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EdgeLeakage: Membership Information Leakage in
Distributed Edge Intelligence Systems

Kongyang Chen, Yi Lin, Hui Luo, Bing Mi, Yatie Xiao, Chao Ma, and Jorge Sá Silva

Abstract—In contemporary edge computing systems, decen-
tralized edge nodes aggregate unprocessed data and facilitate
data analytics to uphold low transmission latency and real-time
data processing capabilities. Recently, these edge nodes have
evolved to facilitate the implementation of distributed machine
learning models, utilizing their computational resources to enable
intelligent decision-making, thereby giving rise to an emerging
domain referred to as edge intelligence. However, within the
realm of edge intelligence, susceptibility to numerous security
and privacy threats against machine learning models becomes
evident. This paper addresses the issue of membership inference
leakage in distributed edge intelligence systems. Specifically,
our focus is on an autonomous scenario wherein edge nodes
collaboratively generate a global model. The utilization of mem-
bership inference attacks serves to elucidate the potential data
leakage in this particular context. Furthermore, we delve into the
examination of several defense mechanisms aimed at mitigating
the aforementioned data leakage problem. Experimental results
affirm that our approach is effective in detecting data leakage
within edge intelligence systems, and the implementation of our
defense methods proves instrumental in alleviating this security
threat. Consequently, our findings contribute to safeguarding
data privacy in the context of edge intelligence systems.

Index Terms—Distributed Edge Intelligence, Membership
Information Leakage, Data Privacy

I. INTRODUCTION

In modern edge computing systems, distributed edge nodes
collect raw information and provide data analytics to support
low transmission latency and real-time data processing. Re-
cently, edge nodes can provide distributed machine learning
models with their available computation resources to support
an intelligent decision making, inspiring an emerging area
called edge intelligence. Traditional machine learning depends
on a large amount of data samples to support its training,
and it usually needs a central server for data collection,
model training or aggregation, etc. Considering the critical
privacy concerns, many organizations are not allowed to share
their individual data, which thus significantly decreases the
overall model accuracy. Therefore, Federated Learning (FL)
is proposed to server as a novel distributed learning paradigm,
where each participant client user keeps its own individual
data locally, and only shares its model parameters (or gradient
updates) to a centralized server for model aggregation [1].
However, existing solutions show that Federated learning still
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suffers from serious information leakage when the centralized
server is attacked. With a remote central server, it is thus
hard to build a connection-frequency model training such as
Federated learning. To improve the privacy and security, each
client has a chance to be chosen as a temporary server to
aggregate model updates from participant clients.

In the realm of model security, it has been established that
machine learning models face vulnerability to various model
attacks, such as membership inference attacks [2], [3], [4],
model inversion attacks [5], and property inference attacks [6].
These attacks have the potential to result in the leakage of
sensitive information from the training dataset. For instance, a
membership inference attack determines whether a given data
sample was utilized in the previous model training process.
Such knowledge is advantageous for adversaries seeking to
exploit model security, posing potential severe ramifications,
especially in the deployment of Machine Learning as a Service
(MLaaS) [2]. Concerning the membership inference attack
(MIA), Shokri et al.[7] introduced this attack against ma-
chine learning models employing shadow models in black-
box scenarios, effectively transforming MIA into a binary-
classification problem. Additionally, efforts have been made
to address the cost associated with such attacks. Specifically,
research by Yeom et al.[8] and Song and Mittal [9] delved
into metric-based membership inference attacks, focusing on
factors such as prediction confidence and prediction entropy,
respectively, aiming to mitigate the attack’s computational
expense.

In this study, we investigate security threats within dis-
tributed edge intelligence systems. We specifically focus on
employing membership inference attacks to elucidate potential
data leakage, encompassing NN-based attacks, Metric-based
attacks, and Differential attacks. Furthermore, we assess the
performance of these attacks on diverse participant client
users, with experimental results substantiating the existence of
potential data leakage. Finally, we introduce several defense
mechanisms aimed at preempting the aforementioned attacks.
The principal contributions of our research are delineated as
follows:

• We analyze the security model within distributed edge
intelligence systems and demonstrate the integration of
various membership inference attack methods, including
NN-based attacks, Metric-based attacks, and Differential
attacks. Additionally, we propose several defense strate-
gies to counteract these attacks.

• Experimental findings validate the efficacy of our ap-
proach in detecting data leakage issues within edge
intelligence systems, while also highlighting the utility of
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Fig. 1: Distributed Edge Intelligence Systems.

our defense mechanisms in mitigating this security threat.
The subsequent sections of this paper are structured as

follows: Section II provides an overview of the framework
underpinning our membership inference attacks. Section III
presents the results obtained from our experiments. Section IV
outlines several defense methodologies devised to combat
these attacks. Section V delves into related research, while
Section VI furnishes a comprehensive conclusion to our study.

II. MEMBERSHIP INFERENCE LEAKAGE AGAINST
DISTRIBUTED EDGE INTELLIGENCE SYSTEMS

In this section, we present the system framework of our
distributed edge intelligence system and propose our member-
ship inference attack model against it.

A. Distributed Edge Intelligence Systems

As depicted in Figure 1, our distributed edge intelligence
system distributes data samples across edge clients, with each
client sharing and aggregating local model updates for joint
training. Unlike centralized data aggregation methods such as
federated learning, our approach does not necessitate a specific
central server for parameter sharing and aggregation. Instead,
each client user can function as a central client, selected
before each aggregation through an internally determined
server selection mechanism. This strategy mitigates various
potential attacks and failures, including central client failures
or privacy breaches. Additionally, our system leverages edge
computing and blockchain technology to bolster transmission
security. Given that edge nodes learn in a distributed manner
without central server assistance, we refer to this approach as
”swarm learning” for brevity.

B. MIA against Distributed Edge Intelligence Systems

In the membership inference attack (MIA) against our
system, we consider the attacker to be one of the internal
clients participating in our distributed edge system, with the
objective of targeting other clients within the same system. It is
assumed, without loss of generality, that the attacker has access
to certain information about the distributed edge system, such
as the model architecture. Consequently, both white-box and
black-box attacks are viable within this context. We employ

the membership inference attack technique described in [8],
which utilizes a single shadow for conducting the attack.

For the attacking client, the shadow training set comprises
its local training and test sets, while the shadow model
corresponds to its local model. Thus, there is no necessity
to train any additional model aside from the attack model.
The architecture of our attack is illustrated in Figure 2. It is
important to note that while the attacking client participates
in the global model aggregation as a regular client, it also
endeavors to gather local data information from other clients
in a malicious manner.

We will introduce three membership inference attack
against our distributed edge system In this following.

C. Attack 1: NN-based Attack
In this section, we train an attack model at the attacking

client to target other clients. Illustrated in Figure 3, our refined
shadow model attack architecture is depicted. To elucidate our
attack methodology, we assume the presence of N clients in
the distributed edge system, where only the last client (i.e.,
with client ID N ) acts as the malicious attacking client. Thus,
the objective is for the last client to target the first client,
represented simply as N attack 1, or N → 1. Furthermore,
we assess the transmission of the attack across these N clients,
with client i acting as the malicious attacker, where i ranges
from 2 to N − 1. These attack scenarios can be denoted as
i attack 1, or i → 1, where i ranges from 2 to N − 1.
Additionally, we utilize both balanced and unbalanced datasets
to evaluate the attack performance of the attack model.

D. Attack 2: Metric-based Attack
In this experiment, we implement two metric-based attacks

on our distributed edge system: attacks based on prediction
confidence and attacks based on prediction entropy. Unlike the
NN-based attacks discussed in Section II-C, these attacks rely
on metrics that incur lower costs and overhead. As their names
suggest, we train an attack model and observe the differences
in predictions made by the model for various data samples.
Specifically, we conduct membership inference attacks on our
distributed edge system with 2, 3, and 4 clients.

We assess the effectiveness of metric-based attacks using
the CIFAR-10 dataset, dividing it into DTrain

n,SL and DTest
SL .

Here, DTrainn, SL represents the training sets of client n,
while all clients utilize the same test set DTest

SL . Given that
each client within the same edge framework employs identical
model architectures, we utilize the model of the attacking
client itself as the basis for measuring attack-based metrics.
Consequently, we designate DTrain

n,SL as positive samples (i.e.,
member labels) in the training sets for the attack model, and
DTest

SL as negative samples (i.e., non-member labels).
For this experiment, we employ ResNet50, a widely used

model in image recognition, as the training model for our
distributed edge clients. We conduct membership inference
attacks based on prediction entropy and prediction confidence
on our edge frameworks with 2, 3, and 4 clients. All experi-
ments in this section are categorized into two classes for the
attack model: distinguishing only between members and non-
members.
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E. Attack 3: Differential Attack

In the section, we introduce Maximum Mean Discrepancy
(MMD), which is crucial for differential attacks. Furthermore,
we present the dataset utilized in our attack.

The core concept behind differential attacks lies in Maxi-
mum Mean Discrepancy (MMD). MMD, introduced by Gret-
ton et al. [10], is a smooth function that tests whether distribu-
tions p and q differ. A large value of this function suggests po-
tential differences between the distributions. Mathematically,
it is defined as:

F (DMem
SL , DNonmem

SL ) = || 1
n

nt∑
i=1

ϕ(yi)−
1

ns

ns∑
j=1

ϕ(y
′

j)||v

where yi ∈ DMem
SL , y

′

j ∈ DNonmem
SL , nt and ns represent

the sizes of DMem
SL and DNonmem

SL respectively, v denotes the
dimension of the kernel space, and ϕ is a feature space map
defined as k → v. In our experiment, we employ the Gaussian
kernel function k(y, y′) = ⟨ϕ(y), ϕ(y′)⟩ = exp(− ||y−y′||

2σ2 ).
With the proliferation of defense methods such as Ad-

versarial Regularization [11], MemGuard [12], and differen-
tial privacy [13], effectively acting on models, it becomes
challenging to directly differentiate between members and

non-members through the model prediction probability space.
Hence, we map it to the Reproducing Kernel Hilbert Space
(RKHS) [14] and then calculate the distance between two
centroids in the kernel space.

Differential comparison, an idea applied to machine learn-
ing in recent years [15], has been introduced to membership
inference attacks. In this experiment, we propose an enhanced
differential attack against our distributed edge system. For the
training datasets of distributed edge clients, we utilize both
independently and non-independently identically distributed
cases respectively to evaluate the impact of distribution varia-
tions on distributed edge privacy leaks.

The differential attack employs Maximum Mean Discrep-
ancy to measure the characteristic distance between two groups
of samples: one group closely resembling the training sample,
and the other closely resembling the non-training sample. In
the first variant of the differential attack, denoted as differential
attack one, we iteratively add the target sample to DMem

SL

and determine the target sample’s membership by compar-
ing the distance between DMem

SL and DNonmem
SL . Details of

the differential attack are shown in Algorithm 1. Lines 1-
5 of Algorithm 1 initialize some variables, while lines 6-
14 represent the iterative calculation process for determining
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Algorithm 1 Differential attack against our system.

Require: DTrain
n,SL , DTest

SL , DPre
Diff,SL

Ensure: TMem
Pre , TNonmem

Pre

1: DPre
Diff,SL←empty

2: flag←n
3: while flag do
4: state←0
5: statev←0
6: for DMem

SL ∈ DTrain
flag,SL, DNonmem

SL ∈ DTest
SL do

7: d′←F (DMem
SL , DNonmem

SL )
8: if d′ ¿ statev then
9: state←i

10: statev←d′

11: end if
12: end for
13: flag←flag-1
14: end while
15: if state¿0 then
16: TMem

Pre ←(DPre
Diff,SL, state)

17: else
18: TNonmem

Pre ←DPre
Diff,SL

19: end if

Algorithm 2 Differential attack against our system.

Require: DTrain
n,SL , DTest

SL , DPre
Diff,SL

Ensure: TMem
Pre,i , TNonmem

Pre

1: DPre
Diff,SL←empty

2: flag←n
3: while flag do
4: state←0
5: statev←0
6: for DPre

SL1 ∈ DTrain
state,SL, DPre

SL2 ∈ DTrain
flag,SL do

7: d′←F (DMem
SL , DNonmem

SL )
8: if d′¿statev then
9: state←i

10: statev←d′

11: end if
12: end for
13: flag←flag-1
14: end while
15: if statev¿F (DPre

state,SL, D
Test
SL ) then

16: TMem
Pre,state←DPre

Diff,SL

17: else
18: TNonmem

Pre ←DPre
Diff,SL

19: end if

the target sample’s membership. Subsequent lines detail the
discrimination methods employed in the attack.

In the second differential attack, we employ a different
strategy. We iteratively calculate the membership of the target
sample to differential groups (each group is closer to DTrain

i,SL ).
Algorithm 2 details the procedure. Lines 1-5 prepare initial
variables, lines 6-14 outline the iterative calculation process for
determining the target sample’s membership, and subsequent
lines specify the discrimination methods employed in the
attack. The key distinction between this algorithm and the

previous one (Algorithm 2) lies in the direct calculation of
the membership of DTrain

i,SL to DTrain
k,SL (where i is not equal

to k).
Maximum Mean Discrepancy (MMD) serves as one of

the bases for differential attacks, increasing with distributional
differences. Intuitively, the distribution of local datasets among
distributed edge clients within the same architecture is likely
to vary. For instance, in medical applications of distributed
edge systems, clients may span the globe, leading to dis-
parate data distributions between locations like Guangzhou
and New York, potentially driven by ethnic disparities or
differences in lifestyle. Consequently, assessing privacy risks
of our distributed edge system under non-IID conditions may
better reflect reality. Lastly, we experiment with altering the
aggregation weight of each client to evaluate its impact on the
attack results.

III. EXPERIMENT EVALUATION

In this section, we implement the aforementioned member-
ship inference attack against our distributed edge intelligence
system and evaluate its performance.

A. Experiment Datasets

In our experiments, we utilize several common datasets
to assess the privacy risks associated with MIA, including
CIFAR-10, CIFAR-100, and News. We adhere to the prepro-
cessing methods outlined in [8] and [16].

CIFAR-10: CIFAR-10 is a widely used dataset in the field
of image recognition, comprising images with a resolution of
32×32 pixels. It consists of 50,000 training images and 10,000
test images categorized into 10 classes. Notably, each class
contains 5,000 images, ensuring even distribution across the
dataset.

CIFAR-100: Similar to CIFAR-10, CIFAR-100 serves as
a benchmark dataset for image recognition tasks. It comprises
50,000 images classified into 100 classes. Each class contains
500 training images and 100 test images, maintaining an even
distribution across the dataset.

News: The News dataset is an internationally recognized
standard dataset commonly used in classification, data mining,
and information retrieval research. It consists of approximately
20,000 newsgroup documents categorized into 20 distinct
newsgroups covering various topics.

B. Experiment Settings

We assess the privacy risks of the distributed edge system
on CIFAR-10, CIFAR-100, and News datasets. For each
dataset, we divide it into two parts: DTrain

SL (comprising
DTrain

1,SL , ..., DTrain
n,SL ) and DTrain

MIA . According to the at-
tack strategy, DTrain

MIA is further subdivided into DTrain
Shadow

and DTest
Shadow. DTrain

Shadow, categorized into members and non-
members based on whether they participate in the training
of the attacked client, is utilized to train the attack model.
For image datasets, we employ convolutional neural networks
(CNNs) to construct the client’s model [8]. For text datasets,
linear neural networks (NNs) are used [8].
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(a) CIFAR-10 dataset.

(b) News dataset.

Fig. 4: The attack results of One-to-One attack.

Fig. 5: The attack results of One-to-One attack on the CIFAR-10 dataset,
where N → 1 means that client N attacks client 1.

We consider three typical membership inference attacks in
our system. The first is the One-to-One attack. In a distributed
edge system with N clients, this implies that the client with
client ID N is the malicious attacking client. For instance,
N → 1 signifies that client N will attack client 1. The second
attack is the Multi-to-One attack. In a distributed edge system
with N clients, this denotes that the client with client ID i is
the malicious attacking client, where i = 2, 3, · · · , N − 1. For
example, i → 1 indicates that client i will attack client 1. The
third attack is the One-to-Multi attack. In a distributed edge
scenario with N clients, this indicates that the client with client
ID i, where i = 2, 3, · · · , N − 1, is the malicious attacking
client and will target other clients.

Fig. 6: The attack results of Multi-to-One, where the i → 1 means that client
i attacks client 1.

Fig. 7: The attack results of One-to-Multi, where accuracy and macro-avg
are the general attack accuracy and macro-average result of the whole attack.

C. Experiment Results for Attack 1

The attack performance of the One-to-One attack is il-
lustrated in Figure 5 and Figure 4. Figure 4 indicates that
the attack results of the One-to-One attack on the CIFAR-
10 dataset and News dataset are consistently stable, achieving
high attack performance (¿82%) across varying numbers of
clients in our distributed edge system. However, Figure 5
suggests that the effectiveness of the attack diminishes as the
size of the distributed edge system increases. For instance, on
the CIFAR-10 dataset, the attack results decrease from 83% to
40% (even lower than the blind guess baseline) as the client
size increases from 2 to 5.

The attack performance of the Multi-to-One attack is
depicted in Figure 6. It can be observed that each client in the
distributed edge system can successfully execute the member-
ship inference attack. However, there is a slight decrease in
attack accuracy as the client size increases from 3 to 5.

The attack performance of the One-to-Multi attack is illus-
trated in Figure 7. In our distributed edge system, we achieve
an accuracy of 66%, significantly surpassing the baseline of
blind guessing (i.e., 33% for a client size of N = 3).

We analyze the variations in One-to-One attack results
under balanced and unbalanced datasets and provide rele-
vant explanations. On unbalanced datasets, the effectiveness
of the attack decreases with an increase in the number of
clients. This phenomenon seems reasonable because ordinary
internal clients cannot observe the model aggregation process,
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Fig. 8: Prediction confidence attack.

preventing the attacking client from obtaining specific infor-
mation about each client’s parameter contributions. However,
membership inference attacks often exploit the model’s lack
of generalization ability to infer membership based on per-
formance disparities between training and non-training data.
Without knowledge of the specific generalization differences
of the attacked client, our attack effectiveness weakens with
an increasing number of client points.

But why does the attack effectiveness improve after bal-
ancing the datasets? According to [17], a comprehensive study
of deep learning models reveals that a ”perfect” model can
be achieved if the model parameters exceed the number of
training and test sets. Additionally, they argue that overfitting
and generalization abilities are not as intuitive as commonly
perceived. Moreover, techniques like dropout and regulariza-
tion are not always necessary and may not be as effective as
using a simpler model directly. As per [17], our attack model
contains far more parameters than the number of training
and test sets, potentially leading to the learning of faults
and redundant information. For instance, if there are more
negative samples than positive samples in the training sets, the
model may lean towards classifying low-confidence samples
as negative. Furthermore, due to dataset errors and learning
method issues, no ”perfect” model exists in machine learning.
This means that any model will misclassify data, and mod-
els with good classification performance may struggle with
datasets containing misjudged data. Consequently, training and
evaluating attacks on unbalanced datasets are scientifically
unsound, potentially yielding results lower than the blind guess
baseline (50%). Balancing the positive and negative samples of
the attack model leads to improvements in attack performance.

D. Experiment Results for Attack 2

For the attack based on prediction entropy, we observe
poor results on our distributed edge system. Even on the dis-
tributed edge system with only 3 clients, we achieve only 57%
accuracy, slightly better than the 50% blind guess baseline,
indicating weak performance. Figure 8 illustrates the results
of the attack based on prediction confidence on our distributed
edge system. Remarkably, even with 4 clients in the distributed
edge system, we achieve a 66% attack accuracy, significantly
surpassing the 50% blind guess baseline.

Fig. 9: Relationship between training epochs and prediction entropy. The
abscissa represents the magnitude of prediction entropy, while the ordinate
denotes the training batch. The red batch indicates where the target sample
is added.

We attempt to elucidate and analyze the experimental
results. Figure 9 illustrates the relationship between training
epochs and prediction entropy. The red epochs indicate where
target samples are added, while the blue epochs signify
their removal. After each epoch of training, the post-training
model is employed to predict these samples and obtain their
prediction entropy. The experimental findings reveal that the
relationship between sample prediction entropy and training
epochs is not consistently clear. While prediction entropy
generally decreases with increasing training epochs, there
are instances where the addition of target samples actually
increases the prediction entropy of the model. Traditional
membership inference attacks typically target conventional
machine learning models that enhance prediction accuracy and
generalization ability through numerous epochs. This aligns
with the basis of attacks relying on prediction entropy.

However, our distributed edge system adopts a strategy
of fewer epochs and more aggregation to enhance model
prediction accuracy and generalization ability. Consequently, it
exhibits a robust defense against membership inference attacks
based on prediction entropy. In contrast, attacks based on
prediction confidence yield relatively better results. This may
be attributed to the more complex relationship between model
prediction performance and sample training status, compared
to a simple entropy relationship. Although this relationship
cannot be explicitly expressed currently, the attack model is
able to capture it. Thus, attacks based on prediction confidence
prove more effective against our distributed edge system.

E. Experiment Results for Attack 3

We utilize the CIFAR-100 dataset to evaluate and observe
the performance of the differential attack against our dis-
tributed edge system. In the independent identically distributed
(IID) experiment, we partition the dataset into two parts:
DTrain

n,SL and DTest
SL , consistent with the settings in the previous

experiment. For the non-IID experiment, we employ a method
proposed by [2] to partition the dataset, generating non-
IID datasets using Dirichlet distribution. Privacy evaluation is
conducted on the distributed edge framework with 4 clients,
where the datasets are divided into 2n parts: DTrain

n,SL and
DTest

SL . Each client’s test set differs, and the size of the training
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Fig. 10: Differential Attack for IID.

Fig. 11: Differential Attack Algorithm 1 for Non-IID.

set for each client is similar. Table I illustrates the distribution
of the training set and test set for each client.

Regarding the differential attack under independent iden-
tical distribution (IID), we achieve remarkably accurate re-
sults, as depicted in Figure 10. This experiment employs a
distributed edge configuration with four clients. Figure 11 and
Figure 13 present the results of differential attack algorithms
1 and 2, respectively, under the non-IID condition. These
results are equally impressive. Even in our distributed edge
system with four clients, we achieve 80% accuracy, signifi-
cantly surpassing the blind guess baseline (25%). Notably, our
distributed edge system exhibits lower resistance to differential
attacks, particularly under non-IID conditions. Subsequently,
the attack results under different aggregation weights are
illustrated in Figure 13.

IV. DEFENSE STRATEGIES

In this section, we employ several defense methods
against membership inference attacks, including Regulariza-
tion [11], [18], and Dropout [19], to assess their effectiveness
in mitigating privacy risks. We utilize a distributed edge con-
figuration with four clients and evaluate the defenses against
the best-performing differential attack identified in previous
experiments.

Specifically, we use the CIFAR-100 dataset with four
clients in this section. For Dropout, we adopt the strategy
outlined in [16], incorporating dropout mechanisms after each
max-pooling layer of the model. Each dropout mechanism

Fig. 12: Differential Attack Algorithm 2 for Non-IID.

Fig. 13: Differential Attack Algorithm 2 for Different Aggregation.

Fig. 14: The results of the Dropout defense method.

is assigned a differential weight, typically 0.25 or 0.5. Re-
garding Regularization [11], we employ L2-Regularization
with a weight of 0.001. Figure 14 presents the attack results
before and after the inclusion of dropout mechanisms, while
Figure 15 illustrates the defense effect of regularization. It’s
notable that regularization does not yield significant defense
results. However, it appears that the differential attack itself
may have a better defense against regularization, as evidenced
by the improved defense results obtained when employing
conventional attacks, as shown in Figure 15.

V. RELATED WORKS

Distributed Edge Intelligence. Traditional machine learn-
ing methods rely heavily on massive data for training, posing
challenges in data collection and privacy preservation during
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Client
ID

Labels Training
Size

Test
Size

1 4. 5. 6. 7. 9. 10. 14. 15. 16. 17. 19. 22. 31. 32. 34. 36. 37. 39. 42. 43. 46.
48. 50. 51. 54. 57. 58. 59. 60. 62. 63. 65. 66. 67. 68. 73. 74. 75. 76. 78.
79. 82. 83. 88. 90. 93. 94. 95. 97. 98.

11360 3787

2 0. 3. 9. 11. 12. 13. 15. 17. 18. 19. 20. 22. 23. 25. 26. 27. 30. 32. 33. 35.
37. 41. 42. 44. 46. 47. 50. 51. 52. 55. 56. 58. 59. 60. 64. 69. 70. 72. 74.
75. 77. 80. 81. 85. 86. 88. 89. 90. 95. 96. 99.

10365 3455

3 0. 1. 2. 4. 6. 7. 11. 13. 14. 16. 19. 20. 21. 22. 24. 26. 28. 30. 31. 33. 34.
35. 37. 38. 39. 40. 41. 44. 45. 47. 48. 49. 50. 51. 53. 56. 61. 64. 68. 69.
71. 73. 76. 78. 81. 82. 86. 87. 89. 93. 94. 96. 97. 98. 99.

13269 4424

4 1. 2. 3. 4. 6. 8. 14. 17. 18. 21. 25. 27. 29. 31. 32. 33. 35. 40. 42. 46. 52.
54. 55. 56. 59. 60. 67. 68. 69. 70. 72. 74. 75. 76. 78. 82. 83. 84. 85. 86.
88. 89. 91. 92. 93. 94. 95. 97. 98. 99.

10005 3335

TABLE I: Non-IID distribution on each client.

Fig. 15: The results of the L2-Regularization defense method.

data sharing and transmission. Federated Learning (FL)[4]
offers a distributed learning approach to address this issue.
However, FL still relies on a centralized server for model
aggregation, leaving it vulnerable to information leakage dur-
ing server-targeted attacks. In contrast, a novel distributed
learning paradigm called swarm learning[16], [20] empowers
participating client users to drive model training. In swarm
learning, there is no centralized server; instead, each user
forms a decentralized network to transmit local model updates
sequentially. Prior to each aggregation cycle, a client is ran-
domly selected to act as a temporary server, enhancing system
robustness by aggregating updates from all client users.

Membership Inference Attack. Following model train-
ing, machine learning models retain information about the
training data, making them susceptible to a technique known as
membership inference attack. Initially proposed for genomic
data [21], membership inference attacks have since demon-
strated efficacy in contexts ranging from human mobility
aggregation [3] to machine learning [7]. Numerous recent
studies have addressed this vulnerability [8], [11], [4], [2],
[15], [4], [9], [22]. For instance,[8] proposed an enhanced
NN-based membership inference attack and introduced metric
attacks. Additionally,[4] identified vulnerabilities in gradient
descent and devised a white-box attack based on this insight.
Moreover, [15] innovatively integrated the concept of differ-
ential comparison with membership inference attacks.

VI. CONCLUSION

In this study, we employ the membership inference at-
tack to elucidate the latent data leakage inherent when edge

nodes endeavor to collectively formulate a global model.
Additionally, we address various defense mechanisms aimed
at ameliorating this security vulnerability. It is our aspiration
that this research will stimulate further investigations into data
privacy within edge intelligence systems.
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