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
6 Written by Roland McGrath and Ulrich Drepper.

Listing 3.4: Command and logs of the C-library version used for the dataset generation

1 root@debian10:~# lsb_release -a
2 No LSB modules are available.
3 Distributor ID: Debian
4 Description: Debian GNU/Linux 10 (buster)
5 Release: 10
6 Codename: buster

Listing 3.5: Command and logs of the Linux Standard Base Release used for the dataset
generation

1 root@debian10:~# uname -a
2 Linux debian10 4.19.0-16-amd64 #1 SMP Debian 4.19.181-1 (2021-03-19) x86_64

GNU/Linux

Listing 3.6: Command and logs of the OS and kernel version used for the dataset generation

He also precise that the CPU used was an Intel Xeon CPU, either a E5-2609 or a E3-1230. From
those commands, we can deduce the following crucial system related information:

• CPU architecture: x86_64

• OS version: Debian GNU/Linux 10 (buster)

• Kernel version: 4.19.0-16-amd64

• C library version: Debian GLIBC 2.28-10

3.2.3 Conventions and vocabulary

It’s important to define some conventions and vocabulary that will be used in the following sections,
since many concepts can be ambiguous depending on the context.

• memory graph: A memory graph is our particular case refers to a directed graph that
represents the memory of a heap dump file. The memory graph is the main data structure
used for the embedding step.

• block: In the following, we will refer to a block as a sequence of 8 bytes. This is because the
heap dump file is a memory dump, and memory is allocated in chunks that are multiples of 8
bytes. This means that we can expect the heap dump file to be composed of a sequence of 8
bytes blocks.

• chunk: A chunk is a sequence of blocks bytes. This concepts directly comes from the malloc

implementation. At its core, a chunk has a user data body composed of blocks and a malloc
header block. A chunk can be in-use or free.
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3.2.4 Estimating the dataset balancing for key prediction

First, let’s quickly estimate what the dataset is composed about. This will later be used to estimate
the balancing of data for our key prediction goal. Some quick Linux commands can be used to get
a general overview of the dataset.

A first command can quickly give us an idea of the number of files in the dataset:

1 find /path/to/dataset -type f | wc -l

Listing 3.7: Count all dataset files

Another command can be used to get the total size of the dataset:

1 du -sb /path/to/dataset

Listing 3.8: Get the total size of the dataset

The first command indicates that the dataset contains 208749 files, which represents, according
to second one, a total of 18203592048 bytes, or around 18 Gigabytes.

We could just divide the number of files by the size of the dataset to get an average size of the
files. However, this would not be accurate, as we are only interested in the size of the RAW files.
Since JSON files are much smaller than RAW files, they would skew the average size of the files.
Since we are only considering RAW files, we will use improved commands in order to determine
the size of the RAW file only.

The following command can be used to get a better understanding of the dataset, concerning
the number of RAW files and their size:

1 find /path/to/dataset -type f -name "*.RAW" | wc -l

Listing 3.9: Find the number of RAW files in the dataset

And the next one can be used to get the number of bytes of RAW files in the dataset:

1 find /path/to/dataset -type f -name "*.raw" -exec du -b {} + \
2 | awk ’{s+=$1} END {print s}’

Listing 3.10: Find the number of bytes of RAW files in the dataset

Where:

• find phdtrack_data/ -type f -name "*.raw" finds all the files in the dataset that have the
extension .raw.

• -exec du -b {} + | awk ’{s+=$1} END {print s}’ executes the command du -b on each file
found by the previous command, and sums the size of each file.

These commands indicate that the dataset contains 103595 RAW files, which represents a total
of 18067001344 bytes, or around 18 Gigabytes. This shows that the vast majority of the data is
contained in RAW files, with JSON files representing less than a percent of the dataset in terms of
byte size. As such, the average size for every RAW file is around 170 Kilobytes.

Now, considering that a given heap dump file is expecting to have only 6 keys (see 2.1.1.2), with
keys maximal possible size being of 64 bytes, we can estimate that we have at maximum 39780480
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or around 40 Megabytes of positively labeled samples. This, considering the total useful size of
around 18 Gigabytes, means that our dataset is very imbalanced, with an expected upper-bounded
ratio of 0.0022% of positively labeled samples or around 2 : 1000.

Considering that, a frontal ML binary classification approach will not work. This is why the
present report will discuss feature engineering and graph-based memory representation. The idea
is to embed more information to our keys so as to be able to fight effectively the imbalanceness of
the raw data.

3.2.5 Dataset validation

The dataset is merely a collection of heap dump RAW files for different use cases and versions
of OpenSSH. Each heap dump file goes along a JSON annotation file that has been generated by
the creators of the dataset to provide additional information about the heap dump, and especially
encryption keys.

However, it is worth noting that the dataset is not perfect. The use of the dataset for machine
learning has revealed some issues. For instance, some JSON annotation files are not valid JSON
files, and cannot be loaded as such. Some JSON annotation files are also not complete, with some
crucial information missing. This is a problem, as we will use the JSON annotation files to get the
key addresses for annotating memory graphs used for the embedding step. If the format is not the
same, we will assume that the JSON annotation file is corrupted, and we will skip it.

This is probably due to the fact that the annotations were generated automatically. For instance,
in Training/basic/V_7_8_P1/16/, literally the first file of the dataset contains an incomplete annota-
tion file, as some keys are missing. This is a limitation of the dataset that should be kept in mind
when using it for research purposes.

Here is an example of content of a JSON annotation file with missing keys, and with missing
annotations (like address or length) for the keys that are present:

1 {
2 "ENCRYPTION_KEY_NAME": "aes128-ctr",
3 "ENCRYPTION_KEY_LENGTH": "16",
4 "KEY_C": "689e549a80ce4be95d8b742e36a229bf",
5 "KEY_D": "76788e66a56d2b61eec294df37422fcb",
6 "HEAP_START": "5589d41e0000"
7 }

Listing 3.11: Missing keys in JSON annotation file Training/basic/V_6_0_P1/16/24375-
1644243522.json

3.2.5.1 Automatic annotation validation

So as to determine really how much of the dataset can be used really for machine learned, we
have developed a script that checks the validity of those annotations. This script called check_-
annotations.py, is used to verify the quality, completeness, consistency and coherence of the
annotations.

Files are regrouped under the following categories:
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• Correct and Complete Files: Files that have no missing keys, and that have all the keys
with correct values.

• Broken Files: Files that are not valid JSON files, and cannot be loaded as such.

• Incorrect Files: Files that have contradictory information in their annotation file.

• Missing key Files: Files that have missing keys in their annotation file. A typical example
is a JSON file with "KEY_E": "". This means that the key E is missing, and that the key E
address is not present in the annotation file, which is a problem for the machine learning
since it means that we cannot label correctly the key E.

• Incomplete key Files: Files that have incomplete keys in their annotation file. A typical
example is a JSON file with "KEY_E": "689e549a80ce4be95d8b742e36a229bf". This means that
the key E is present, but that the key E address is not present in the annotation file, which is
a problem for the machine learning since it means that we cannot label correctly the key E.

The script is used to validate each JSON file using the following process:

Algorithm 1 Json Annotation Validation
1: Procedure ValidateJson(json_data)
2: Initialize errors = Dictionnary{} ▷ Serve as collection for counted errors
3: Initialize mandatory_json_keys = [’HEAP_START’, ’SSH_STRUCT_ADDR’, ’SESSION_-

STATE_ADDR’]
4: Initialize key_names = {}
5: Initialize incorrect_keys, missing_keys, incomplete_keys = 0
6: for mandatory_json_key in mandatory_json_keys do ▷ Check if some expected json keys are

missing
7: if mandatory_json_key not in json_data or not correct hex address then
8: errors[mandatory_json_key] = False
9: else

10: errors[mandatory_json_key] = True
11: end if
12: end for
13: for json_key in json_data.keys() do ▷ Get all the keys names, like A, B, C, D, E, F
14: if json_key.startswith("KEY_") then
15: key_name = GetLetterOfSSHKeyFromJSONKeyName(json_key)
16: key_names.add(key_name)
17: end if
18: end for
19: for key_letter in key_names do
20: base_key = "KEY_" + key_letter
21: PerformSSHKeyAnnotationValidationAndCompleteness(base_key, json_data) that

counts incorrect_keys, missing_keys, incomplete_keys
22: end for
23: Store counters in errors
24: return errors
25: end Procedure

The counting error algorithm done on each SSH key annotation by is described in the following:
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Algorithm 2 SSH Key Annotation Validation
1: Procedure PerformSSHKeyAnnotationValidationAndCompleteness(base_key, json_data)
2: Initialize incorrect_keys, missing_keys, incomplete_keys = 0
3: if length(json_data[base_key]) == 0 then
4: missing_keys += 1 ▷ missing key
5: else
6: is_key_len_present = exists(json_data[base_key_LEN])
7: is_key_addr_present = exists(json_data[base_key_ADDR])
8: is_key_real_len_present = exists(json_data[base_key_REAL_LEN])
9: if not is_key_len_present or not is_key_addr_present or not is_key_real_len_present then

10: incomplete_keys += 1 ▷ Incomplete keys
11: Generate and store error message about missing annotations
12: else if not is_hex_address_correct(json_data[base_key_ADDR]) then
13: incorrect_keys += 1 ▷ Incorrect address
14: Generate and store error message about incorrect address
15: else if json_data[base_key_LEN] is not a number or is negative then
16: incorrect_keys += 1 ▷ Incorrect length
17: Generate and store error message about incorrect length
18: else
19: Validate key value length based on annotation length
20: if json_data[base_key_LEN] == 0 then
21: missing_keys += 1 ▷ missing key
22: else if length(json_data[base_key]) != json_data[base_key_LEN] * 2 then
23: incorrect_keys += 1 ▷ contradictory length
24: Generate and store error message about incorrect key value length
25: end if
26: end if
27: end if
28: return incorrect_keys, missing_keys, incomplete_keys
29: end Procedure

Note that I have simplified this algorithm. The is_hex_address_correct function requires
other manipulations to be called, since it checks that the given value is in the range of the
heap dump addresses. To do so, it requires handling potentially missing HEAP_START annotation,
hexadecimal conversion with correct endianness, and other manipulations like determining the
size of the heap dump. The full code is available in the check_annotations.py file.

The script runs in a few seconds on all the 103595 JSON annotation files, and give the following
results:

• Number of Correct and Complete Files: 26196 files

• Number of Broken Files: 6 files are broken. A direct look at those files shows that they
are empty files.

• Number of Incorrect Files: 0 files

• Number of Missing key Files: 58643 files have missing keys.

• Number of Incomplete key Files: 18750 files have incomplete keys.

We can also directly look at the keys in general:
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• Number of SSH keys: 546534 keys

• Number of missing (empty) SSH keys: 157244 keys

• Number of incompletely annotated SSH keys: 37500 keys

• Number of incorrectly annotated SSH keys: 0 keys

3.2.6 Dataset cleaning

We need to ensure that the subset of the original dataset that will be used for machine learning is
correct and consistent. This means that we need to remove the broken files, and the files that
have missing or incomplete keys.

In the new cleaned subset of the dataset, we kept only the files identified as correct and
complete. This way, we are left with 26196 RAW files.

From this, we need to remove the raw files that do not respect the Chunk chaining assumption
3.2.1. This cleaning process involves the chunk chaining algorithm that will be introduced later.
During this process, out of the 26196 RAW files, 5 of them have been detected to have 0 sized
chunks. Those files have been removed from the cleaned dataset. This leaves us with 26191 RAW
files.

1 $ find ~/code/phdtrack/phdtrack_data_clean/ -type f -name "*-heap.raw" | wc -l
2 26191
3 $ find ~/code/phdtrack/phdtrack_data_clean/ -type f -name "*.json" | wc -l
4 26191

Listing 3.12: Command and logs of counting the number of RAW files in the cleaned dataset.

In total, this means that only 25.3% of the RAW files with their JSON files are actually usable
(correct, complete, with valid chunk chaining), and can be used for machine learning. This is
because we don’t have access to the packets that have been used to generate the dataset, and
thus we cannot regenerate the annotations. Since the machine learning relies entirely on those
annotations, we cannot afford to use partially annotated files.

This is a limitation of the dataset that should be kept in mind when using it for research purposes,
and especially for supervised machine learning.

3.2.7 Exploring patterns in RAW heap dump files

Before diving into programming, we need to gain a better understanding of how to retrieve useful
information from heap dump raw file. For that matter, we will continue to experiment with simple
commands in RAW heap dump files. Note that in the following, number bases are indicated, since
endianness and conversions can get confusing.

Let’s start by looking back at the RAW file we already presented in 3.2.

3.2.7.1 Detecting potential pointers

The paper „SmartKex: Machine Learning Assisted SSH Keys Extraction From The Heap Dump“
indicates that the keys are 8-bytes aligned. In fact, this is the case for the whole heap dump file.
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This is why we have chosen to split the study of heap dump files in chunks or blocks of 8 bytes.
The term block in code is always referring to this, unless specified otherwise. The precision is
important, since these blocks should not be confused with memory blocks like the ones that are
allocated by the malloc() function in C.

Let’s re-open the heap dump file in vim, and let’s use the following vim commands to explore
the example heap dump file:

• :%xxd -c 8 5070-1643978841-heap.raw!: This vim command converts the opened file to a
hex dump. The -c 8 option indicates that we want to display 8 bytes per line.

• :set hlsearch: This vim command highlights the search results.

• :%s/\s\+//g: This vim command removes all the whitespaces in the file.

• :%s/\v([0-9a-f]{8}:)/\1\ This vim command adds a whitespace after each 8 byte
addresses.

• :%s/\v(([0-9a-f]{8}: )([0-9a-f]{16}))/\1\ This vim command adds a whitespace af-
ter each heap dump byte line.

To find potential pointers, we can use the following command in vim:

1 :/[0-9a-f]\{12}0\{4}

Listing 3.13: Vim command to find potential pointers

This is a search that looks for 12 hexadecimal digits followed by 4 zeros. This is because, the
maximum possible addresses in the heap dump file have a size of around 12 hexadecimal digits,
and because pointer addresses are in little-endian format, meaning that the last 4 bytes of the
address are also the Most Significant Bytes (MSB) of the address.

The result is illustrated below 3.2.7.1:
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Figure 3.2: Binary RAW heap dump file loaded using vim and xxd, from /Training/Training/scp/V_-
7_8_P1/16/1010-1644391327-heap.raw, with highlight on rows with 12 hexadecimal digits followed
by 4 zeros.

We have information about the starting address of the heap using "HEAP_START": "56343a198000".
Considering that the example heap dump file contains 135169 bytes, this means that for this given
heap dump file, the pointer addresses range from value 9478231303782410 and 9478231317299310.
Note that the little-endian hexadecimal representation of the heap end address is 0x01901b3a3456

which is 12 character long, or 6 bytes long.

Note that conversions here can get confusing, since potential pointer strings extracted from the
heap dump file are given in little-endian hexadecimal format, but the heap start address from the
JSON annotation file is given in big-endian hexadecimal format.

55



That way, we can refine the detection of potential pointers by only considering the bytes that
are in the range of the heap. Potential pointers are highlighted with "«<" in the following hex
dump:

1 # conversion from hex to decimal
2 def hex_str_to_int(hex_str: str) -> int:
3 """
4 Convert a normal (big-endian) hex string to an int.
5 WARNING: HEAP_START in JSON is big-endian.
6 """
7 bytes_from_str = bytes.fromhex(hex_str)
8 return int.from_bytes(
9 bytes_from_str, byteorder=’big’, signed=False

10 )
11

12 def pointer_str_to_int(hex_str: str) -> int:
13 """
14 Convert a pointer hex string to an int.
15 WARNING: Pointer hex strings are little-endian.
16 """
17 bytes_from_str = bytes.fromhex(hex_str)
18 return int.from_bytes(
19 bytes_from_str, byteorder=’little’, signed=False
20 )

Listing 3.14: Conversions function from hex strings to decimal int values.

Using the functions above, we can check which potential pointers are indeed within the heap
dump range.

That way, we can refine the detection of potential pointers. In the following, pointers are
highlighted with <<< in the following hex dump:

1 00000000: 0000000000000000 ........
2 00000008: 5102000000000000 Q.......
3 00000010: 0607070707070303 ........
4 00000018: 0200000604010206 ........
5 00000020: 0200000101000107 ........
6 00000028: 0604010000000203 ........
7 00000030: 0103010100000000 ........
8 00000038: 0000000000000002 ........
9 00000040: 0001000000000000 ........

10 00000048: 0000010000000001 ........
11 00000050: 80221a3a34560000 .".:4V.. <<<
12 00000058: 007f1a3a34560000 ...:4V..
13 00000060: f0401a3a34560000 .@.:4V.. <<<
14 00000068: 90321a3a34560000 .2.:4V.. <<<
15 00000070: 608b1a3a34560000 ‘..:4V.. <<<
16 00000078: 90471a3a34560000 .G.:4V.. <<<

Listing 3.15: 8 bytes per line visualization of a Hex Dump from Training/basic/V_7_8_-
P1/16/5070-1643978841-heap.raw
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One last check we can do, is verify if the potential pointers are 8-bytes aligned. This can be
done by checking if the last 3 bits of the potential address are 0, or using a modulo 8 operation.
A simple python function can be used to check that:

1 def is_pointer_aligned(pointer: int) -> bool:
2 """
3 Check if a pointer is 8-bytes aligned.
4 """
5 return pointer % 8 == 0

Listing 3.16: Python function to check if a potential pointer is 8-bytes aligned

Using this function on the potential pointers we have found so far, we can see that all of them
are indeed 8-bytes aligned. This is a good sign for pointer detection, as we now have a range of
tests that can be used to detect potential pointers from other potentially random values.

Here is the pseudocode for the pointer detection algorithm. This algorithm is presented for a
full heap dump file:

Algorithm 3 Pointer Detection Algorithm
1: Procedure PointerDetection(heapDumpFile, HEAP_START)
2: heapStart← hex_str_to_int(HEAP _START )
3: heapEnd← heapStart + FileSize(heapDumpFile)
4: position← 0
5: potentialPointers← []
6: while position < FileSize(heapDumpFile) do
7: block← Read8Bytes(heapDumpFile, position)
8: if block ̸= 0 then
9: pointer← pointer_str_to_int(block)

10: if heapStart ≤ pointer ≤ heapEnd then
11: if is_pointer_aligned(pointer) then
12: Append(pointer,potentialPointers)
13: end if
14: end if
15: end if
16: position← position + 8
17: end while
18: return potentialPointers
19: end Procedure

This pseudocode outlines the steps for detecting potential pointers in the heap dump file. It
starts by reading the heap dump file 8 bytes at a time. For each 8-byte block, it checks if the
block is non-zero and within the heap range. If so, it checks if the potential pointer is 8-bytes
aligned using the is_pointer_aligned function we described before. If all conditions are met,
the potential pointer is added to the list of potential pointers. The algorithm returns this list at the
end.

3.2.7.2 Detecting potential keys

Encryption key prediction is the main focus of the present thesis. As such, we will now focus on
how to detect potential keys in heap dump files. The paper „SmartKex: Machine Learning Assisted
SSH Keys Extraction From The Heap Dump“ introduces 2 algorithms for key detection. The first
one is a brute force approach that consists in trying all the possible keys in the heap dump file.
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The second one is a more sophisticated approach that uses a set of rules to detect potential keys.

The first brute-force algorithm is given by:

Algorithm 4 SSH keys brute-force algorithm from „SmartKex: Machine Learning Assisted SSH
Keys Extraction From The Heap Dump“ [9]
1: Procedure FindIVAndKey(netPacket,heapDump)
2: ivLen← 16 ▷ Based on the encryption method
3: keyLen← 24 ▷ Based on the encryption method
4: i← sizeof(cleanHeapDump)
5: r ← 0

6: while r < i do
7: pIV← heapDump[r : r + ivLen]
8: x← 0

9: while x < i do
10: pKey← heapDump[x : x+ keyLen]
11: f ← decrypt(netPacket,pIV,pKey)
12: if f is TRUE then
13: return pIV,pKey
14: end if
15: x← x+ 8 ▷ The IV is 8-bytes aligned
16: end while
17: r ← x+ 8 ▷ The key is 8-bytes aligned
18: end while
19: end Procedure

This algorithm 3.2.7.2 outlines the brute-force approach for finding the Initialization Vector (IV)
and the key. Initially, the lengths ivLen and keyLen are set based on the encryption method used
for the heap. The algorithm then takes the first ivLen bytes from the heap dump to serve as the
potential IV (pIV ). Subsequently, keyLen bytes are extracted from the heap dump, starting from
the first byte, to act as the potential key (pKey). The algorithm iterates through this potential key
until it reaches the end of the heap dump. If decryption of the network packet is unsuccessful, the
process is repeated by reading the next potential IV and the subsequent potential key [9].

This algorithm is fairly straightforward, and can be implemented in a few lines of code. However,
it is also very inefficient, as it tries all the possible keys in the heap dump file. It also needs some
encrypted network packets to be able to test the keys, which are not included in the dataset. As
such, we will not implement this algorithm.

This is why the authors of the paper have also developed a more sophisticated algorithm that
uses a set of rules to detect potential keys.

No pseudocode is given for the second algorithm, but the paper „SmartKex: Machine Learning
Assisted SSH Keys Extraction From The Heap Dump“ gives a description of the algorithm. It relies
on the high-entropy assumption of encryption keys. The algorithm is inspired by image processing
techniques, and can be described as follows:

This Preprocessing Algorithm serves as a crucial step in adapting the heap data for machine
learning models. The algorithm begins by reshaping the raw heap data into an N × 8 matrix X,
since keys are 8-bytes aligned [9]. Here, N × 8 is the size of the original heap data in bytes. It then
calculates the discrete differences of the bytes in both vertical and horizontal directions, storing
the results in matrix Y . The algorithm employs a logical AND operation on these differences to
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Algorithm 5 Image-processing inspired Preprocessing Algorithm, as described in „SmartKex:
Machine Learning Assisted SSH Keys Extraction From The Heap Dump“ [9]
1: Procedure Preprocessing(heapData)
2: Reshape heapData into N × 8 matrix X
3: for i = 0 to N − 1 do
4: for j = 0 to 7 do
5: Y [i][j] = |X[i][j]−X[i][j + 1]|&|X[i][j]−X[i+ 1][j]|
6: Z[i] = count(Y [i][k] == 0) ≥ 4
7: if i < N − 1 then
8: R[i] = Z[i]&Z[i+ 1]
9: end if

10: end for
11: end for
12: Extract 128-byte slices from R for training
13: end Procedure

identify high-entropy regions, which are likely candidates for encryption keys. Each 8-byte row
in Y is examined for randomness, and if at least half of its bytes differ from adjacent bytes, it is
marked as a potential part of an encryption key. The algorithm then filters out isolated rows that
are unlikely to be part of an encryption key, resulting in an array R. Finally, 128-byte slices are
extracted from R for training the machine learning model. This preprocessing step not only adapts
the data for machine learning but also narrows down the search space for potential encryption
keys, thereby enhancing the efficiency of the subsequent steps.

However, this algorithm is not as efficient as it could be. It relies on using a kind of sliding
window, which is not easily parallelizable. Also, the entropy-inspired computation is not as
straightforward as it could be. That why we propose a new algorithm that is more efficient and
more easily parallelizable.

In order to perform some ML techniques, and because the keys we are looking for can have a
range of possible lengths (16, 24, 32, or 64 bytes), we shift the focus from detecting the full key,
to just be able to predict the address of the key. That way, we can deal with keys of different sizes,
and we can also use the same algorithm to detect the IV. This is why we will focus on detecting
potential keys addresses, and not the full keys.

We thus introduce a new algorithm for narrowing the search space for potential keys. This
algorithm is inspired by the paper „SmartKex: Machine Learning Assisted SSH Keys Extraction
From The Heap Dump“, but is more efficient and more easily parallelizable, as it focuses on
producing pairs of blocks of 8 bytes with high entropy. It uses directly the Shannon entropy
formula, with each entropy computation being independent of the others.

Algorithm 6 Entropy Based Detection of Potential Key blocks
1: Procedure EntropyDetection(heapData)
2: Pad heapData with 0s to be 8-bytes aligned
3: Reshape heapData into N × 8 matrix X
4: for i = 0 to N − 1, do
5: entropy[i] = ShannonEntropy(X[i]) ▷ Independents, compute in parallel.
6: end for
7: Add entropy 2 by 2 pairs into entropy_pairs ▷ Keep block indexes in resulting tuples.
8: Sort entropy_pairs by entropy as sorted_pairs
9: return SortedPairs(sorted_pairs)

10: end Procedure
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The Entropy Based Detection of Potential Key blocks algorithm takes a raw heap dump, rep-
resented by the variable heapData, as input. The data is first padded with zeros to align it to
8-byte blocks and then reshaped into an N × 8 matrix X. The Shannon entropy is computed for
each 8-byte block in parallel, resulting in an array entropy. Subsequently, the entropy values of
adjacent blocks are summed to form pairs, which are stored in entropy_pairs along with their
block indexes. These pairs are then sorted by their entropy sums to produce sorted_pairs. The
idea of using pairs of blocks instead of a single block or more than two blocks is related to the
minimum key size, which is 16 bytes. This means that we need at least 2 blocks to be able to
detect a potential key. The algorithm returns sorted pairs, so that we can easily extract the ones
with the highest entropy sums. Given the index of a block, its actual memory address can be
recomputed using the HEAP_START address available in annotations.

Using this algorithm, let’s continue to explore our example heap dump file from 3.2. We will use
the following python function to compute the Shannon entropy of a given block of 8 bytes:

1 def get_entropy(data: bytes):
2 """
3 Computes the entropy of a byte array, using Shannon’s formula.
4 """
5

6 if len(data) == 0:
7 return 0.0
8

9 # Count the occurrences of each byte value
10 _, counts = np.unique(data, return_counts=True)
11

12 # Calculate the probabilities
13 prob = counts / len(data)
14

15 # Calculate the entropy using Shannon’s formula
16 entropy = -np.sum(prob * np.log2(prob))
17

18 return entropy

Listing 3.17: Python function to compute the Shannon entropy of a given block of 8 bytes

This function used NumPy array function for efficient computation. We can now use this function
to compute the entropy of each block of 8 bytes in the heap dump file. We can then sort the pair of
blocks by their entropy, and keep the ones with the highest entropy.

When applied to the file Training/basic/V_7_8_P1/16/5070-1643978841-heap.raw, the algorithm
produced 16896 entropy pairs, with 631 pairs having the maximum entropy sum. Another test
using the index to address conversion and the JSON annotation file also indicate that all the 6 key
addresses are within the 631 pairs with the highest entropy sum.

This allows to reduce significantly the search space for potential keys, to already less that 4%
of the original heap dump file, which is significantly better that the 30% reduction obtained by
the preprocessing algorithm described in the paper SmartKex [9], but less that the 2% reduction
obtained by the ML-based processing algorithm described in the paper [9]. However, the same
paper indicated that it was tested only for Key A and Key C, whereas this algorithm is tested for
all the keys. Keep in mind that this is just an example for a single random file in the dataset, as
a way to introduce the subject. In-depth experiments will be done in the dedicated chapter on
Machine Learning.

Indeed, it is important to mention that we can rely on the JSON annotation files for providing
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labelling for key address prediction. Using this, we do not need to decrypt the network packets to
be able to train our ML models. This is a huge advantage, and is also required since we don’t have
the encrypted network packets in the dataset. Since we don’t have those, and since the keys are
already given, that is why we will focus on key address prediction, and not on key prediction.

3.2.8 Data structure exploration

Since the dataset contain whole heap dump file, we can also try to detect allocated chunks in
those heap dumps. This can be done by looking for patterns in the heap dump file, in a similar
fashion as we have done for potential pointers. However, for data structure, we can rely on our
knowledge of the C library used to know exactly what to look for.

Since OpenSSH is written in C, we can expect to find some C memory chunks in the heap dump
files. C uses the malloc function to allocate memory. This function is used to allocate memory for
a given data structure. It takes as input the size of the data structure to allocate, and returns a
pointer to the allocated memory. We know that the dataset has been produced using GLIBC 2.28
3.2.2. Looking directly at the code for malloc in GLIBC 2.28, we can read in the comments that
«Minimum overhead per allocated chunk: 4 or 8 bytes. Each malloc chunk has a hidden word of
overhead holding size and status information» [5]. This is what we refer to as the malloc header.
This means that we can expect to find some 8-bytes aligned blocks in the heap dump file, that are
not pointers, but that are the result of a malloc call. Detecting and using those malloc headers is
how we will try to detect memory chunks in heap dump files.

In Linux on a x86_64 architecture, the malloc function typically uses a block (chunk) header to
store metadata about each allocated block. This header is placed immediately before the block of
memory returned to the user. The exact layout can vary depending on the implementation of the C
library (e.g., glibc, musl), but generally, it contains the following:

• Size of the Block: The size of the allocated block, usually in bytes. This size often includes
the size of the header itself and may be aligned to a multiple of 8 or 16 bytes.

• Flags: Various flags that indicate the status of the block, such as whether it is free or
allocated, or whether the previous block is free or allocated. These flags are often stored in
the least significant bits of the size field, taking advantage of the fact that the size is usually
aligned, leaving the least significant bits zeroed.

3.2.8.1 How malloc handles Heap Allocation

The malloc function in GLIBC 2.28 uses a boundary tag method to manage chunks of memory.
Each chunk contains metadata that helps in the allocation and deallocation of memory [5] [6].
Below are the key components of a chunk:

A chunk is a contiguous section of memory, in our case composed of several blocks of 8 bytes,
that is handled by malloc. It contains the following components [6] [7]:

1. Size of Previous Chunk: This field exists only if the previous chunk is unallocated and its P
(PREV_INUSE) bit is clear. It helps in finding the front of the previous chunk.

2. Size of Chunk: This field contains the size of the chunk in bytes along with three flags: A
(NON_MAIN_ARENA), M (IS_MMAPPED), and P (PREV_INUSE). These flags are in the last 3
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LSBs of the size field. This precise block is considered in the following report as the malloc
header block. Note that the size of the chunk include the size of the malloc header, chunk
user data and footer blocks.

3. User Data: This is the actual memory space that is returned to the user.

4. Footer: This is the same as the size of the chunk but is used for application data. Depending
on how the chunk is represented, this is exactly the same as the Size of Chunk field. This is
a more intuitive representation and is the one chosen in the schematic representation below.

5. Flags:

• A (NON_MAIN_ARENA): Indicates if the chunk is in the main arena or a thread-specific
arena.

• M (IS_MMAPPED): Indicates if the chunk is allocated via mmap.

• P (PREV_INUSE): Indicates if the previous chunk is in use. If false, it means the previous
chunk is free.

The chunk allocation process involves the following concepts:

1. Initialization: The very first chunk allocated always has the P bit set to prevent access to
non-existent memory.

2. Free Chunks: Free chunks are stored in circular doubly-linked lists. They contain forward
and backward pointers to the next and previous chunks in the list.

3. Mmapped Chunks: These chunks have the M bit set in their size fields and are allocated
one-by-one.

4. Fastbins: These are treated as allocated chunks and are consolidated only in bulk. These
bins are used to speed up the allocation process.

5. Top Chunk: This is a special chunk that always exists. If it becomes less than MINSIZE bytes
long, it is replenished.

As explained directly in the code comments, an allocated chunk of 8 byte blocks can be described
by the diagram below [5]. Note that is representation is personal to better suit the needs of
our forensic analysis. The slight difference resides in the fact that the footer with the size of
the considered chunk is represented as being part of the next chunk and not the current chunk.
The footer of the previous chunk is actually the mchunkptr address. As stated in the GlicC wiki:
«within the malloc library, a "chunk pointer" or mchunkptr does not point to the beginning of the
chunk, but to the last word in the previous chunk - i.e. the first field in mchunkptr is not valid
unless you know the previous chunk is free» [6]. Due to consideration of free/allocated chunks,
it’s actually easier to just consider the footer as being part of the next chunk, and not the current
chunk. This is why the diagram below is slightly different from the one in the GLIBC wiki. This is
just a difference in schematic representation, and does not change the actual data structure.
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-last-footer-

-malloc-header-

-chunk-user-data-

-chunk-footer-

-next-malloc-header-

in-use chunk

Size of previous chunk. If unallocated, next P=0

Malloc header block: Size of chunk, in bytes |A|M|P

User data starts here...

(size of chunk, but used for application data)

Size of next chunk, in bytes |A|0|1

Figure 3.3: Diagram of an allocated chunk in GLIBC 2.28 [5].

The malloc function in GLIBC 2.28 uses a boundary tag method to manage chunks of memory.
Each chunk contains metadata that helps in the allocation and deallocation of memory [5] [6]. The
library stores available free chunks in circular doubly-linked lists called «bins». This allows to
quickly find a free chunk of memory of a given size. The problem is that we don’t have access to
those bins in the heap dump file. So to detect if a given chunk is in-use or free, we can rely on
several methods. The first one is to look at the P bit of the malloc header. If it is set to 1, it means
that the chunk is in use. If it is set to 0, it means that the chunk is free.

I also remarked that sometimes, the given heap dump file is cropped, and the last block is
only composed of zeros and not complete. This is for instance the case with the last chunk of
Training/basic/V_7_1_P1/24/17016-1643962152-heap.raw.

1 WARN: Chunk [94022266975200] Chunk(block_index=10876, size=48176, flags=[A=False, M=False
, P=True]) is out of bounds. Last block index: 16895 Iteration index: 16896

2 WARN: Chunk [94022266975200] Chunk(block_index=10876, size=48176, flags=[A=False, M=False
, P=True]) is out of bounds. Last block index: 16895 Iteration index: 16897

3 Chunk(block_index=10876, size=48176) is only composed of zeros.

Listing 3.18: Logs from chunk exploration script, related to the last chunk of the file
Training/basic/V_7_1_P1/24/17016-1643962152-heap.raw.

A free chunk contains the pointers of the next and previous free chunks in the heap, for its
given bin. A representation of a free chunk, based directly on the code documentation [5], is given
below:
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-last-footer-

-malloc-header-

-chunk-footer-

-next-malloc-header-

-forward-bin-pointer-

-backward-bin-pointer-

free chunk

Size of previous chunk. If unallocated, next P=0

Malloc header block: Size of chunk, in bytes |A|0|P

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

(size of chunk, but used for application data)

Size of next chunk, in bytes |A|0|0

Figure 3.4: Diagram of a free chunk in GLIBC 2.28 [5].

3.2.8.2 Chunk chaining

The chunk chaining algorithm relies on the chunk chaining assumption 3.2.1. This assumption
states that the allocator allocates chunks after chunks, and that the chunks are contiguous in
memory. This means that we can expect to find the malloc header of the next chunk at the address
current_malloc_header_chunk_address+current_chunk_size+8, where 8 is the size of the malloc
header block, or current_chunk_user_data_address + current_chunk_size. It is the case for both
free and allocated chunks. This is why we can use this assumption to detect chunks in the heap
dump file.

This necessitates to understand malloc header blocks, and how they are represented in the heap
dump file. In the specific case of GLIBC 2.28, the malloc header is defined as follows:

1 #define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA)

Listing 3.19: Malloc header definition in GLIBC 2.28

Since the malloc header respects the endianness of the system, we can expect to find the
malloc header in little-endian format in the heap dump file. Using vim on Training/basic/V_7_-
8_P1/16/5070-1643978841-heap.raw, we can use the following command to find some potential
malloc headers:

1 :/[0-9a-f]\{4}0\{12}

Listing 3.20: Vim command to find potential malloc headers
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This gives something like the following:

Figure 3.5: Attempt at malloc header detection in Training/basic/V_7_8_P1/16/5070-1643978841-
heap.raw, at heap start.

Indeed, after a first zero block of 8 bytes (potential previous chunk footer), we expect a
first data structure to be allocated at the start of the heap. Here this data structure is of size
510200000000000016LE (little-endian hex format) or 59310 bytes. The fact that it is an odd number is
due to the LSB being set to 1, to indicate that the preceding chunk is allocated (P flag). This means
that the real size of the structure is actually 59310 − 110 = 59210. This value is 8-byte aligned.

Since we know that the allocator allocates chunks after chunks, we can expect the next chunk to
be allocated at the address 510200000000000016LE + 59210 + 810 = 5882193a3456000016LE =. Note
that we need to add 8 to the size to account for the malloc header block.

In vim, since the address start at 0, we have to look at 59210 + 810 = 25816. Let’s have a look
there:

Figure 3.6: Attempt at malloc header detection in Training/basic/V_7_8_P1/16/5070-1643978841-
heap.raw, at index 59210 = 25016.

There, we can see a zero block, followed by what we can expect to be another malloc header at
address 25816. By doing the same process, we can thus propose an algorithm to detect the malloc
headers, and thus the structures in the heap dump file.

First, here is a simple algorithm to extract all the necessary information from a malloc header
block:
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Algorithm 7 Malloc Header Parsing Algorithm
1: Procedure MallocHeaderParsing(block)

Require: block is a block of 8 bytes
Ensure: MallocHeader object
Ensure: Flags object
2: Note: In this algorithm, & represents bitwise AND, and ∼ represents bitwise negation.
3: size_and_flags← ConvertBytesToInteger(block, ’little-endian’)
4: size← size_and_flags & (∼ 0x07) ▷ Clear the last 3 bits to get the size
5: Flags.a← bool(size_and_flags & 0x04)

6: Flags.m← bool(size_and_flags & 0x02)

7: Flags.p← bool(size_and_flags & 0x01)

8: return MallocHeader{size, F lags}
9: end Procedure

We can also isolate the size parsing algorithm into a handy function:

Algorithm 8 Malloc Header block to size conversion Algorithm
1: Procedure ConvertToSize(block)

Require: block is a block of 8 bytes
2: Note: In this algorithm, & represents bitwise AND, and ∼ represents bitwise negation.
3: size_and_flags← ConvertBytesToInteger(block, ’little-endian’)
4: size← size_and_flags & (∼ 0x07) ▷ Clear the last 3 bits to get the size
5: return size

6: end Procedure

Based on those algorithms, and in a similar fashion as what we have done manually by exploring
the heap dump file with vim, we can propose the following algorithm to detect the malloc headers
in a heap dump file:

Algorithm 9 Malloc Header Chaining Algorithm
1: Procedure MallocHeaderDetection(heapDumpFile)
2: Note: ConvertToSize is equivalent to MallocHeaderParsing(block).size ▷ See 3.2.8.2
3: Initialize malloc_header_list to empty list
4: position← 0

5: while position < FileSize(heapDumpFile) do
6: block ← Read8Bytes(heapDumpFile, position)

7: if block ̸= 0 then
8: size← ConvertToSize(block) ▷ Be careful with flags
9: Assert size! = 0

10: Assert size mod 8 = 0 ▷ Check if the size is 8-bytes aligned
11: position← position+ size ▷ Leap over data structure.
12: else
13: position← position+ 8

14: end if
15: end while
16: return malloc_header_list
17: end Procedure

The idea behind the malloc header detection algorithm is simple. We start at the beginning of
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the heap dump file, and we look for the first non-zero block. Then we assume that the next block
is a malloc header. We convert it to a size, and then leap over the user data and the footer up to
the next chunk malloc header block index. The process is repeated until reaching the end of the
heap dump file.

Note that in case of a problem, like when the size obtained from malloc header parsing is equal
to 0, this means that the heap dump chaining is broken. This has been handled in the dataset
cleaning section 3.2.6.

3.2.8.3 Chunk chaining example

The program chunk_algorithms.py has been developed specifically to test the chunk parsing and
refine the associated algorithms.

We can test our chunk parsing algorithm on a test file in the cleaned dataset.

1 $ python src/data_structure_detection.py --input /home/onyr/code/phdtrack/
phdtrack_data_clean/Training/Training/basic/V_7_1_P1/24/17016-1643962152-heap.raw --
debug

2 Datetime: 2023_09_27_17_08_23_157209
3 Chunk [1]: Chunk(block_index=2, size=592, flags=[A=False, M=False, P=True])
4 Chunk [2]: Chunk(block_index=76, size=32, flags=[A=False, M=False, P=True])
5 Chunk [3]: Chunk(block_index=80, size=32, flags=[A=False, M=False, P=True])
6 Chunk [4]: Chunk(block_index=84, size=32, flags=[A=False, M=False, P=True])
7 Chunk [5]: Chunk(block_index=88, size=32, flags=[A=False, M=False, P=True])
8 Chunk [6]: Chunk(block_index=92, size=192, flags=[A=False, M=False, P=True])
9 Chunk [7]: Chunk(block_index=116, size=32, flags=[A=False, M=False, P=True])

10 Chunk [8]: Chunk(block_index=120, size=32, flags=[A=False, M=False, P=True])
11 Chunk [...]: ...
12 Chunk [911]: Chunk(block_index=10194, size=128, flags=[A=False, M=False, P=True])
13 Chunk [912]: Chunk(block_index=10210, size=256, flags=[A=False, M=False, P=True])
14 Chunk [913]: Chunk(block_index=10242, size=160, flags=[A=False, M=False, P=True])
15 Chunk [914]: Chunk(block_index=10262, size=512, flags=[A=False, M=False, P=True])
16 Chunk [915]: Chunk(block_index=10326, size=1296, flags=[A=False, M=False, P=True])
17 Chunk [916]: Chunk(block_index=10488, size=1552, flags=[A=False, M=False, P=True])
18 Chunk [917]: Chunk(block_index=10682, size=1552, flags=[A=False, M=False, P=True])
19 Chunk [918]: Chunk(block_index=10876, size=48176, flags=[A=False, M=False, P=True])
20 -----------> Statistics:
21 Total number of files: 1
22 Total number of chunks: 918
23 Total number of blocks: 16896
24 Total number of chunks with P=1: 903
25 Total number of chunks with M=1: 0
26 Total number of chunks with A=1: 0
27 Total number of chunks only composed of zeros: 1

Listing 3.21: Testing chunk parsing on Training/basic/V_7_1_P1/24/17016-1643962152-heap.raw.
Partial log output.

Looking at the first allocated chunks, we recognize what we had seen manually with vim for the
file Training/basic/V_7_8_P1/16/5070-1643978841-heap.raw. The first chunk is of size 592, and
the next one is of size 32. This is exactly what we had seen manually. It is a good sign that our
algorithm is working as expected. We can also see that the last chunk is of size 48176, which is
significantly bigger than the other chunks. This chunk is only composed of zeros, and is truncated,
meaning that its size if bigger than the actual size of the heap dump file.
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3.2.8.4 Distinguishing between free and allocated chunks

The malloc header chaining algorithm allows to detect memory chunks in the heap dump file.
However, it does not allow to distinguish between free and allocated chunks. This is a problem,
since we want to be able to distinguish between free and allocated chunks, to be able to detect
potential data structures and filter out useless blocks.

Considering the structural differences between a free and in-use block, it’s possible to try
distinguishing free blocks by their forward and backward pointers. The issue is that the head
dump raw file are not provided with any bins information. As such, distinguishing between two
normal pointers and the ones expected inside a free block is a non-trivial task. Hence, the tests
performed on this idea are inconclusive. A more straightforward technique is to rely on the P
malloc header flags.

...in-use...

Chunk 0: In-use header has P=1

Chunk 1: In-use header has P=1

Chunk 2: Free header has P=1

Chunk 3: In-use header has P=0

...in-use...

Chunk 100: In-use header has P=1

Chunk 101: Free header has P=1

Chunk 103: In-use header has P=0

...in-use...

Chunk 1000: In-use header has P=1

Chunk 1001: Free header has P=1

Chunk 1002: In-use header has P=0

Chunk 1002: In-use header has P=1

...in-use...

Figure 3.7: Heap dump showing a mix of free and in-use chunks. Note: each chunk immediately
after a free chunk has a P flag set to 0. Each rectangle represents a chunk.

For a given chunk, the follow-up chunk in ascending address number, contains such a flag in
its header block. If the flag value is 0, then the current chunk is free. If the flag value is 1, then
the current chunk is in use by the program. This is the technique that has been used in the final
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implementation of the chunk chaining algorithm.

Algorithm 10 Chunk Parsing Algorithm
1: Procedure ChunkParsing(heapDumpFile,HEAP _START )
2: Note: ConvertToSize is equivalent to MallocHeaderParsing(block).size
3: Note: Get8BytesBlocks returns a list of 8 bytes blocks from the heap dump file.

Ensure: MallocHeader object
Ensure: Flags object
Ensure: Chunk object
Ensure: HEAP _START provided from annotation file is a correct address.
4: Note: In this algorithm, & represents bitwise AND, and ∼ represents bitwise negation.
5: Initialize chunk_list to empty list
6: blocks← Get8BytesBlocks(heapDumpFile)

7: Initialize index← 0

8: while index < lenght(blocks) do
9: block ← blocks[index]

10: Initialize Chunk to empty object
11: if block ̸= 0 then
12: Chunk.header : {size, F lags} ← MallocHeaderParsing(block) ▷ See 3.2.8.2
13: Assert Chunk.header.size ≥ 2 ▷ Must contains at least header and footer
14: Assert Chunk.header.size mod 8 = 0 ▷ Check if the size is 8-bytes aligned
15: Chunk.block_index← index ▷ Index of the first block of the chunk after header
16: Chunk.address← HEAP _START + (index ∗ 8) ▷ Address of block_index
17: footer_index← index+ Chunk.header.size− 1 ▷ Index of the footer block
18: if footer_index < lenght(blocks) then
19: footer ← blocks[footer_index]
20: if ConvertToSize(footer) = Chunk.footer.size then
21: Chunk.correctfooter ← True

22: else
23: Chunk.correctfooter ← False

24: end if
25: else
26: Chunk.correctfooter ← False

27: end if
28: next_chunk_header_index← index+ Chunk.header.size ▷ Index of the next chunk

header block
29: if next_chunk_header_index < lenght(blocks) then
30: next_chunk_header ← blocks[next_chunk_header_index]
31: Chunk.is_in_use← MallocHeaderParsing(next_chunk_header).f lags.p
32: else
33: Chunk.is_in_use← False ▷ See 2

34: end if
35: index← index+ Chunk.header.size ▷ Leap over chunk.
36: else
37: index← index+ 8 ▷ Leap over zero block.
38: end if
39: end while
40: return malloc_header_list
41: end Procedure

Note that this algorithm is based on the malloc header chaining algorithm 3.2.8.2. The main
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difference is that we now have access to the malloc header flags from the following chunk, and
that we can thus distinguish between free and allocated chunks. The algorithm also includes the
footer parsing technique discussed briefly in the following section.

3.2.8.5 Chunk footer

The documentation of the malloc function of GLIBC states that the footer of a chunk is the same
as the size of the chunk considered. In the current report, we represent the footer as being part of
the chunk itself.

Below are two chunks content of similar size:

1 Printing Chunk [addr:0x80a2d1438355] [status:in-use] [footer:incorrect] Chunk(block_index
=80, size=32, flags=[A=False, M=False, P=True])

2 Block [79]: b’!\x00\x00\x00\x00\x00\x00\x00’ 33 -malloc-header-
3 Block [80]: b’\xa0\xa2\xd1C\x83U\x00\x00’ 94022266888864
4 Block [81]: b’\xc0\xa2\xd1C\x83U\x00\x00’ 94022266888896
5 Block [82]: b’\x00\x00\x00\x00\x00\x00\x00\x00’ 0 -footer-
6 Printing Chunk [addr:0xa09fd2438355] [status:free] [footer:correct] Chunk(block_index

=8180, size=32, flags=[A=False, M=False, P=True])
7 Block [8179]: b’!\x00\x00\x00\x00\x00\x00\x00’ 33 -malloc-header-
8 Block [8180]: b’\xb0\xbc\xe1\xeeS\x7f\x00\x00’ 139998466784432
9 Block [8181]: b’\xb0\xbc\xe1\xeeS\x7f\x00\x00’ 139998466784432

10 Block [8182]: b’ \x00\x00\x00\x00\x00\x00\x00’ 32 -footer-

Listing 3.22: Printing some free and in-use chunks from Training/basic/V_7_1_P1/24/17016-
1643962152-heap.raw.

Here, the status of the chunk has been detected using the P flag technique. At first sight,
those two blocks seems similar. The first 2 blocks in the user data space of the chunks both
seems to contain what looks like pointers. As one can see, the first chunk in this example, with a
block_index=80 has clearly a malloc header and footer as expected. Note that here, the value 33

represents the size of the block (32 bytes which correspond to 4 blocks) with the LSB being set to
1 meaning the preceding chunk is in use. However, the in-use block footer doesn’t correspond to
the value we expect. This difference of behavior is observed throughout the cleaned dataset.

3.2.9 Discussing chunk parsing for problem scale reduction

Now that we have presented all the necessary knowledge and algorithms used to be able to parse
the RAW heap dump files, we can discuss the results of those algorithms and their uses and
limitations. Many tests have been needed in order to develop the final algorithms. This testing
process has also unveiled some interesting properties of the dataset that will be used as basis for
the semantic embedding of the memory graph representation and subsequent machine learning
steps.

The program chunk_algorithms.py has been developed specifically to test the chunk parsing
and refine the associated algorithms on the cleaned dataset. Below are presented the global
statistics produced by the final version of the program:

1 Input is directory: /home/onyr/code/phdtrack/phdtrack_data_clean/
2 Found 26191 files in /home/onyr/code/phdtrack/phdtrack_data_clean/.
3 Processing files: 100%|\blacksquare \blacksquare \blacksquare \blacksquare \

blacksquare | 26191/26191 [12:11<00:00, 35.81it/s, file=7091-1650972335]
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4 ------> Statistics:
5 Total number of parsed files: 26191
6 Total number of skipped files: 0
7 Total number of chunks: 37682063
8 Total number of blocks: 674232832
9 Total number of chunks with P=1: 37346373

10 Total number of chunks with M=1: 0
11 Total number of chunks with A=1: 0
12 Total number of free chunks: 354410
13 Total number of chunks only composed of zeros: 18720
14 Total number of blocks in free chunks: 183331224
15 Total number of chunks with correct footer value: 1009522
16 Total number of chunks both free and with correct footer value: 335690
17 Total number of chunks free and annotated: 0
18 Total number of potential footers with annotations (should be 0): 0
19 Total number of annotated chunks: 209528
20 Total number of chunks in use, with correct footer, and annotated: 7668
21 Total number of chunks in use, with correct footer, and key annotated: 7668
22 Percentage of free chunks: 0.9405270619074121%
23 Percentage of blocks in free chunks: 27.19108523033183%
24 Percentage of free chunks with correct footer value: 94.71798199825061%
25 Percentage of in-use chunks with correct footer value: 1.8051818044922352%
26 Average number of annoted chunks per file: 8.0
27 Average number of chunks in use with correct footer and annotated per file:

0.2927723263716544
28 Set of sizes of key chunks: {32, 48, 64}
29 Sizes of key chunks with their number of occurences:
30 Size: 32 Number of occurences: 34366
31 Size: 48 Number of occurences: 109346
32 Size: 64 Number of occurences: 13434
33 Number of sizes: 157146
34 Number of unique sizes: {32, 48, 64}

Listing 3.23: Printing cleaned dataset chunk parsing global statistics.

The cleaned dataset contains 26191 RAW files and their corresponding annotation files. The
program has been able to parse all those files, and has been able to detect 37682063 chunks,
which represents 674232832 blocks. This is a huge number of blocks. The goal being to be able
to predict which of those blocks are first key blocks, we need to be able to filter out the useless
blocks as much as possible to both optimize computations and scale down the problem.

Using the P flag technique, we can see that 37346373 chunks are in use, and 354410 chunks
are free. Although the proportion of free chunks is only 0.94%, there are 27.19% of the blocks
that are in free chunks. More importantly, we can see that no free chunk is annotated. This means
we can filter out all free chunks and their blocks. This allows a huge reduction of the scale of the
problem.

The average number of annotated chunks per file being a perfect value of 8, this means that
all the parsed files indeed contains the 6 key annotations with the additional SSH_STRUCT and
SSH_KEY annotations. The dataset is very imbalanced since we have only 6 keys times the number
of RAW files as positive labels and the rest as negative, thus the need for advanced reduction
techniques.

71



3.2.9.1 From a block-based to a chunk-based approach

The exact code to annotate the chunks can be as simple as the following:

Algorithm 11 Annotate Chunk Algorithm
1: Procedure AnnotateChunk(chunk, keys_addresses, ssh_struct_addr, session_state_addr)

Ensure: chunk object
Ensure: keys_addresses list of integers
Ensure: ssh_struct_addr integer
Ensure: session_state_addr integer
2: Note: Annotations should be done after free chunk detection.
3: Procedure AssertChunkUsedThenAnnotate(chunk, annotation)
4: Assert chunk.is_in_use ▷ Make sure we don’t annotate free chunks
5: chunk.annotations.append(annotation)

6: end Procedure
7: if chunk.address ∈ keys_addresses then
8: AssertChunkUsedThenAnnotate(chunk,ChunkAnnotation.ChunkContainsKey)
9: else if chunk.address = ssh_struct_addr then

10: AssertChunkUsedThenAnnotate(chunk,ChunkAnnotation.ChunkContainsSSHStruct)
11: else if chunk.address = session_state_addr then
12: AssertChunkUsedThenAnnotate(chunk,ChunkAnnotation.ChunkContainsSessionState)
13: end if
14: end Procedure

This algorithm in itself and the results observed is an important discovery. The annotations
are actually always given for the chunk.address which corresponds to the address of the first
block after the malloc header block. This means that the annotations are actually given for the
beginning of the user data space of a chunk. This is crucial discovery, since it means that we can
filter out the malloc header and footer blocks, and only keep the first block of the user data space
of the chunks we want to embed. There are 674232832 − 183331224 = 490901608 blocks in use.
But there is only 37346373 chunks in use. This means that we can reduce the number of blocks
to embed from 490901608 to 37346373 which is an additional reduction applied after the previous
filtering that reduces the scale of the problem by a factor of 13.

3.2.9.2 Using chunk footer for filtering is not possible

Now let’s look at the footer parsing. We can see in the logs that 94.72% of free chunks are said to
have a correct footer value. But this value is misleading. Since the last chunk of a heap dump is
often cropped, it means it has no footer. But we consider those special last chunks as free chunks.
In fact, in the 354410 free chunks, we have 18720 or around 5.28% of them that are those special
last cropped chunks only composed of zeros. With this perspective, we understand that 100% of
the free chunks should be considered with correct footer value. In contrast, only 1.81% of in-use
chunks have a correct footer value. It’s tempting to think that maybe, those few chunks could
maybe be actually empty too and removed. But this is not the case since a few chunks are actually
both in-use, with a key annotation and a correct footer value. This means that we need to keep
those chunks.
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3.2.9.3 Chunk filtering

Based on the previous observations, we can propose different ways of filtering some chunks out.
The objective is to reduce the number of chunks before any further processing to reduce the
imbalanceness.

Since we have seen that free chunks are never annotated, we can filter them out. This filtering
technique allows to reduce the number of chunks from 37682063 to 37346373, which is a small
reduction of 0.89%. It is not a huge reduction of chunks, but is a much more significant reduction
of the number of blocks since 27.2% of the blocks are in free chunks.

We can also filter the chunks whose size is not 32, 48 or 64 bytes. This is based on the
observation that the key chunks are of those sizes. Such a filtering technique allows to reduce
the number of chunks significantly, since there is a cumulated 109346 + 34366 + 13434 = 157146

chunks of those size, which represents, compare to the original number of chunks, a diminution of
99.6%. It is indeed a huge reduction of the scale of the problem.

A last approach to chunk filtering for key prediction consists in measuring the entropy of the
first bytes of a chunk. Since we have previously discovered that keys are always located at the
beginning of a chunk, and since the keys are composed of random bytes, we can expect the entropy
of the first bytes of a chunk to be high.

The following graph illustrates this phenomenon:

Figure 3.8: Visualization of the entropy distribution for all chunks of the phdtrack_data_clean/
RAW heap dump dataset.

Using a script to perform some counting, we realize that the number of chunks whose entropy
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is less than the minimum entropy of the chunks that contains a key (is key chunk) is 19690826,
which represents 52.3% of the total number of chunks. It’s not entirely clear why the key chunk
entropy values seem spread across 2 strips of values, but is probably an effect of the different
distributions of chunks across the input dataset, depending on the version, use can and number of
chunks in the considered input files.

After all those extensive analysis and tests, we have gained invaluable knowledge about how we
can reduce the scale of the problem and parse the files. Now, we need a way to create meaningful
embeddings for the blocks we want to perform machine learning on. This is the goal of the next
section.

3.3 Graph-based memory dumps embedding

Now that we have a decent understanding of the dataset as well as the low level memory dump
format, we can start to think about how to convert the memory dumps into graphs. As a recall,
we want to be able to convert a memory dump into a graph representation that can be used
for machine learning, since we want to be able to create a memory modelization as a basis for
efficient embedding and feature engineering later. This is inherently due to the imbalanceness of
the dataset, as we want to add more information to each memory block that just its raw bytes. The
goal is to have a graph representation of the memory dump that can be used for efficient machine
learning.

3.3.1 Initial work from Python to Rust

Initially, we have been working and manipulating the code provided by SmartKex3 for key detection.
Our first explorations of the dataset quickly gave birth to some Jupyter Notebooks, which were
used to explore the dataset and to understand the code, like search_in_heap_mem.ipynb. Rapidly,
we decided to rebuild a complete Python 3.11 version of the code. This was done for several
reasons:

• The provided code had no type hinting, which makes it hard to read and understand.

• We wanted to explore the dataset and learn by doing.

• The original code was not designed to be used as a library, but rather as a standalone script.

• The original code was just a few hundred lines of code and was not designed to be easily
extensible, nor to be able to handle a large number of memory dumps.

• We wanted to modernize code by using the latest stable version of Python.

We decided to build a memory graph representation at that moment because we wanted to be
able to add more information to the memory blocks than just their raw bytes. This new program
was called ssh_key_discover, and relied on a number of Python libraries to work, like graphviz.
This was a all-in-one library, composed of 2 sections, mem_graph and ml_discovery. The first one
was devoted to build memory graphs, while the second one was dedicated to the data science and
machine learning part.

3SmartKex GitHub repository: https://github.com/smartvmi/Smart-and-Naive-SSH-Key-Extraction
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This initial program was already capable of handling several data processing pipelines, including
machine learning pipelines with models like Random Forest, a grid search for hyperparameter
optimization, a cross validation pipeline, several balancing strategies and of course, a memory
graph representation with a semantic embedding. As an early development version, this program
was not optimized for performance, and just loading a given heap dump file and its annotation,
then building the memory graph representation could take from 30 seconds to a minute (on the
TUXEDO machine), depending on the size of the heap dump file. As the original dataset comprises
more than 106 files, a rapid estimation of the time needed just for the semantic embedding of the
memory graph representation was above a month. In this regard, this initial program was just
used on a bunch of files as a way to develop the semantic embedding model, parsing algorithms
and start working on feature engineering and machine learning. But it could not be used to
produce final results on the whole dataset due to the performance issues described above.

Such an optimization issue was clearly not acceptable, and we decided to rewrite the graph part
in Rust. This is a compiled language that leverages zero-cost abstractions, and thus, is several
order of magnitude faster than Python. It was also a good opportunity to learn Rust, which is a
language that is gaining more and more popularity, especially in the security community. This
new program was called mem2graph. Switching from Rust to Python and doing a proper use of
multithreading allowed us to reduce the time needed to build the memory graph representation
from 30 seconds to less than 1 second. In out case, and comparing using only the TUXEDO laptop,
this represents an estimated minimum of a 130x speedup. But this is even much better on the
server, where the multithreading can really be leverage. This was a significant improvement which
allowed us to build the memory graph representation for the whole original dataset in just a few
hours.

3.3.2 Memory Graph Representation

Now, let’s describe the memory graph representation. The goal is to be able to represent a memory
dump as a graph. This modelization makes sense since the heap dump can be considered as
having memory chunks as nodes, being connected by pointers acting as arrows. This is a very
natural way to represent a memory dump. However, in our cases, and since the goal is to make
predictions on raw bytes, we will not use the chunks as nodes, but rather the memory blocks
directly. This is because we want to be able to make predictions on raw blocks of bytes, and not
on chunks.

Our memory graph representation is composed of a directed graph, where each node is a
memory block of bytes, and each edge is either indicative of a pointer link or a chunk membership
relationship. This second representation is directly inspired by collection representation in
Knowledge Graph ontologies. In the case of RDF, this could be equivalent to a rdf:Bag, which is
an unordered container [8] (see 2.3.2.4). The graph is directed because the pointers are directed.
We will also consider the relationship of belonging to a chunk as oriented from the data structure
header block to the data structure member blocks.

Our memory graph representation is inherently a property graph. Each node and edge can have
properties. The properties of an edge are the type of the edge, which can be either a pointer or a
structure membership relationship.

• dts: Data Structure Membership Relationship

• ptr: Pointer Relationship (direction is from the source to the target)
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In our case, the properties of a node are at minimum the address and the byte block. The graph
is also heterogeneous since our nodes can have different types corresponding to their inferred
characteristics.

• PN: Pointer Node. This is a node whose bytes have been identified as a pointer.

• CHN: Chunk Header Node. This is a node whose bytes have been identified as a memory
(malloc) chunk header. In the graph, this node is the root node of a memory structure
managed by the C library responsible for memory management and allocation.

• KN: Key Node. This is a node whose bytes have been identified as a key. This identification
relies both on the annotations and some verification checks.

• VN: Value Node. These are all blocks that have not been identified. It is the default node
type.

These nodes and edges form the base of the memory graph representation. Below is a simplified
(truncated) example of a memory graph representation. The full example is available in .2. For
clarity, the addresses are not displayed in this simplified version. Another version of this graph
with real addresses is available in .2.

Figure 3.9: Visualization of a truncated memory graph generated from Training/basic/V_7_1_-
P1/24/17016-1643962152-heap.raw. The addresses are not displayed for improved readability.
Version with addresses here .2.

The given graph represents a memory layout with various types of nodes, each serving a specific
purpose. The graph contains CHN nodes, which act as the root nodes for allocated structures and
are colored in cyan. These DTN nodes are connected to KN nodes, which are identified as keys
and are colored in green. The PN nodes, colored in orange, are pointers and can be connected
to value nodes or key nodes. Finally, the graph includes VN nodes, which are the default node
types and are colored in gray. These nodes have not been identified as any specific type and may
contain arbitrary values.

The idea behind this representation will be to try to make predictions on the KN nodes, which
are the nodes that have been identified as keys. Using the graph, we can build an embedding of
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the nodes and as such, add more information to a given byte block than just its raw bytes. This is
the basis of the semantic embedding, which will be discussed later.

This example is based on the heap dump file Training/basic/V_7_1_P1/24/17016-1643962152-
heap.raw and has been generated using mem2graph, and the sfdp layout algorithm from graphviz
using the following command:

1 sfdp -Gsize=30! -Goverlap=voronoi -Tpng 17016-1643962152_truncated_no_addresses.gv >
17016-1643962152_truncated_no_addresses.png

Listing 3.24: Command used to generate the memory graph visualization of Training/basic/V_7_-
1_P1/24/17016-1643962152-heap.raw

3.4 From heap dump to memory graph embeddings

Now that the basis of the memory graph representation has been described, let’s dive in the
different phases involved in transforming a raw heap dump file into a memory graph file with some
custom embeddings that can later be loaded and used by some data analysis and ML programs.

3.4.1 Initialization and data checking

The graph construction process begins with the initialization phase. In this phase, the first step is
graph initialization, which involves loading a given heap dump file and its associated annotation
file. Once the files are loaded, several checks are performed on the annotation file to ensure its
validity. These checks include verifying that all annotations are present and formatted correctly,
as well as ensuring that the annotation file is neither empty nor contains errors.

3.4.1.1 Graph Construction steps

The second major step in the process is graph building. This involves constructing the graph
from heap dump byte blocks. The first part of this step is the data structure detection, where
blocks are parsed from start to finish. The parsing process leaps over blocks by using chunk sizes
that are stored in chained chunk headers. Each chunk is then verified for its size, alignment, and
the presence of a potential footer. Following this, the pointer detection step is carried out. In
this phase, potential pointers are identified using the previously introduced pointer detection
algorithm and are added to the graph.

An optional step that can be performed is the chunk pointer reduction. This step removes any
blocks that are not Chunk Header Nodes, effectively transforming the graph from a block-based
graph to a chunk-based graph. While this step is not mandatory, it can be useful for reducing the
scale of the problem. This approach will be extensively used in the machine learning section, as
it has been shown that the key block prediction problem is equivalent to a key chunk prediction
problem.

3.4.1.2 Graph Annotation

The third major step in the process is graph annotation. In this phase, Value Nodes in the graph are
replaced by Key Nodes, utilizing the annotations provided in the JSON annotation file. Additional
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annotations, such as SSH_STRUCT, can also be added at this stage. Following the completion of
the annotation step, it becomes possible to export the graph for various purposes. The graph can
be exported to file formats like .dot or .gv, which are suitable for visualization or other analytical
tasks.

At this step, the graph is looking similar to the example shown before 3.3.2. Using the pointer
reduction to a chunk-only memory graph, we can obtain something like the following:

Figure 3.10: Visualization of the chunk memory graph, with only Chunk Header Nodes represent-
ing chunks, generated from Training/scp/V_7_8_P1/16/ 585-1644391327-heap.raw.

Note how we can identify some data structures formed by pointer-connected chunks. This is
a very interesting property of the memory graph representation, since it allows identifying data
structures and their members based only on the shape of connections. This is a very important
property that will be used later for feature engineering and embeddings.

3.4.1.3 Custom Graph-Based Embeddings

The fourth step in the workflow involves generating embeddings from the graph. Multiple types of
embeddings can be generated, each serving a unique purpose and offering different insights into
the graph structure. One such embedding is the semantic embedding. This is a general approach
that enriches each node with information related to its graph structure vicinity. It captures the
essence of the node’s position and relationships within the graph, making it useful for various
machine learning and analytics tasks.

In addition to semantic embeddings, other types of embeddings can also be generated. For
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instance, statistical embeddings focus on capturing the statistical properties of the graph. Another
interesting type of embedding is the random walk embedding and related version called Node2Vec.
This method leverages the random walk algorithm to generate embeddings, capturing the local
and global structure of the graph by simulating random paths through it.

Each of these embeddings offers a unique lens through which to analyze and interpret the
graph, and the choice of embedding can be tailored to the specific requirements of the task at
hand. It’s also possible to add additional features like entropy of the chunk start bytes and filtering
information.

3.4.1.4 Exporting the Graph

The fifth step in the process involves exporting the graph. The graph is exported to a .gv DOT file
format. Custom embeddings are integrated into the graph by utilizing the comment fields in a
slightly modified stringified JSON format. This approach allows for easy reading of the embeddings
associated with each node while maintaining the DOT file as a valid format that can be used with
tools and libraries supporting the DOT graph formal.

The DOT (Directed Orthogonal Text) format is a plain text graph description language that
is widely used for representing structured information. An example of a memory graph in DOT
format without embeddings is provided for reference. In this example, nodes and edges are
represented along with their attributes such as color, shape, and labels.

When embeddings are added to the graph, additional comment fields are included in the DOT
file nodes. These comment fields contain a JSON string that holds the embedding information
for each node. Moreover, the graph starts with a pseudo JSON comment field that contains a
serialized JSON object specifying the embedding type and feature names.

Here is an example of a comment field in a node:

1 comment="[0,94918015119368,1,108,108,108,108,108,108,108,1,67,82,139,175,204,...
2 0,0,2.355388542207534]"

Listing 3.25: A comment field example for a node with embedding. Output is cropped.

Below is an example of a memory graph comment field containing a JSON serialized object with
embedding type and feature names.

1 comment="{ ’embedding-type’: ’chunk-semantic-embedding’, ’embedding-fields’: [’
block_position_in_chunk’,’chn_addr’,’chns_ancestor_1’,...’chns_children_8’,’
chunk_byte_size’,’chunk_number_in_heap’,’chunk_ptrs’,’chunk_vns’,’ptrs_ancestor_1
’,’ptrs_ancestor_2’,...,’ptrs_children_8’,’entropy’] }"

Listing 3.26: A memgraph comment field example containing JSON serialized object with
embedding type and feature names. Output is cropped.

The inclusion of these comment fields serves multiple purposes. First, it allows for the storage
of embeddings along with additional information, making the graph more informative. Second,
this format can be easily integrated into Python machine learning pipelines, facilitating the use of
the graph in various machine learning tasks. Lastly, the DOT format serves as a standard format
for graph representation, making it a versatile choice for both visualization and computational
tasks.
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3.5 A wide range of features and embeddings

In the following, we will explore the features and embeddings developed and used in this thesis.
We will start by the features and embeddings based on the memory graph characteristics, then
we will explore the graph-agnostic embeddings, and finally, we will discuss the machine learning
models used for the binary classification task.

3.5.1 Embeddings based on custom features

While doing the construction of the graph, we can add some custom features to the nodes. Those
features have been developed to embed the unique characteristics of each node of the graph,
depending on its type, parent chunk characteristics as well as its vicinity in the memory graph.
Those features have been regrouped in several custom embeddings that will be discussed in the
following.

3.5.1.1 Remark on the collaborative work

This section focuses on the embeddings developed during a Masterarbeit project around OpenSSH
heap dump analysis. Clément Lahoche and the author of the present report have done a collabora-
tive effort on the matter. Since Clément has focused on the embeddings, the following section will
not discuss in too many details the embeddings that are already described and analyzed in details
by Clément’s work. The reader is invited to read his Masterarbeit report [2] for more information.
This section includes some elements that are clearly identified as coming from Clément’s work.

As a notable difference, the Node2Vec embedding, which is a graph-agnostic embedding, will
also be discussed in the following, which is not the case in Clément’s thesis. This is because
the present report focuses on the machine learning part, and especially on graph representation
learning.

3.5.1.2 Semantic graph embedding

The focus of this stage is on semantic embedding, a technique that transforms the graph into
a low-dimensional vector space. Each vector encapsulates the local neighborhood of a graph
chunk, enabling the application of advanced machine learning methods. The embedding process
is intricate, considering both direct and indirect connections to and from each chunk. It starts by
counting the number of pointers and chunks directly linked to a specific chunk, and then extends
this by recursively exploring deeper layers of connections. A parallel reverse analysis is also
conducted to capture child nodes. The outcome is a compact vector that richly represents the
chunk’s contextual relationships within the graph.

The following algorithm describes the process of generating the semantic embedding for a given
chunk:
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Algorithm 12 Generate Ancestor/Children Embedding.
function GenerateNeighborsCHN(chunk_node, dir)

ancestor_nodes← an empty set
children← graph.neighbors_directed(chunk_node,OUT ) ▷ Get members of the chunk
for child in children do

ancestor_nodes.insert(child)
end for
result← an empty list
current_nodes← an empty set
for _ in 0 to DEPTH do

current_nodes← ancestor_nodes ▷ switch ancestor nodes and current nodes
ancestor_nodes← an empty set
nb_chn← 0

nb_ptr ← 0

for current_node in current_nodes do
if node is ChunkHeaderNode then ▷ Update number of chunks and pointers

nb_chn← nb_dtn+ 1

else if node is PointerNode then
nb_ptr ← nb_ptr + 1

end if ▷ Get neighbors of the current node
for neighbor in graph.neighbors_directed(current_node, dir) do

ancestor_nodes.insert(neighbor) ▷ Add neighbors to the next ancestor nodes
end for

end for
result.append(nb_chn) ▷ Add number of data structures
result.append(nb_ptr) ▷ Add number of pointers

end for
return result

end function

Note that this algorithm is taken from Lahoche, from his Masterarbeit report [2]. It has been
developed and implemented as a collaborative effort on this project.

The embedding algorithm is applied to each chunk in the graph, exploring up to a predefined
depth, generally 8, which is a hyperparameter of this embedding. This results in a 32-unit
embedding, broken down into 8 units each for ancestor pointers, ancestor chunks, child pointers,
and child chunks. Basic chunk attributes like block position, byte size, and number of pointers
and value nodes are also included, bringing the total embedding size to 37 units. Despite its
comprehensiveness, the embedding has limitations, such as the potential for noise from value
nodes and the complexity of capturing intricate relationships.

A way that have been used extensively, to both reduce the number of nodes and to improve
the quality of the embeddings, is to reduce the graph to a chunk-only graph. This is done by
removing all the nodes that are not chunk header nodes. It is a very interesting approach, since it
allows to reduce the scale of the problem by a factor of 10, and also allows focusing on the data
structures, which are the most interesting nodes to embed. This approach will be used in the
machine learning section, since we have shifted the focus from block to chunk prediction.
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3.5.1.3 Semantic features from essential chunks attributes

Every chunk in the heap dump comes with fundamental attributes that provide insights on its
structure and content. These attributes are not limited to the primary chunk nodes but are also
inherited by value and pointer nodes, which are subcomponents of a chunk. The key attributes
include the block’s position within the chunk, the chunk’s byte size, the total number of pointers
and value nodes in the chunk, and the chunk’s index in the heap. These details collectively offer a
thorough understanding of each chunk’s makeup and its relative position in the heap.

3.5.1.4 Statistical Embedding

Statistical embeddings serve as a powerful tool for reducing high-dimensional data while preserv-
ing essential patterns and probabilistic relationships. One key technique employed is the use of
n-gram values, specifically focusing on bit combinations to manage dimensionality. This approach
aligns with the primary goal of identifying SSH keys, which inherently display a wide range of
frequencies. Various n-gram sizes are utilized, including 1-gram, 2-gram, 3-gram, up to 8-gram,
with the latter contributing significantly to capturing broader contextual patterns.

In addition to n-grams, other statistical metrics like mean, standard deviation, MAD, skewness,
kurtosis, and Shannon entropy are incorporated. These metrics offer a multi-faceted view of the
data, aiding in the identification of SSH keys. However, chunks with a standard deviation of zero
are excluded from the analysis, as they are unlikely to contribute to the identification of random
patterns like SSH keys. These skipped values are replaced with NaN values in embedding comment
of nodes, that needs to be handled by the machine learning pipeline. It has been chosen to replace
those values with zeros.

Finally, the statistical embedding vector for each chunk is constructed by combining n-gram
values and these additional statistical metrics. The vector also includes basic chunk information,
resulting in a comprehensive vector that encapsulates the chunk’s characteristics.

3.5.1.5 Start-bytes Embedding

In addition to the aforementioned embeddings, a simpler approach was implemented to serve
as a baseline for comparison. This method focuses solely on the initial bytes of each chunk for
vectorization. The sample vector is initialized with basic chunk information and then populated
with the first bytes of the chunk, up to a predefined limit. If the chunk has fewer starting bytes
than the predefined limit, zeros are added to fill the remaining positions. This straightforward
approach provides a straightforward embedding, suitable for comparative evaluations with more
intricate embeddings.

3.5.2 Embedding transformations depending on the model

When it comes to feeding embeddings into machine learning models, the shape and size of the
embeddings need to be tailored to fit the model’s requirements. For classic machine learning
algorithms like Random Forest, the requirement is that the embedding matrices must be of a
fixed, predefined size. This presents a unique challenge when working with graph embeddings,
as graphs usually have a variable number of nodes. To address this, padding is added to the
embedding matrices to ensure they all match the size of the largest graph. In contrast, Graph

82



Convolutional Networks (GCN) offer more flexibility in this aspect. GCNs are capable of handling
variable-size embedding matrices as long as the number of features is fixed. This eliminates the
need for padding the matrices, which is advantageous as it simplifies the preprocessing steps.

3.5.2.1 Node filtering to feature

On the topic of node filtering in the context of chunk memory graphs, it’s important to note that
active rebalancing isn’t performed, despite the number of positive nodes (key chunks) being
substantially lower than the number of negative nodes (non-key chunks). The rationale behind
this choice is to enable models to learn from complete graphs. This is particularly relevant for
Graph Convolutional Networks, which are capable of handling graphs of variable sizes. The goal
is for the models to be able to identify key chunks even in completely unlabeled memory graphs.
The ability of GCNs to process variable-size graphs makes them especially suitable for this kind
of task, as it allows the model to learn from the full structure of the graph without the need for
compromising the integrity of the data through techniques like rebalancing.

3.5.3 Graph-agnostic Embeddings

Unlike our previous embeddings, which were developed manually to suit the intricacies of chunk
graphs, there are also pre-existing, generalized graph embeddings. These graph-agnostic embed-
dings offer the benefit of being applicable to a wide range of graphs without requiring specific
customization based on the characteristics of the underlying data.

3.5.3.1 RandomWalk

The RandomWalk algorithm offers a straightforward approach to graph embedding. It simulates
random walks starting from each node in the graph and uses these walks to create vector
representations of the nodes. One of the advantages of RandomWalk is its simplicity, both in
terms of implementation and interpretation. The algorithm excels at capturing local structures
within the graph, making it particularly effective for tasks such as community detection and link
prediction. However, its focus on local characteristics means that it might not capture global
properties of the graph as effectively.

3.5.3.2 Node2Vec

Node2Vec extends the capabilities of the RandomWalk algorithm by introducing additional pa-
rameters that allow for a more nuanced exploration of the graph. This makes Node2Vec more
versatile than RandomWalk, enabling it to capture both local and global graph structures. Because
of its flexibility, Node2Vec is well-suited for a range of applications including the specific task of
providing an embedding for the node of memory graphs. While its versatility is a strong point,
it comes at the cost of increased computational complexity due to the introduction of several
hyperparameters.

Hyperparameters:

• p: The return parameter, which controls the likelihood of the walk returning to the node it
just left.
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• q: The in-out parameter, which differentiates between inward and outward nodes in the
walk.

• Length of Walk: Determines the length of each random walk.

• Number of Walks: Specifies the number of walks to initiate from each node.

Note that the two last hyperparameters have a huge impact on the performance of the algorithm.
These hyperparameters play a crucial role in shaping the behavior of the Node2Vec algorithm.
Specifically, the return and in-out parameters help guide the random walks in a way that allows
the algorithm to capture different types of structural information from the graph. The length and
number of walks, meanwhile, impact the granularity and quality of the embeddings generated.

3.6 Machine Learning Binary Classification

Binary classification is a type of machine learning task where the model is trained to differentiate
between two classes. In the context of key chunk prediction, binary classification serves to identify
whether a given chunk is a "key chunk" or not. Successfully predicting key chunks is crucial as it
leads to a 100% successful key retrieval rate. This is because, in our case, all keys are situated at
the beginning of a chunk, and no chunk contains more than one key. Various machine learning
models, ranging from classic approaches to more modern methods like Graph Convolutional
Networks (GCNs), have been employed for this task.

3.6.1 Classic Models of Machine Learning

For baseline comparisons, we have experimented with classic machine learning models including
Random Forest, Logistic Regression, and the SGD Classifier. These models serve as a well-studied
and understood starting point for our classification problem, providing a frame of reference against
which more complex models can be compared.

3.6.1.1 Random Forest

Random Forest is an ensemble learning method that operates by constructing multiple decision
trees during training and outputs the class that is the mode of the classes of the individual trees
for classification tasks. It is highly flexible and can handle a wide range of data types, making it a
strong candidate for various use cases, including key chunk prediction.

Strong and Weak Points:

• Strong: The model is robust to overfitting and can handle high dimensional data well.

• Weak: Random Forest models can be computationally expensive and may require a long
training time, especially for larger datasets.

As often with models, Random Forest has a bunch of hyperparameters:

Hyperparameters:
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• n_estimators: Number of trees in the forest.

• max_features: The number of features to consider when looking for the best split.

• max_depth: The maximum depth of the tree.

• min_samples_split: The minimum number of samples required to split an internal node.

• min_samples_leaf: The minimum number of samples required to be at a leaf node.

We have used the implementation of Random Forest available in the Scikit-learn library [26].

3.6.1.2 Logistic Regression

Logistic Regression is a statistical model commonly used for binary classification tasks. It models
the log-odds of the probability of the event occurring as a linear combination of the predictor
variables. The model is particularly effective when the probability of the outcome (dependent
variable) can be expressed as a logistic function of the predictor (independent variable).

Strong and Weak Points: Logistic Regression is straightforward to implement and understand,
making it a good starting point for many classification problems. However, its simplicity is both a
strength and a weakness; it might not perform well when the relationship between the variables
is not log-linear or when the dataset has high dimensionality.

Hyperparameters:

• C: Inverse of regularization strength; smaller values specify stronger regularization.

• solver: Algorithm to use for optimization, such as ’liblinear’ or ’saga’.

• max_iter: Maximum number of iterations for the solver to converge.

We have relied on the Logistic Regression implementation available in the Scikit-learn library
for our experiments[26], using the default hyperparameters.

3.6.1.3 SGD Classifier

The Stochastic Gradient Descent (SGD) Classifier is a linear classifier optimized by stochastic
gradient descent. It is especially useful for large-scale and sparse machine learning problems.
The SGD Classifier can approximate other types of linear classifiers like Logistic Regression and
Support Vector Machines.

Strong and Weak Points: SGD Classifier is computationally efficient, making it well-suited for
large datasets. However, it requires careful tuning of its hyperparameters and might be sensitive
to feature scaling.

Hyperparameters:

• alpha: Regularization term that discourages large coefficients to prevent overfitting.

• loss: Specifies the loss function to be used, such as ’hinge’ for SVM or ’log’ for logistic
regression.
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• max_iter: Maximum number of passes over the training data.

• learning_rate: The learning rate schedule, could be ’constant’, ’optimal’, ’invscaling’, or
’adaptive’.

For the SGD Classifier as well, we used the Scikit-learn implementation[26].

3.6.2 Graph Convolutional Networks (GCN)

As GCNs have already been introduced in the background section, this part will primarily focus on
our specific implementation and the variants of GCN models employed for the task of key chunk
prediction.

GCNs are a specialized form of neural networks designed to operate directly on graphs. One
of their main characteristics is their ability to capture the graph’s structural information. They
accomplish this by using edge connectivity information, either from an adjacency matrix or an
edge list, as part of their input. This makes them particularly effective for tasks involving irregular
data structures like the memory graphs discussed previously.

We used the PyTorch Geometric library for the development of our GCN models. This library
offers a robust set of tools and abstractions, making it easier to construct custom graph-based
neural networks [3].

GCNs excel at capturing the topological features of graphs, making them a strong candidate for
our task of key chunk prediction. However, they can be computationally intensive, especially for
large graphs, and also require careful tuning of hyperparameters for optimal performance.

3.6.2.1 Very Simple GCN

The Very Simple GCN model is a minimalist approach, capturing the essential features of a Graph
Convolutional Network. This model consists of just one graph convolution layer followed by a
single fully connected layer. The convolution layer takes the input features and transforms them
into a 16-dimensional space.

After the graph convolution operation, a ReLU (Rectified Linear Unit) activation function is
applied to the output. ReLU is defined as f(x) = max(0, x), replacing all negative values in the
tensor with zeros. In the context of GCNs, ReLU is commonly used to introduce non-linearity into
the model. It enables the network to learn from the error and make adjustments, making it more
capable of handling complex, non-linear relationships in the graph data.

Finally, the output from the ReLU activation is passed through a fully connected layer to produce
the final output for classification. Due to its simplicity, this model is computationally efficient but
may not capture complex graph structures effectively.

3.6.2.2 Simple GCN Models

The Simple GCN model, or LessSimplifiedGNN, is a step-up in complexity from the very simplified
version. It incorporates two graph convolutional layers, doubling the depth of the network. The
first convolution transforms the input features to a 12-dimensional space, and the second one
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further transforms these 12-dimensional vectors into 24 dimensions. Two fully connected layers
follow, ultimately producing the final output. This model is capable of capturing more complex
features in the graph but is computationally more demanding than the simpler model.

3.6.2.3 First GCN Model

The First GCN model is the first version that was actually implemented and tested for the task.
It’s a more complex architecture optimized for higher performance. It consists of two graph
convolution layers that transform the input features first into a 16-dimensional and then into a
32-dimensional space. Following these, the network contains three fully connected layers. These
layers are intended to capture more intricate patterns in the data. Failed attempts to scale the
model computation speed by delegating the fully connected layers to the GPU were made, but
ultimately, the model was too memory intensive to be trained on the GPU. This model is designed
for capturing more nuanced relationships in the graph but at the cost of higher computational
requirements.

3.6.3 The Impact of Complexity

The complexity of a model is a double-edged sword when it comes to performance metrics like
precision and recall. On one hand, more complex models with additional layers or more neurons
can capture intricate patterns in the graph data, potentially improving precision by accurately
identifying key chunks. On the other hand, the complexity often leads to overfitting, especially
when the training dataset is small or lacks diversity. Overfitting can adversely affect recall, as the
model might become too specialized in recognizing training graphs and fail to generalize well to
unseen data.

In the case of Graph Convolutional Networks (GCNs), the non-linear transformations and
multiple layers can allow the network to learn highly specialized features, which is excellent for
achieving high precision. However, these can be detrimental to recall if the model becomes so
tailored to the training data that it fails to identify key chunks in new, unseen graphs.

The impact of the model’s complexity also varies with the number of input graphs. For datasets
with few graphs, a simpler model is often more appropriate to prevent overfitting. In contrast,
when numerous diverse graphs are available for training, a more complex model can be employed
to capture the rich set of features inherent in the data, thereby potentially improving both precision
and recall.

Therefore, the choice of model complexity should be carefully considered, weighing its impact
on performance metrics and the size and diversity of the available training data. This is why more
complex GCN models have also been implemented and tested.

3.6.4 Understanding Dropout in GCNs

Dropout is a regularization technique used in neural networks, including Graph Convolutional
Networks (GCNs) and Convolutional Neural Networks (CNNs), to prevent overfitting. The dropout
layer randomly sets a fraction of the input units to 0 during training, which helps to make the
model more robust and improves generalization. In the ML pipelines developed in Python, a
dropout rate of 0.5 is used, meaning approximately 50% of the neurons will be turned off during
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each forward pass. This section will discuss the effect of dropout on the model’s performance and
the intuition behind it.

3.6.4.1 Effect on Binary Classification

In a binary classification problem, dropout can have several effects:

• Reduced Overfitting: By randomly deactivating neurons, the model is less likely to rely on
any single feature, making it generalize better to unseen data. This is expected to reduce
overfitting and thus improve the model’s performance, especially the recall of the positive
class.

• Increased Robustness: Dropout can make the model more robust to noise in the training
data.

• Variable Performance: While dropout can improve generalization, it may also lead to
increased variance in the model’s predictions, especially if the dropout rate is too high.

In the code of some GCN models implemented, dropout is applied after the activation functions
of the GCN layers and the first fully connected layer:

x = F.relu(x)
x = self.dropout(x)

This is a common practice as it allows the model to learn more robust features. However, the
dropout rate and its placement in the architecture are yet other hyperparameters that may need
to be tuned for optimal performance. Since we already have a large number of hyperparameters,
we will not tune the dropout rate in this thesis.

3.6.4.2 Batch Normalization

The code also includes Batch Normalization layers, denoted by self.bn1 and self.bn2. These
layers normalize the features to have zero mean and unit variance, which can accelerate training
and provide some regularization effect, complementing the dropout layers.

3.6.5 More Complex GCN Models

In an effort to enhance the performance of our initial GCN models, we explored more complex
architectures. The motivation behind increasing the complexity was to evaluate whether additional
layers or techniques could lead to improved performance metrics such as precision and recall.
These advanced models have been tested against the simpler GCN models to determine their
effectiveness.

3.6.5.1 GCN with Dropout and Batch Normalization

Building upon the First GCN model, we incorporated dropout and batch normalization layers.
Dropout is employed to mitigate the issue of overfitting, especially relevant for complex models
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trained on limited data. With a dropout rate of 0.5 after each ReLU activation, we were able to
regulate the model’s complexity during training.

Batch normalization, on the other hand, aims to accelerate training and stabilize the learn-
ing process. By normalizing the output features of each layer, batch normalization helps in
alleviating internal covariance shift, making the model training more resilient to the choice of
hyperparameters.

This version of the model aligns closely with the First GCN model, but the addition of dropout
and batch normalization layers offer greater robustness, especially when training on imbalanced
or smaller datasets.

3.6.5.2 Advanced GCN

The Advanced GCN model represents the most intricate architecture we have experimented with.
This model introduces several additional components compared to the simpler models.

The Advanced GCN consists of three Graph Convolution layers, followed by Batch Normalization
layers. The initial Graph Convolution layer transforms the input features into a 32-dimensional
space, which is then normalized using BatchNorm1d. The second and third Graph Convolution
layers further increase the dimensions to 64 and 128, respectively, also followed by batch normal-
ization steps. These layers aim to capture more complex features from the graph structure.

ReLU (Rectified Linear Unit) activation functions are applied after each batch normalization,
introducing non-linearity to the model and helping to capture intricate relationships in the data.
Additionally, dropout layers with a rate of 0.5 are placed after each ReLU activation to mitigate
the risk of overfitting.

After the Graph Convolution layers, the architecture includes a series of fully connected layers
that transform the 128-dimensional feature vector into a 256-dimensional space, which is further
compressed into 128 and then 64 dimensions. Finally, the model outputs a vector of dimensions
corresponding to the number of classes. Each of these fully connected layers is followed by ReLU
activations, except for the final output layer.

• Graph Conv Layers: Three layers with dimensions 32, 64, and 128

• Batch Normalization: Applied after each Graph Conv layer

• Fully Connected Layers: Layers with dimensions 256, 128, and 64

• Dropout: Applied after each ReLU activation with a rate of 0.5

In summary, the model is engineered to capture more complex relationships in the data, at
the cost of increased computational requirements and a higher risk of overfitting, especially
when trained on small or less diverse datasets. The dropout and batch normalization layers are
integrated to combat overfitting to some extent.

The current chapter has been an overview of the dataset, development environment, and
tools used for this thesis. In the next chapter, we will dive deeper into developed programs,
experimentations conducted and subsequent results.
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4 Results

The following section describes the experimental setup, the used and generated datasets as well
as parameters to conclude with the experimental results achieved.

4.1 Developed programs

Many programs have been developed for the need of the present thesis. Early data exploration
scripts have paved the way towards efficient highly parallel programs in both Rust and Python
for data analysis, graph and embedding generation of ML and DL tested on different models and
contexts. All the necessary concepts and methods have been introduced previously, so it is now
time to present those main program in details.

4.1.1 Mem2Graph

The present report has already presented the Mem2Graph program throughout the heap dump
memory parsing algorithm, graph construction and embeddings. This program has been developed
in Rust and is an active collaboration between the author and Clément Lahoche, another PhDTrack
student at Passau. The program is available on GitHub at https://github.com/passau-mastera
rbeit-2023/mem2graph.

The program is composed of several layers that build on top of each other. The first layer is
dedicated into loading a RAW heap dump file with its annotation JSON file, performs some checks
and prepare the data for further analysis. The next one performs the graph construction following
the algorithms introduced in the Methods section. Another layer performs some annotations of
the nodes. The final layer is more versatile and dependent on the input program parameters. For
the need of this report, several pipelines of memgraph with and without embeddings have been
added, namely graph and graph-with-embedding-comments. The first pipeline doesn’t perform
any embedding and export the memory graph to a text file following the DOT format [4]. The
second pipeline performs the same operations, but also exports the memory graph with the
embeddings as comments in the DOT file.

Since the prediction effort is focused on memory chunks, this embedding is generally called with
the -no-value-node parameter, which transform the memory graph from a graph of blocks of 8
bytes, into a memory graph of memory chunks, connected by their pointers inside their respective
user data space. Several chunk node embeddings have been implemented, and the user can choose
which one to use. The chunk node embeddings are the following: chunk-semantic-embedding,
chunk-statistic-embedding, and chunk-start-bytes-embedding.

4.1.2 Machine Learning Pipelines Runner

When working with machine learning, Python is a dominant language, benefiting from a rich
ecosystem of libraries and frameworks.

The project leverages a wide range of Python libraries to build comprehensive machine learning
pipelines:
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• NetworkX for graph-based data structures and algorithms.

• PyGraphviz for graph visualization.

• Torch for tensor computations and building neural networks.

• Scikit-learn for classical machine learning algorithms.

• Pandas for data manipulation and analysis.

• NumPy for numerical computations.

• Matplotlib for data visualization.

• Torch-Geometric for Geometric Deep Learning extensions for PyTorch.

The program encompasses a variety of machine learning models to compare how different
models react to the embeddings and representations developed earlier. It includes classical
machine learning models from the Scikit-learn library, such as Random Forest, Stochastic Gradient
Descent (SGD), and Logistic Regression. These models serve a point of comparison since they
don’t rely on graph-based data structures and algorithms.

The program also includes Graph Convolutional Network (GCN) models built on top of PyTorch
and Torch-Geometric. These models are more complex and powerful, leveraging the graph
structure and embeddings to achieve better results. Those models specifically leverage graph-
based embeddings and input data, generated using the Node2Vec algorithm to create dense and
continuous node features that can be used for subsequent analysis or machine learning tasks.

Main Pipelines: The program is organized around three main pipelines:

1. GCN Pipeline: For Graph Convolutional Network models, built using libraries such as Torch
and Torch-Geometric.

2. Classical ML Pipeline: Leveraging algorithms like Random Forest, SGD, and Logistic Regres-
sion from Scikit-learn.

3. Feature Evaluation Pipeline: Primarily aimed at evaluating the quality and importance of
generated features or graph embeddings.

4.1.3 Other programs

A lot of other programs have been developed for the need of this thesis, but they are not as
important as the ones presented above. Those scripts and short program have been developed for
several purposes:

• Data exploration: Several scripts have been developed to explore the data, and to under-
stand the structure of the heap dump files, the annotations, and the memory graphs.

• Heap Dump parsing algorithm testers: Several scripts have been developed to test the
heap dump parsing algorithms, and to ensure that the algorithms are working as intended
on all possible situations.
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• Graph and embedding generation testers: Others have been developed to test the graph
and embedding generation algorithms, and to ensure that the algorithms are working as
intended on all possible situations.

• Result visualization, analysis and latex generators: Later in the report, the results
will be presented and discussed. Several scripts have been developed to generate the latex
tables and plots, and to analyze the results.

All those programs represent a consequent amount of work, and have been invaluable to the
success of this thesis. Using CLOC (Count Lines of Code), a command-line utility that can count
lines of code in various languages, the following statistics have been obtained:

1 cloc mem2graph research-base predicting_ssh_key_masterarbeit_report
phdtrack_server_scripts phdtrack_project_3 memory_graph_gcn
data_processing_masterarbeit --exclude-dir=.venv

Listing 4.1: Command used to count the number of lines of code in the phdtrack directory,
containing the reposiroties of the present thesis.

The following table shows the number of lines of code for each programming language used in
the present thesis:

Table 4.1: Code Statistics for Masterarbeit
Language Files Blank Lines Comments Code Lines
CSV 867 0 0 158305697
Text 25 272 0 50073
Python 132 2326 2682 8050
Rust 50 1343 1149 6823
TeX 28 963 141 6636
Markdown 33 1016 0 2375
JSON 1345 1 0 1677
Jupyter Notebook 2 0 1811 381
Nix 12 50 31 290
TOML 1 2 1 22
Bourne Shell 3 8 8 18
make 1 8 3 18
Dockerfile 1 1 0 2

In the context of this thesis, three programming languages stand out for their specialized roles:
Python, Rust, and Nix. Python is predominantly used for the machine learning pipeline, offering
ease of use and a rich ecosystem for data science tasks. Rust serves as the backbone for the
Mem2Graph program, providing the efficiency required for graph construction and manipulation.
Nix is employed for package management and building, ensuring reproducibility across different
computing environments. These languages complement each other well, with Python offering
high-level abstractions for machine learning, and Rust providing low-level control for performance-
critical tasks. Additionally, CSV files are utilized to store model results. TeX is used for generating
this report, highlighting the diverse yet complementary set of tools and languages employed in
this research.
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4.2 Experimental Setup

The experimental setup serves as the backbone of this research, providing a structured framework
for conducting large-scale experiments on the server. This section delves into the intricacies of
the setup, detailing the steps involved and the tools used. It also includes selected program output
logs to offer a granular view of the program parameters, environment, and usage.

The elements discussed in this section are not merely illustrative; they offer invaluable insights
into the challenges encountered during the experiments. These details are particularly crucial
when discussing the large-scale experiments, as they provide a comprehensive understanding of
the various facets involved.

The final experiments were conducted in a systematic manner, following these steps:

1. Data Cleaning: The original Zenodo dataset was cleaned to produce a RAW heap dump
dataset, serving as the foundational data for the experiments.

2. Graph and Embedding Generation: The Mem2Graph Rust program was employed to
generate graphs along with their embeddings. A Python launcher script facilitated the
generation of multiple memgraph datasets, each with varying combinations of program
parameters.

3. Data Preloading and Validation: A sanity check Python program was used for data preload-
ing and validation, ensuring the integrity and consistency of the data before proceeding to
the experimental phase.

4. ML and DL GCN Pipelines: The main Python program was responsible for the seamless
launching of data science tasks, machine learning training, and model evaluation. It was
designed to cover a predefined range of parameters and model hyperparameters.

5. Result Collection and Evaluation: The final step involved the collection, evaluation, and
visualization of the results. Error handling mechanisms were in place to make necessary
corrections and prepare for the next iteration of experiments. This step also facilitated the
confrontation of hypotheses and research questions.

Initial small-scale tests were conducted on a laptop to validate the programs and their results.
The final, large-scale experiments were carried out on the Drogon server, equipped with 80 threads
and 256 GB of RAM. The computational resources provided by the University of Passau have been
invaluable for conducting these experiments, sometimes running for several days straight.

4.2.1 Generation of the memgraph datasets

Using Mem2Graph powerful features, it is possible to generate several memgraph datasets with
different parameters. The following command has been used to generate 6 memgraph datasets,
each containing 26202 graphs, for a total of 157212 graphs. Those datasets account for different
chunk node embeddings and a potential additional filtering feature. The command is run on the
Drogon server, with 80 threads.

1 [2023-10-24T20:42:44 UTC][INFO mem_to_graph::exe_pipeline::pipeline] OK [t: worker
-63] [N*202 / 26202 files] [fid: 8683-1650977906] (Nb samples: 0)
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2 [2023-10-24T20:42:44 UTC][INFO mem_to_graph::graph_data::heap_dump_data] FILE heap
dump raw file path: "/root/phdtrack/phdtrack_data_clean/Performance_Test/V_8_1_P1
/32/8794-1650977906-heap.raw"

3 [2023-10-24T20:42:44 UTC][INFO mem_to_graph::exe_pipeline::pipeline] OK [t: worker
-63] [N*203 / 26202 files] [fid: 8794-1650977906] (Nb samples: 0)

4 [2023-10-24T20:42:44 UTC][INFO mem_to_graph::exe_pipeline::pipeline] TIME [total
pipeline time: 114.84s]

5 100%|##############################| 6/6 [1:07:15<00:00, 672.62s/it]
6 Finished! Total time: hours: 1, minutes: 7, seconds: 15 (Drogon Server)

Listing 4.2: Sample of final logs of the Mem2Graph program, after generating 6 memgraph datasets
from the cleaned heap dump dataset.

It took a little more than an hour to generate 6 memgraph datasets, each containing 26202
graphs. The total number of graphs generated is 157212. The generated memgraph datasets are
stored in the data/ directory, as follows:

Figure 4.1: Illustration of the Data Directory Structure

/data

0_graph_with_embedding_comments_-v_-a_chunk-header-node_-c_-

chunk-semantic-embedding_-e_none_-s_none

1_graph_with_embedding_comments_-v_-a_chunk-header-node_-c_-

chunk-statistic-embedding_-e_none_-s_none

2_graph_with_embedding_comments_-v_-a_chunk-header-node_-c_-

chunk-start-bytes-embedding_-e_none_-s_none

3_graph_with_embedding_comments_-v_-a_chunk-header-node_-c_-

chunk-semantic-embedding_-e_only-max-entropy_-s_activate

4_graph_with_embedding_comments_-v_-a_chunk-header-node_-c_-

chunk-statistic-embedding_-e_only-max-entropy_-s_activate

5_graph_with_embedding_comments_-v_-a_chunk-header-node_-c_-

chunk-start-bytes-embedding_-e_only-max-entropy_-s_activate

As one can see, the dataset directory names are composed with the most important Mem2Graph
program parameters, responsible for some feature and embedding generations. The -e flag,
short for -entropy-filter is responsible for the filtering using the Shannon entropy, the -s for
-chunk-byte-size-filter for chunk byte size filtering. The -c, -graph-comment-embedding-type
controls the custom embedding being save alongside each node in the generated .GV memgraph
files.

4.2.2 Sanity checking and preloading the generated memgraph datasets

Loading the graph from DOT files into NetworkX graph in Python is a resource intensive operation
that consumes all the available computing power on all tested platforms (laptop, servers). It
takes several dozens of seconds up to a minute to load a memory graph containing only around
1000 chunk nodes. It has been experimented that saving those loaded graphs using the pickle
python library allows to perform checks while loading the graph, add more information about
each graph. The subsequent retrieval of the graph is much faster, and allows to perform the
sanity checks before any further processing. So to verify the memory graph dataset generation as

94



well as transforming DOT files into pre-saved NetworkX graph, a sanity checking script has been
developed.

Below is a sample of the logs generated by the sanity check script:

1 * Running program...
2 Passed program params:
3 param[0]: src/sanity_check_gv_files.py
4 param[1]: -k
5 Parsed program params:
6 keep_old_output: True
7 skip_dir_starting_with_number: None
8 dry_run: False
9 * Now, performing data loading and sanity checks...

10 * Looking for Mem2Graph dataset directories in /root/phdtrack/mem2graph/data...
11 * Skipping .gitignore...
12 * Found 6 Mem2Graph dataset directories.
13 [...]
14 Loading graphs: 100%|##########| 26201/26202 [3:22:17<00:00, 1.17it/s]
15 Loading graphs: 100%|##########| 26202/26202 [3:22:25<00:00, 3.19s/it]
16 Loading graphs: 100%|##########| 26202/26202 [3:22:25<00:00, 2.16it/s]
17 * Checking embedding length of graphs in /root/phdtrack/mem2graph/data/5_graph_with_

embedding_comments_-v_-a_chunk-header-node_-c_chunk-start-bytes-embedding_-e_only
-max-entropy_-s_activate...

18 -> [x] 26202 graphs in /root/phdtrack/mem2graph/data/5_graph_with_embedding_comments_-
v_-a_chunk-header-node_-c_chunk-start-bytes-embedding_-e_only-max-entropy_-s_

activate have been loaded and checked.
19 -> [_] 0 graphs in /root/phdtrack/mem2graph/data/5_graph_with_embedding_comments_-v_-a

_chunk-header-node_-c_chunk-start-bytes-embedding_-e_only-max-entropy_-s_activate
have been skipped (deleted).

20 [x] 157212 total graphs in the input mem2graph dataset dir paths have been loaded and
checked.

21 [_] 0 total graphs in the input mem2graph dataset dir paths have been skipped (deleted
).

22 <END> Program took: 42626.062309 total sec (11h 50m 26s)

Listing 4.3: Result logs of the memory_graph_gcn/src/sanity_check_gv_files.py program.

The sanity checking file can be considered very long to run, having taken almost 12 hours
straight, but it is a necessary step to ensure the quality of the generated memgraph datasets. It is
also a good way to check the validity of the generated embeddings, and to ensure that the graphs
are re-exported as NetworkX graphs that can be loaded much faster than the original DOT files.

4.2.3 Launching the experiments

Two pass of experiments have been conducted, with the exact same parameters and input
memgraph dataset. Contrary to expectations, the experiments were much faster on the laptop
that on the Drogon server.

• Time take for the experiments on the laptop: 12h 31m 53s

• Time take for the experiments on the Drogon server: 29h 17m 57s

The experiments have been launched using the following command (here, on Drogon server):
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1 nohup python src/main_gcn.py -i /root/phdtrack/phdtrack\_data\_clean/ -p gcn-pipeline
classic-ml-pipeline feature-evaluation-pipeline -b 6 -a -q -n 16 > output\_ml\_

2023\_10\_27\_16h\_35.log 2>&1 &

Listing 4.4: Command used to launch final experiments, on Drogon server.

Using nohup and redirecting the output to a log file allows the experiments to run in the
background and enables the retrieval of the output at a later time. The command specifies the
input directory containing the annotated DOT (.gv) graph directory with the -i flag. All three
pipelines are chosen: gcn-pipeline, classic-ml-pipeline, and feature-evaluation-pipeline,
as indicated by the -p flag. The batch size for parallel processing is set to 6 using the -b flag, and
the -a flag indicates the use of all available Mem2Graph datasets. The -q flag enables quiet mode
for Node2Vec, and the -n flag specifies the use of 16 input graphs.

4.2.4 Dealing with hyperparameter tuning

In the quest to optimize the performance of both ML and DL models, hyperparameter tuning
plays a crucial role. This section elaborates on the various strategies and tools employed for
hyperparameter tuning in this research.

• Precise Command Lines for Tuning: The compute instances and experiment parameters
can be finely tuned using precise command-line options. This flexibility allows for a more tar-
geted approach to model optimization, enabling the user to specify various hyperparameters
and settings right from the terminal.

• Python Program for Experiment Launch: A dedicated Python program has been devel-
oped to automate the launching of ML, GCN and FE pipelines. This program takes different
hyperparameters as input and initiates the corresponding experiments, thereby streamlining
the entire process.

• Automatic Logging in CSV: All the results from each experiment, along with the hyperpa-
rameters used, are automatically logged into a CSV file. This facilitates easy tracking and
comparison of different model configurations and their corresponding performances.

• Timestamps and Duration Steps: Each experiment is meticulously logged with precise
timestamps and duration steps. This includes the time taken for generating embeddings, as
well as the time required for the training and testing phases. Such detailed logging aids in
identifying bottlenecks and optimizing the pipeline further.

• Extensive Experimentation: Over the course of this research, thousands of experiments
have been conducted. These experiments span a wide range of parameters, models, and
embeddings, providing a comprehensive understanding of the model behaviors and their
sensitivities to different hyperparameters.

• Automated Result Analysis and Visualization: To aid in the interpretation of the exten-
sive experimental results, automated scripts have been developed for result analysis and
visualization. These scripts generate various plots and metrics that provide insights into the
performance and reliability of the different models and configurations.

Of all the parameters, the model types, their respective hyperparameters, the combinations
of possible embeddings with their own parameters, and the number of input graphs are the
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most important. All those parameters explains the large number of experiments that have been
conducted, and the need for a precise and automated way to launch them.

4.2.4.1 Limited number of input graphs due to compute time and memory usage

It also explains why the input number of memgraphs has been limited to 16, as it is already a very
large number of experiments to run. Each file taking several dozens of seconds to be transformed
into an embedding, this represents around 10 minutes just for the embedding generation phase,
for each pipeline. With more than 600 pipelines to run, this already represents dozens of hours of
compute time. Depending on the context and model, the training and evaluation phases are also
time-consuming, and the more input graphs there are, the longer it takes to train and test the
model.

The compute time is not the only issue with dealing with a large number of input graphs. The
memory usage is also a problem, as the memory usage increases linearly with the number of input
graphs. The parallel processing of only 6 pipelines having 16 memgraphs as inputs generally
represents between 16 and 50 GB of RAM usage, depending on the model and the embedding used.
Due to this, all tests consisting of trying to run this already limited number of input graphs on the
GPU have failed, as the GPU memory is not sufficient to handle the memory usage of the program.
The slowness of the CPU alongside memory bandwidth limitations are the main bottlenecks of the
program, and the main reasons why the number of input graphs has been limited to 16.

4.2.4.2 Parallel launch of experiments for hyperparameters tuning

To maximize efficiency and expedite the research process, a Python program was developed
to launch multiple experiments in parallel. This approach allows for simultaneous testing of
various input graphs, machine learning and deep learning models, embedding techniques, and
hyperparameters. By leveraging parallel computing, the program significantly reduces the time
required for extensive experimentation, thereby accelerating the overall research and development
cycle.

Below are the hyperparameters used during the main experiments, as stored in the hyperparams.json
file:

1 {
2 "node2vec_dimensions_range": [128],
3 "node2vec_walk_length_range": [16],
4 "node2vec_num_walks_range": [50],
5 "node2vec_p_range": [0.5, 1.0, 1.5],
6 "node2vec_q_range": [0.5, 1.0, 1.5],
7 "node2vec_window_range": [10],
8 "node2vec_batch_words_range": [8],
9 "node2vec_workers_range": [16],

10 "randomforest_trees_range": [100, 500, 1000],
11 "gcn_training_epochs_range": [20]
12 }

Listing 4.5: JSON hyperparameters used during experiments

Even though the above JSON file shows the hyperparameters selected for the large scale final
experiments, pre-experiments have been previously conducted to find some usable values. Due
to compute time limitations, the ranges of hyperparameters have been limited to a few values,
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and the number of input graphs has been limited to 16. The following JSON file shows the
hyperparameters used during the pre-experiments:

1 {
2 "node2vec_dimensions_range": [16, 32, 128],
3 "node2vec_walk_length_range": [16, 32],
4 "node2vec_num_walks_range": [50, 100],
5 "node2vec_p_range": [0.5, 1.0, 1.5],
6 "node2vec_q_range": [0.5, 1.0, 1.5],
7 "node2vec_window_range": [10, 20],
8 "node2vec_batch_words_range": [4, 8, 16],
9 "node2vec_workers_range": [16, 32],

10 "randomforest_trees_range": [100, 500, 1000],
11 "gcn_training_epochs_range": [5, 10, 20]
12 }

Listing 4.6: JSON hyperparameters used during experiments

Several observations were made during the early experiments concerning the impact of different
hyperparameters on the model’s performance, especially concerning the Node2Vec parameters.
The following observations were made:

• Walk Length and Number of Walks: Increasing the number of walks and the walk length
generally improved the model’s performance. However, this came at the cost of significantly
increased computational time. The benefits plateaued after reaching a certain threshold.

• Number of Dimensions: A higher number of dimensions generally led to better results.
Lower values were found to be detrimental to the model’s performance, indicating the
importance of this parameter.

• Impact of p and q: The parameters p and q had an unpredictable impact on the model’s
performance. While some combinations seemed to yield better results, no clear pattern was
observed, making these parameters challenging to optimize.

• Batch Word Range: The range of batch words had a minimal impact on the model’s
performance. As a result, an intermediate value was selected for this parameter to balance
computational efficiency and performance.

These observations provide valuable insights into the behavior of the models under different
hyperparameter settings and serve as a guide for future experiments.

4.2.4.3 Description of the results.csv File

The *results.csv files are used to store the results of machine learning and deep learning
classifiers, including Graph Convolutional Networks (GCNs) and classical classifiers like Random
Forest. The files are regular CSVs organized with the following headers:

• system: The operating system on which the experiment was run. Here, Linux.

• node_name: The name of the node in the cluster. Here, either nixos (local machine) or
rascoussie (lab server).

• release, version: OS release and version information.
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• machine, processor: Hardware details.

• physical_cores, total_cores: Number of physical and total cores.

• total_memory, available_memory: Total and available memory in bytes.

• start_time: The start time of the experiment.

• nb_input_graphs: Number of input graphs.

• duration_embedding: Time taken for embedding.

• subpipeline_name, index, pipeline_name: Information about the pipeline model used,
with values like sgd-classifier or gcn-with-dropout.

• input_mem2graph_dataset_dir_path: Path to the dataset directory.

• node_embedding: Type of node embedding used. Several values are possible, like solo
embeddings like chunk-header-node or node2vec, or combined embeddings like node2vec-
chunk-semantic-embedding.

• node2vec_*: Parameters for the Node2Vec algorithm, like the number of walks, the walk
length, the window size, the number of dimensions, the number of epochs, and the p and q
parameters.

• random_forest_*: Parameters for the Random Forest algorithm, like the number of estima-
tors (trees) or the number of parallel jobs.

• imbalance_ratio: Ratio of the classes in the dataset. For instance, a value of 496.33 means
that the dataset contains 496.33 times more negative samples than positive samples. Since
no filtering is applied, the ratio is always greater than 1, and generally very high.

• precision_class_*, recall_class_*, f1_score_class_*, support_class_*: Metrics for each
class.

• true_positives, true_negatives, false_positives, false_negatives: Confusion matrix ele-
ments.

• AUC: Area under the ROC curve.

• duration_train_test: Time taken for training and testing.

• nb_node_features: Number of node features. This value directly depends on the node
embedding used, and the input memory graph dataset parameters used during generation.

• first_gcn_training_epochs: Number of epochs in GCN training phase.

Each row in the *results.csv files represents a single experiment run with a specific config-
uration and its corresponding results. Keeping a precise track of the parameters used for each
experiment is crucial for reproducibility and traceability. They also form the basis for the analysis
and visualization of the results.
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4.3 Obtained Results

This section presents a comprehensive overview of the results obtained with the final experimenta-
tion. The outcomes are detailed in multiple formats, including correlation matrices, performance
metrics tables, and visualizations, to provide a precise understanding of the model performances.
The aim is to elucidate the effectiveness of different features and embeddings in the context of
our machine learning pipelines. In-depth discussions on these results will be reserved for the
following "Discussions" part.

4.3.1 Feature Engineering results

This section delves into the results obtained from the feature engineering efforts carried out
during the experiments. The results are presented in multiple correlation matrices.
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Figure 4.2: Feature correlation matrices on the different Mem2Graph-generated datasets. Used
algorithm: Kendall.
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Figure 4.3: Feature correlation matrices on the different Mem2Graph-generated datasets. Used
algorithm: Pearson.
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Figure 4.4: Feature correlation matrices on the different Mem2Graph-generated datasets. Used
algorithm: Spearman.

4.3.2 Classic Model results

Tables are provided to summarize the performance of different pipelines and models. These tables
include four classical machine learning metrics: precision, recall, F1 score, and the Area Under
the Curve (AUC). Each table offers a snapshot of how well each model performs on the key chunk
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prediction task.

Table 4.2: Best instances of model: logistic-regression.
Best at Precision Recall F1 Score AUC
precision 1.0000 0.0417 0.0800 0.5208
recall 0.3333 0.5000 0.4000 0.7471
f1 score 0.3333 0.5000 0.4000 0.7471
AUC 0.2449 0.5000 0.3288 0.7486

Table 4.3: Best instances of model: random-forest.
Best at Precision Recall F1 Score AUC
precision 1.0000 0.0417 0.0800 0.5208
recall 1.0000 0.0833 0.1538 0.5417
f1 score 1.0000 0.0833 0.1538 0.5417
AUC 1.0000 0.0833 0.1538 0.5417

Table 4.4: Best instances of model: sgd-classifier.
Best at Precision Recall F1 Score AUC
precision 1.0000 0.0417 0.0800 0.5208
recall 0.4615 1.0000 0.6316 0.9962
f1 score 0.4615 1.0000 0.6316 0.9962
AUC 0.4615 1.0000 0.6316 0.9962

4.3.3 Deep Learning GCN Model results

Best models obtained after the hyperparameter search, on a range of embeddings and models,
this time focusing on the GCN models.

Table 4.5: Best instances of model: very-simple-gcn.
Best at Precision Recall F1 Score AUC
precision 0.6000 0.5000 0.5455 0.7489
recall 0.2609 1.0000 0.4138 0.9907
f1 score 0.6000 0.5000 0.5455 0.7489
AUC 0.2609 1.0000 0.4138 0.9907

Table 4.6: Best instances of model: simple-gcn.
Best at Precision Recall F1 Score AUC
precision 0.5000 0.5000 0.5000 0.7484
recall 0.2308 1.0000 0.3750 0.9891
f1 score 0.5000 0.5000 0.5000 0.7484
AUC 0.2609 1.0000 0.4138 0.9907
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Table 4.7: Best instances of model: first-gcn.
Best at Precision Recall F1 Score AUC
precision 0.5000 0.5000 0.5000 0.7484
recall 0.2727 1.0000 0.4286 0.9913
f1 score 0.5000 0.5000 0.5000 0.7484
AUC 0.2727 1.0000 0.4286 0.9913

Table 4.8: Best instances of model: gcn-with-dropout.
Best at Precision Recall F1 Score AUC
precision 0.3500 0.2333 0.2800 0.6152
recall 0.0863 0.8000 0.1558 0.8810
f1 score 0.2110 0.7667 0.3309 0.8767
AUC 0.0863 0.8000 0.1558 0.8810

Table 4.9: Best instances of model: advanced-gcn.
Best at Precision Recall F1 Score AUC
precision 0.2097 0.4333 0.2826 0.7129
recall 0.0533 0.9000 0.1006 0.8943
f1 score 0.2097 0.4333 0.2826 0.7129
AUC 0.1552 0.9000 0.2647 0.9390

4.4 Compared Performances of models and embeddings

In our experiments, we limited the analysis to a maximum of 16 input graphs, which may appear
to be a relatively low number. However, this limitation was necessary due to the extensive range
of hyperparameters, embeddings, and models that we aimed to evaluate. Despite this constraint,
we were able to run a total of 7976 machine learning pipelines, accumulating over 100 hours
of compute time. This extensive computational effort underscores the complexity and depth of
the feature engineering and model evaluation processes undertaken in this study. The following
tables and visualizations provide a comprehensive overview of the results obtained from these
experiments.

Table 4.10: Results for the model very-simple-gcn
Model Best Precision Best Recall Best F1 Score Best AUC
advanced-gcn 0.2097 0.9000 0.2826 0.9390
first-gcn 0.5000 1.0000 0.5000 0.9913
gcn-with-dropout 0.3500 0.8000 0.3309 0.8810
logistic-regression 1.0000 0.5000 0.4000 0.7486
random-forest 1.0000 0.0833 0.1538 0.5417
sgd-classifier 1.0000 1.0000 0.6316 0.9962
simple-gcn 0.5000 1.0000 0.5000 0.9907
very-simple-gcn 0.6000 1.0000 0.5455 0.9907

In addition to the tabular data, we also offer visualizations to facilitate a more intuitive compari-
son between models and embeddings. These graphical representations aim to make the complex
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data more digestible and provide insights that may not be immediately obvious from the tables
alone.

Figure 4.5: Visualization of the result metrics use to compare model performance on memory
graphs, for different embeddings and hyperparameters.
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Figure 4.6: Visualization of the result metrics use to compare model performance per memory
graph node embedding strategies.

It’s worth noting that while this section provides a detailed account of the results, an in-depth
discussion about these findings, their implications, and potential future work will be covered in
the following "Discussions" section.
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5 Discussion

In the previous chapter, the results of the experiments were presented. This chapter aims
to provide an in-depth discussion of those results, as well as to identify the limitations of the
experiments and to propose avenues for future research.

5.1 Discussion of the results

The following subsections will discuss the results obtained in the experiments, and will provide
insights into the performance of the different models, as well as the impact of the different features
and embeddings on the performance of the models.

5.1.1 Objectives of the experiments

The primary objectives of the experiments conducted in this study are multi-faceted. First and
foremost, we aim to demonstrate the feasibility of utilizing machine learning and deep learning
models to predict chunks with keys in the OpenSSH program based on a graph-like representation
of the heap dump files provided in the original dataset. To achieve this, we employ a range of
algorithms to extract features from memory graphs, or ’memgraphs’. These algorithms include not
only custom solutions tailored to our specific needs but also well-established, powerful algorithms
like Node2Vec. Furthermore, we seek to evaluate the impact of these diverse features on the
performance metrics of the predictive models. Lastly, we compare the performances of various
models to identify the most effective approaches for our specific use-case.

5.1.2 Discussing features and embeddings

In this section, we delve into the intricacies of the features and embeddings used in our ex-
periments, focusing particularly on their interrelationships as revealed by correlation matrices.
Correlation matrices provide a quantitative measure of how different features of custom em-
beddings relate to each other. Each cell in the matrix represents the correlation coefficient
between two features, which ranges from -1 to 1. A high positive value indicates a strong positive
correlation, meaning that as one feature increases, the other tends to also increase. A negative
value would indicate the opposite.

It’s worth noting that performing this analysis on Node2Vec embeddings is generally considered
irrelevant. Node2Vec embeddings are designed to capture the neighborhood structure of nodes in
a way that is optimized for machine learning tasks, and their dimensions do not have an easily
interpretable meaning. Therefore, analyzing the correlation between different dimensions of a
Node2Vec embedding is unlikely to provide insights that are useful for feature engineering.

To interpret the correlation matrices, we use a color-coded system where red signifies high cor-
relation and blue signifies low or no correlation. In the context of machine learning, understanding
feature correlation is crucial for several reasons:

• Feature Selection: Highly correlated features carry redundant information, which may not
only be unnecessary but can also lead to overfitting and poor generalization.
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• Interpretability: Understanding how features are correlated can provide insights into the
underlying structure of the data and the problem being solved.

• Computational Efficiency: Eliminating correlated features can reduce the dimensionality
of the problem, making the model simpler and faster to train.

Therefore, the correlation matrices serve as a valuable tool for both feature selection and model
interpretation. In that context, and looking at the correlation matrices provided for the different
algorithms like Pearson, Spearman, and Kendall correlation, we can see that the correlation
between the different features is generally very low, meaning that the features are not correlated
to each other. This is a good thing, as it means that the features are not redundant, and that they
are all bringing new information to the model. No matter the correlation algorithm used, the
matrices look very similar, and the correlation between the features is very low. The only features
that stands a bit from the rest are the features corresponding to the filtering and entropy. This is
actually just a sign that the entropy was indeed used in the filtering algorithm, since key chunks
are generally more entropic than non-key chunks. In practice, that’s also why the experiments
have been run with and without this filtering feature.

5.1.3 Classic ML models performances

In this subsection, we discuss the performance of three tested classical binary classification
machine learning models, namely Logistic Regression, Random Forest, and SGD Classifier, in the
context of key chunk prediction. The models were evaluated based on four key metrics: Precision,
Recall, F1 Score, and AUC (Area Under the Curve).

5.1.3.1 Logistic Regression

The Logistic Regression model excels in precision with a perfect score of 1.0000 but falls short
in recall, F1 score, and AUC. The model is highly precise but fails to capture the majority of the
positive instances, as indicated by the low recall of 0.0417. This suggests that while the model
makes very few false-positive errors, it misses a large number of true positives.

5.1.3.2 Random Forest

Random Forest shows excellent precision at the expense of recall. It has a high precision of 1.0000
but a very low recall of 0.0833, indicating that it is precise but not sensitive. The AUC of 0.5417
suggests that the model’s ability to distinguish between the classes is slightly better than random
guessing.

5.1.3.3 SGD Classifier

The SGD Classifier stands out in terms of recall and AUC, both scoring close to a perfect score This
indicates that the model is excellent at identifying all the positive instances and distinguishing
between the two classes. However, its precision isn’t always perfect, suggesting a higher rate of
false positives.
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5.1.3.4 Comparison

Upon comparing the three models, it’s evident that each has its own strengths and weaknesses.
Logistic Regression has a much better overall recall than Random Forest which is very precise but
fails to find a lot of cases. However, SGD Classifier is clearly the best overall model here, since it
is highly sensitive and excellent in class separation but lacks in precision.

In summary, the SGD Classifier would be more appropriate in the binary classification task
of predicting is a chunk is a key chunk or not. Random Forest offers a balanced but mediocre
performance and could serve as a baseline model. Those models merely serve as a comparison
point for the deep learning models.

5.1.4 GCN models performances

In this subsection, we delve into the performance metrics of five different Graph Convolutional
Networks (GCN) models: Very Simple GCN, Simple GCN, First GCN, GCN with Dropout, and
Advanced GCN. These models were evaluated on the same four key metrics as the classical models:
Precision, Recall, F1 Score, and AUC.

5.1.4.1 Very Simple GCN

The Very Simple GCN model shows generally balanced performances. It’s worth noting that the
best instance of the model reached a perfect recall of 1.0000, indicating excellent sensitivity.
However, the precision of the model is at best only of 0.6000, suggesting a higher rate of false
positives. Its best instance having an AUC score of 0.9907 suggests excellent class separation
capabilities.

5.1.4.2 Simple GCN

This model has similar or slightly lower performance metrics to the Very Simple GCN, with a
precision and recall of 0.5000. The AUC score is slightly lower at 0.9891 but still indicates
excellent class separation.

5.1.4.3 First GCN

The First GCN model also looks very similar to the two previous models. Its best AUC instance
has a high AUC indicating excellent sensitivity and class separation.

5.1.4.4 GCN with Dropout

This model has the lowest precision among the GCN models at 0.3500 but shows a decent AUC
score of 0.8810. The model overall seems to be more sensitive, but less precise compare to the
simpler models introduced before. This was indeed expected due to the use of dropout, which is
known to increase sensitivity at the expense of precision.
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5.1.4.5 Advanced GCN

The Advanced GCN model, despite its complexity, does not outperform the simpler models in
this limited dataset. It displays the worst performances in precision, f1 score and AUC, but has
the best recall of all the GCN models, at 0.9000. This suggests that the model is very sensitive
but not very precise, which is not surprising considering the complexity of the model, and the
limited number of input memgraphs. This trend is likely to change if tested with a larger number
of training graphs.

5.1.4.6 Layer Complexity

It’s worth noting that the simpler models (Very Simple and Simple GCN) with only 2 layers tend to
perform better in this limited training dataset. This could be due to the low number of example
graphs, which might not be sufficient to train the more complex, 4-layer Advanced GCN model
effectively. Yet, the Advanced GCN model has the best recall of all the GCN models, suggesting
that it is more sensitive than the simpler models.

In summary, each GCN model has its own set of strengths and weaknesses. While some excel
in precision, others are more sensitive or better at class separation. The choice of model would
depend on the specific requirements of the task at hand.

5.1.5 Comparing the embeddings impact on the models

Based on the results of the experiments, it’s evident that the choice of embedding has a significant
impact on the performance of the models. As this can be seen in 4.4, and surprisingly, it seems
that the custom embeddings developed specifically for this research are actually not the best
performing embeddings. As such, adding the features from those custom embeddings to the
Node2Vec embeddings does not improve the performances of the models, but actually degrade
them. This is a very surprising result. The Node2Vec embedding is actually the best performing
embedding, no matter the model used, which is even more surprising, since the GCN models
were actively using the graph structure, which is not the case for the classic ML models. This
means that the Node2Vec embedding, which is purely based on the graph structure, is actually
the best performing embedding, and that the custom embeddings are not bringing any additional
information to the models. Thus, this demonstrates that the memgraph structure is in and on itself
sufficiently meaningful to perform the classification task.

It’s worth mentioning the master thesis of Clément Lahoche that actually dives deeper in the
question of embedding quality and impacts. His work displays significantly different results than
the ones obtained in this research about embeddings. It shows that the question of embeddings is
indeed a complex topic, and that the results can vary a lot depending on the dataset, the model,
and the approach used.

The big difference between this present work and his thesis is that he used a much larger
number of input memgraphs, but also that he actually perform a real rebalancing on the dataset
before training. This means that whereas the experiments perform in this work have been dealing
with a very high imbalance rate, his classifiers have been trained on a much better balanced
dataset. This is a huge difference, and it’s not surprising that the results are so different. The
reason why this thesis did not use active rebalancing is that we wanted to explore the impact of
learning on a full memgraph dataset, without alteration of those memgraphs. This is due to the
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fact that this work has been focused around those graphs and their equivalent in the classification
phase with GCNs that rely on the graph structure. The goal was to see if the graph structure was
enough to perform the classification, and the results are very promising. Results show that the
imbalance ratio is not a problem for the models, as they are able to perform well despite the very
high imbalance ratio.

5.1.6 Comparing GCN and classical ML models

In this subsection, we aim to compare the performance of classical machine learning models with
Graph Convolutional Networks (GCNs) for the task of key chunk prediction. The comparison is
based the results of the experiments, the best instances of each model on each metric, but also
the distribution of the metrics as illustrated in 4.4.

5.1.6.1 Overall Performance

For overall balanced performance, the SGD Classifier from the classical models and the Very
Simple GCN from the GCN models stand out. The SGD Classifier excels in recall and AUC, making
it highly sensitive and excellent in class separation, although it lacks in precision. On the other
hand, the Very Simple GCN shows balanced metrics across the board. It has a decent recall and
AUC, but its precision is not perfect. However, it is the best performing GCN model in terms of
precision.

5.1.6.2 Precision

If precision is the primary concern, then Logistic Regression and Random Forest from the classical
models and the Very Simple GCN from the GCN models are the best choices. Logistic Regression
and Random Forest both have a perfect precision score of 1.0000, while the Very Simple GCN has
a precision of 0.6000, which is the highest among the GCN models.

5.1.6.3 Recall

For applications where high recall is crucial, the SGD Classifier from the classical models and the
Advanced GCN from the GCN models are the most suitable. The SGD Classifier has a near-perfect
recall, while the Advanced GCN has the highest recall among the GCN models at 0.9000.

5.1.6.4 Class Separation (AUC)

If the ability to distinguish between classes is of utmost importance, then the SGD Classifier from
the classical models and the Very Simple GCN from the GCN models are the best options. Both
models have AUC scores close to 1, indicating excellent class separation capabilities, between key
and non-key chunks.
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5.1.6.5 Considerations for Small Datasets

It’s worth noting that the simpler GCN models (Very Simple and Simple GCN) tend to perform
better on the limited dataset used for training. This suggests that for small datasets, simpler
models may be more effective. The Advanced GCN model, despite its complexity, does not perform
as well but shows promise in terms of high recall, which could potentially improve with more
training data.

5.1.6.6 Summary

In summary, the choice of model would depend on the specific metric that is most important for
the task. For balanced performance, the SGD Classifier and Very Simple GCN are recommended.
For high precision, Logistic Regression or Very Simple GCN should be considered. For high
recall, the SGD Classifier or Advanced GCN would be the most appropriate. Finally, for excellent
class separation, the SGD Classifier and Very Simple GCN are the best choices according to the
experiments.

5.2 Limitations of the Experiments

While the experiments conducted offer valuable insights into the performance and capabilities of
the machine learning and deep learning classifiers, it is crucial to acknowledge the limitations that
were inherent in the experimental setup. These limitations range from computational resources
to the scale and duration of the experiments. Understanding these constraints is essential for
interpreting the results accurately and for identifying avenues for future research. This section
aims to discuss the following limitations in detail:

• Number of Compute Instances: The experiments were constrained by the available
number of compute instances, affecting the scale at which they could be conducted.

• Number of Input Graphs: The quantity of input graphs used in the experiments was rather
limited, which could impact the generalizability of the results.

• Duration of the Experiments: The time allocated for each experiment was finite, potentially
affecting the depth of the analysis.

• CPU-only Environment: The experiments were conducted in a CPU-only setting, without
the acceleration benefits that a GPU could offer, due to problems of memory consumption
being too high for the GPU. Additional work on this aspect could significantly improve the
performance of the experiments, especially the Node2Vec embedding generation.

• High Memory Bandwidth Usage: The experiments were characterized by high memory
bandwidth usage, which could have implications for performance.

The subsequent subsections will delve into each of these limitations, providing a comprehensive
understanding of their impact on the experiments.
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5.2.1 Limited number of input graphs

The number of input graphs is a parameter that can be easily changed, and the experiments
can be run again with a higher number of input graphs, but it would take a very long time to
run, and the results would be similar although improved to the ones obtained with 16 input
graphs. Improving the performances could be done essentially by recoding the program Node2Vec
embedding part and adding those results directly inside the Mem2Graph program. Leveraging
the Rust zero-abstraction costs philosophy, it would be possible to improve the performances by a
probable factor of 100 to 1000 times, and to run the experiments with a higher number of input
graphs. For ease of development and handling of the results, I would still recommend to perform
the machine learning related experiments using the powerful Python dedicated libraries.

That being said, it’s remarkable that the models can perform so well considering the very small
number of training memgraph and the very high imbalance ratio of the dataset. The imbalance
ratio is the ratio of the number of negative samples over the number of positive samples. In the
case of the dataset used in this research, the imbalance ratio is very high, ranging generally at
several hundred times more negative samples than positive samples. No rebalancing has been
performed on the dataset since we wanted to explore the impact of learning on a full memgraph
dataset, without alteration of those memgraphs.

The results obtained in this research are already very promising, and the imbalance ratio is not
a problem for the models, as they are able to perform very well despite the very high imbalance
ratio.

5.2.2 Duration of the experiments

Although a lot of efforts have been put to deal both with dataset reduction, for instance transform-
ing the initial block address prediction into a chunk address prediction problem, then optimizing
a lot of computing through the use of a dedicated Rust parallel and optimized program, then
using techniques like file preloading, the sheer number of hyperparameters and the number of
experiments to run, as well as the compute time for the Node2Vec embedding generation, make
the experiments very long to run.

Below are the duration times for the different steps of the experiments.

Table 5.1: Duration times for duration of embedding generation in ML/DL/FE pipeline (in seconds).
Model Min duration Max duration Min duration
advanced-gcn 506.5721079074733 1548.909129 0.129933
first-gcn 503.49931116140345 1548.909129 0.129933
gcn-with-dropout 506.5721079074733 1548.909129 0.129933
logistic-regression 505.3690870955711 1565.660571 0.06828
random-forest 505.3690870955711 1565.660571 0.06828
sgd-classifier 505.3690870955711 1565.660571 0.06828
simple-gcn 506.5721079074733 1548.909129 0.129933
very-simple-gcn 506.5721079074733 1548.909129 0.129933

Considering the tested models are not especially complex, and since the number of input
memgraph stays limited, the duration of the training and testing steps is actually quite small:
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Table 5.2: Duration times for duration of training and testing in ML/DL/FE pipeline (in seconds).
Model Min duration Max duration Min duration
advanced-gcn 10.843279690391459 496.664757 2.247229
first-gcn 5.5063934491228075 279.007307 0.583914
gcn-with-dropout 8.272014035587189 418.445809 0.905496
logistic-regression 1.3495811305361307 4.165722 0.362695
random-forest 11.72722453030303 48.723031 0.315739
sgd-classifier 0.6751382750582751 6.405859 0.020952
simple-gcn 4.337255024911032 163.587265 0.509536
very-simple-gcn 8.188304871886121 58.307836 0.242535

All those values have been produced only by the python pipeline program. The embedding
time is actually mostly accounting for the Node2Vec generation, since the other embeddings are
already loaded in memory as they are produced and included in the outputs of Mem2Graph. The
Node2Vec generation is the most time-consuming part of the pipeline, and it is the reason why
the experiments take so long to run. Transferring this algorithm into Mem2Graph would be a
huge improvement, and would allow to run the experiments with a much higher number of input
memgraphs.

Throughout this report, we have introduced a lot of concepts, diverse algorithms, and different
models. The experiments conducted in this research were limited in scope due to the focus around
a large set of models, embeddings and hyperparameters which already represented a consequent
amount of work and computational resources. However, there are many more avenues for future
research, which will be introduced with the conclusion of this report.
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6 Conclusion

The evolving landscape of cybersecurity necessitates robust techniques for safeguarding digital
communications. OpenSSH, a pivotal element in this landscape, is a popular implementation of
the Secure Shell (SSH) protocol, which enables secure communication between two networked
devices. The protocol is widely used in the industry, particularly in the context of remote access
to servers. Using digital forensic techniques, it is possible to extract the SSH keys from memory
dumps, which can then be used to decode encrypted communications thus allowing the monitoring
of controlled systems. At the crux of this Masterarbeit is the development of algorithms and
machine learning models to predict SSH keys within these heap dumps, focusing on using graph-
like-structures and vectorization for custom embeddings. With an interdisciplinary approach that
fuses traditional feature engineering with graph-based methods as well as memory modelization
for inductive reasoning and learning inspired by recent developments in Knowledge Graph (KG)s,
this research not only leverages existing machine learning paradigms but also explores new
avenues, such as Graph Convolutional Networks (GCN) applied to memory forensics. The present
work also introduces a new memory forensics tool, mem2graph, which is designed to be modular
and extensible, and which can be used to generate memory graphs from memory dumps.

6.1 Summary of Results

Below is a summary of the results achieved in the present work.

6.1.1 Dataset Exploration

A careful exploration of the dataset, and deep understanding of the original heap dumps have been
invaluable in discovering patterns in the raw data. This exploration has allowed the development
of a range of parsing algorithm able to extract information like structure and content of a given
heap dump.

It has been discovered that the problem of finding the address of keys in the heap dump can be
reduced to identifying the chunks that contain those keys. This allows to reduce the size of the
problems from around 100 000 of blocks per heap dump, to around 1000 chunks per file. This also
allows to concentrate the heap dump memory graph representation around the chunks.

It has also been demonstrated that two powerful chunk filtering techniques can drastically
reduce the number of chunks to consider. The first filter criterion consists in the Shannon’s
entropy value of a chunk user data start bytes. This is because the keys are expected to have a
high entropy compared to other raw data types. The second important criterion is the chunk byte
size. It has been shown that key chunks actually have a small size in the range of possible key
size. If filtering is not possible, as it is the case with GCN models, those filters can actually be
converted in powerful float and boolean features.

However, its worth noting that instead of doing active node filtering and data rebalancing, we
have run the experiments and model training and evaluation on full memory graphs with high
imbalance ratio. This is because we wanted to test GCN that are able to handle imbalanced data
with graphs of varying size, and because we wanted to test the ability of the GCN to learn from
the imbalanced data.
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6.1.2 Memory Graph Generation

This Masterarbeit has introduced a range of algorithms able to generate memory graphs from
memory dumps. The algorithms are designed to be as generic as possible, and can be applied to
any memory dump dataset. The algorithms are mostly implemented in the mem2graph program,
and many exploration and sanity checking scripts are also available in Python.

With those algorithms, it is possible to parse a RAW heap dump file, and transform it into a
memory graph, or memgraph. This graph is a data structure, where each node represents a
memory block with a precise address in the heap. Each edge represents either a pointer pointing
to another block, or materialize the fact that a block belongs to a specific chunk. In order to
reduce the size of the graph, it is possible to compact the block graph into a chunk graph, where
each node represents a chunk, and chunks are connected through their pointers. Those kinds of
graphs are only composed of Chunk Header Nodes whose address is considered the address of
the related chunk. This allows to reduce the size of the graph by a factor of 10 to 100.

6.1.3 Feature Engineering and Embeddings

The memory graph can be used to extract features from the memory dump, and to apply machine
learning algorithms to the memory dump. It can also be used for direct graph visualization. The
memory graph serves as a direct source of embedding whether they are made manually or using
readily available and tested techniques like RandomWalks or Node2Vec.

All those embeddings can be combined. The feature evaluation has shown that those features are
very lowly correlated, meaning that their quality is high. However, all those different embeddings
doesn’t have the same results on the ML and GCN models, depending on the strengths and
weaknesses of the different models.

However, it’s worth noting that the best results are always obtained when using the Node2Vec
embedding, no matter the type of model used. These observations are likely to be due to the fact
that Node2Vec is able to capture the structure of the graph, and that the structure of the graph is
the most important feature for the models, given a relatively small number of input memgraph
and considering that those memgraphs are highly imbalanced.

6.1.4 Conclusion on Model Performances

In this study, we compared the efficiency of classical machine learning models and Graph Con-
volutional Networks (GCN) in the task of key chunk prediction. Our findings indicate that the
choice of model largely depends on the specific metric of interest. For a balanced performance
encompassing recall, precision, and AUC, the SGD Classifier from the classical models and the
Very Simple GCN from the GCN models are the most promising.

If precision is the primary metric of concern, Logistic Regression and Random Forest from the
classical models excel with perfect scores, while the Very Simple GCN leads among the GCNs. For
scenarios where high recall is crucial, the SGD Classifier and the Advanced GCN model stand out.
Both models also perform exceptionally well in class separation, as indicated by their high AUC
scores.

It’s also worth noting that simpler GCN models like the Very Simple and Simple GCN tend to
perform better on limited datasets, suggesting their suitability for tasks with constrained data
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availability. In contrast, more complex models like the Advanced GCN show promise in terms of
high recall but require more extensive training data for optimal performance.

In summary, the optimal model selection is contingent upon the specific requirements of the
task, whether it be balanced performance, high precision, high recall, or excellent class separation.
The choice of model also depends on the availability of training data. For instance, if the dataset
is limited, a simpler GCN model like the Very Simple GCN is preferable. However, if the dataset is
extensive, a more complex model like the Advanced GCN is more suitable.

6.2 Outlook on Future Work

The current report, in conjunction with the associated Masterarbeit, has introduced numerous
novel algorithms and implementations. These have been instrumental in addressing the initial
research questions. However, as with most research endeavors, new queries and potential avenues
for enhancement have emerged, paving the way towards further exploration.

The methodologies and algorithms introduced for the OpenSSH memory dump dataset are
versatile and can be extended to other memory dump datasets utilizing the GLIBC library. Given
that this library is the default for Linux, adapting the methods from this Masterarbeit to other
applications requires minimal effort. The mem2graph program is inherently modular and built
for extensibility. Furthermore, this tool can be employed to produce memory graphs for diverse
datasets. Thanks to the universal character of the generated embeddings and memory graphs,
new datasets can be readily integrated into the ML and DL pipelines crafted in Python. While an
extensive array of features and embedding techniques have been explored in this report, there
remains ample opportunity for innovative experimentation.

For a seamless fusion of machine learning into the mem2graph program, further effort is
required. Embedding machine learning immediately post-memory graph creation can substantially
boost efficiency, particularly when aiming to craft a real-time OpenSSH memory forensics utility.
However, this integration is challenging due to the current limited ML support within Rust.

Another avenue for enhancement involves analyzing the effects of different C libraries on
allocated chunks and the layout of heap dump memory. Investigating various languages could also
be insightful. Depending on the level of variation encountered, modifications to the algorithms
might be required, especially concerning the architecture involved in generating or extracting
heap dump configurations. Pursuing this direction could significantly advance the development of
a universal machine learning-assisted memory forensics tool for key extraction.

While the background section underscores the vast array of ML architectures available, it’s
clear that not all can be thoroughly explored. This research has primarily addressed the most
common and promising ones, yet numerous others await investigation. The tools crafted to
bolster ML pipelines present a solid foundation for such endeavors. Another dimension to
consider is hyperparameter optimization. Given the constraints of time and resources, only
certain parameter ranges were tested. Expanding these tests, incorporating larger datasets, and
harnessing increased computational capacity can directly enhance performance.
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Appendix

.1 Code and files

1 strict digraph "17016-1643962152" {
2 "CHN(0x558343d21d40)" [label="CHN(1)" color="cyan" style=filled shape=square];
3 "CHN(0x558343d1a448)" [label="CHN(2)" color="cyan" style=filled shape=square];
4 "VN(0x558343d1a450)" [label="VN" color="grey" style=filled];
5 "VN(0x558343d1a458)" [label="VN" color="grey" style=filled];
6 "PN(0x558343d24ae8)" [label="PN" color="orange" style=filled shape=hexagon];
7 "KN_KEY_A(0x558343d29460)" [label="KN(A)" color="green" style=filled];
8 "KN_KEY_B(0x558343d2b960)" [label="KN(B)" color="green" style=filled];
9 "CHN(0x558343d21d40)" -> "KN_KEY_A(0x558343d29460)" [label="dts" weight=1]

10 "PN(0x558343d204e8)" -> "KN_KEY_A(0x558343d29460)" [label="ptr" weight=1]
11 "CHN(0x558343d21d40)" -> "KN_KEY_B(0x558343d2b960)" [label="dts" weight=1]
12 "PN(0x558343d2deb8)" -> "KN_KEY_B(0x558343d2b960)" [label="ptr" weight=1]
13 "CHN(0x558343d21d40)" -> "KN_KEY_C(0x558343d29080)" [label="dts" weight=1]
14 "PN(0x558343d204e0)" -> "KN_KEY_C(0x558343d29080)" [label="ptr" weight=1]
15 "PN(0x558343d24ae8)" -> "VN(0x558343d1a010)" [label="ptr" weight=1]
16 "PN(0x558343d1a240)" -> "VN(0x558343d20680)" [label="ptr" weight=1]
17 }

Listing 1: The DOT file of uncompressed block memgraph, here Training/basic/V_7_1_P1/24/17016-
1643962152-heap.raw, with real addresses. Output is cropped.
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.2 Memory Graphs

Figure 1: Visualization of the full memory graph generated from Training/scp/V_7_8_P1/16/302-
1644391327-heap.raw.

Figure 2: Visualization of the full memory graph generated from Training/basic/V_7_1_-
P1/24/17016-1643962152-heap.raw.
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Figure 3: Visualization of a truncated memory graph generated from Training/basic/V_7_1_-
P1/24/17016-1643962152-heap.raw. Here with real addresses.

Generated using a slightly different command, for better layout of the nodes:

1 sfdp -Gsize=30! -Goverlap=ortho -Tpng 17016-1643962152_truncated.gv >
17016-1643962152_truncated.png

Listing 2: Command used to generate the memory graph visualization of Training/basic/V_7_1_-
P1/24/17016-1643962152-heap.raw here using real addresses.
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Figure 4: Visualization of a chunk memory graph generated from Validation/Validation/basic/V_7_-
8_P1/24/8708-1643979488-heap.raw.

Figure 5: Visualization of a chunk memory graph generated from Training/Training/basic/V_6_8_-
P1/24/28621-1643890740-heap.raw.
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.3 Latest ML Experiment results

The following are the latest results for ML experiments. Those tables were generated after the
submission of the thesis.

Table 1: Best instance for each model, with respect to accuracy.
Model Accuracy Precision Recall F1 Score Embedding

random-forest 0.9984 1.0000 0.0833 0.1538 chunk-start-bytes

sgd-classifier 0.9984 0.6250 0.2083 0.3125 node2vec

logistic-regression 0.9983 1.0000 0.0417 0.0800 node2vec

advanced-gcn 0.9969 0.0000 0.0000 0.0000 node2vec

gcn-with-dropout 0.9969 0.0000 0.0000 0.0000 node2vec

first-gcn 0.9963 0.0000 0.0000 0.0000 node2vec-chunk-statistic

simple-gcn 0.9962 0.0000 0.0000 0.0000 chunk-statistic

very-simple-gcn 0.9959 0.0000 0.0000 0.0000 node2vec

Table 2: Best instance for each model, with respect to precision.
Model Accuracy Precision Recall F1 Score Embedding

logistic-regression 0.9944 1.0000 0.0417 0.0800 node2vec

random-forest 0.9983 1.0000 0.0417 0.0800 chunk-start-bytes

sgd-classifier 0.9983 1.0000 0.0417 0.0800 node2vec

very-simple-gcn 0.9946 0.6000 0.5000 0.5455 node2vec

first-gcn 0.9935 0.5000 0.5000 0.5000 node2vec

simple-gcn 0.9935 0.5000 0.5000 0.5000 node2vec

gcn-with-dropout 0.9920 0.3500 0.2333 0.2800 node2vec

advanced-gcn 0.9898 0.2097 0.4333 0.2826 node2vec

Table 3: Best instance for each model, with respect to recall.
Model Accuracy Precision Recall F1 Score Embedding

first-gcn 0.9826 0.2727 1.0000 0.4286 node2vec

sgd-classifier 0.9924 0.4615 1.0000 0.6316 node2vec

simple-gcn 0.9783 0.2308 1.0000 0.3750 node2vec

very-simple-gcn 0.9815 0.2609 1.0000 0.4138 node2vec

advanced-gcn 0.8887 0.0533 0.9000 0.1006 node2vec

gcn-with-dropout 0.9613 0.0863 0.8000 0.1558 node2vec

logistic-regression 0.9912 0.3333 0.5000 0.4000 node2vec

random-forest 0.9984 1.0000 0.0833 0.1538 chunk-start-bytes
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Table 5: Best model instance for each metric.
Metric Model Accuracy Precision Recall F1 Score Embedding
accuracy random-forest 0.9984 1.0000 0.0833 0.1538 chunk-start-bytes
precision logistic-regression 0.9944 1.0000 0.0417 0.0800 node2vec
recall first-gcn 0.9826 0.2727 1.0000 0.4286 node2vec
f1 score sgd-classifier 0.9924 0.4615 1.0000 0.6316 node2vec

Table 4: Best instance for each model, with respect to f1 score.
Model Accuracy Precision Recall F1 Score Embedding

sgd-classifier 0.9924 0.4615 1.0000 0.6316 node2vec

very-simple-gcn 0.9946 0.6000 0.5000 0.5455 node2vec

first-gcn 0.9935 0.5000 0.5000 0.5000 node2vec

simple-gcn 0.9935 0.5000 0.5000 0.5000 node2vec

logistic-regression 0.9912 0.3333 0.5000 0.4000 node2vec

gcn-with-dropout 0.9858 0.2110 0.7667 0.3309 node2vec

advanced-gcn 0.9898 0.2097 0.4333 0.2826 node2vec

random-forest 0.9984 1.0000 0.0833 0.1538 chunk-start-bytes
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Acronyms

AI Artificial Intelligence. 18

DEL Directed Edge-labelled Graphs. 16

DL Deep Learning. 96, 118

ESS Estimated Security Strength. 8

FE Feature Evaluation. 96

GCN Graph Convolutional Networks. 2, 96, 104, 110, 116, 117

GNN Graph Neural Network. 32, 33

GRU Gated Recurrent Units. 31

KG Knowledge Graph. 12, 16, 17, 74, 116

KNN K-Nearest Neighbors. 20

LDA Linear Discriminant Analysis. 20

LLM Large Language Model. 24

LSB Least Significant Bit. 61, 64, 69

ML Machine Learning. 2, 18, 20, 28, 29, 40, 41, 49, 58–60, 76, 87, 96, 117, 118

NLP Natural Language Processing. 22

OWL Web Ontology Language. 17

PCA Principal Component Analysis. 20

RDF Resource Description Framework. 16, 17, 74

RNN Recurrent Neural Networks. 30

SMOTE Synthetic Minority Over-sampling Technique. 37

SSH Secure Shell Protocol. ii, 5, 8, 116

SVM Support Vector Machine. 20

t-SNE t-distributed Stochastic Neighbor Embedding. 20

VMI Virtual Machine Introspection. 36
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Glossary

CHN Chunk Header Node. This is a node whose bytes have been identified as a data structure
header. In the graph, this node is the root node of an malloc-allocated memory chunk.. 75

KN Key Node. This is a node whose bytes have been identified as a key. This identification relies
both on the annotations and some verification checks.. 75

memory graph A memory graph, or memgraph is a graph representation of a memory dump.
This graph can be a graph of blocks, where each node in the graph corresponds to a block of
8 bytes in the heap dump and each edge corresponds to a pointer from one block to another,
or describes which blocks are part of a chunk whose root note is a Chunk Header Node. It
can also be a graph of chunks (only CHNs), where each node in the graph corresponds to a
chunk in heap dump and each edge corresponds to a pointer from one object to another.. 77

PN Pointer Node. This is a node whose bytes have been identified as a pointer.. 75

VN Value Node. These are all blocks that have not been identified. It is the default node type.. 75
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