
Edge Importance in Complex Networks

Silvia Noschese∗† Lothar Reichel‡

Abstract

Complex networks are made up of vertices and edges. The latter connect the vertices. There are

several ways to measure the importance of the vertices, e.g., by counting the number of edges that start

or end at each vertex, or by using the subgraph centrality of the vertices. It is more difficult to assess the

importance of the edges. One approach is to consider the line graph associated with the given network and

determine the importance of the vertices of the line graph, but this is fairly complicated except for small

networks. This paper compares two approaches to estimate the importance of edges of medium-sized to

large networks. One approach computes partial derivatives of the total communicability of the weights

of the edges, where a partial derivative of large magnitude indicates that the corresponding edge may be

important. Our second approach computes the Perron sensitivity of the edges. A high sensitivity signals

that the edge may be important. The performance of these methods and some computational aspects are

discussed. Applications of interest include to determine whether a network can be replaced by a network

with fewer edges with about the same communicability.

Keywords: Network analysis, Sensitivity analysis, Edge importance

1 Introduction

Networks are helpful for modeling complex interactions between entities. A network can be represented by a graph

G = ⟨V, E ,W⟩, which consists of a set of vertices or nodes V = {v1, v2, . . . , vn}, a set of edges E = {e1, e2, . . . , em}
that connect the vertices, and a set of nonnegative edge weights W = {w11, w21, . . . , wnn}. The weight wij is positive

if there is an edge pointing from vertex vi to vertex vj ; while wij = 0 signifies that there is no such edge. Edges may

be directed (and then model one-way streets) or undirected (and then model two-way streets). If the graph models

a road network in which the vertices model intersections and the edges model roads, then the weights may, e.g., be

proportional to the amount of traffic along each road. A network in which all positive weights are one is said to be

unweighted. Descriptions and many applications of networks are provided by, e.g., Estrada [11] and Newman [19].

We say that vertex vi is directly connected to vertex vj if there is a single edge from vertex vi pointing to vertex

vj . Vertex vj is then said to be adjacent to vertex vi. When the edge between these vertices is undirected, vertex vj

also is directly connected to vertex vi, and vi is adjacent to vertex vj . Vertex vi is said to be indirectly connected to

vertex vj if the latter vertex can be reached from the former by following at least two edges from vi. We will consider

graphs without multiple edges and without edges that start and end at the same vertex.

Let e(vi → vj) denote an edge from vertex vi to vj . If there also is an edge e(vj → vi) and wij = wji > 0, then

the edge is said to be undirected and denoted by e(vi ↔ vj). A sequence of edges (not necessarily distinct)

{e(v1 → v2), e(v2 → v3), . . . , e(vk → vk+1)}
∗Dipartimento di Matematica, SAPIENZA Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy. Email:

noschese@mat.uniroma1.it.
†Corresponding author.
‡Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA. Email: reichel@math.kent.edu

1

ar
X

iv
:2

40
4.

16
86

2v
1

 [
ph

ys
ic

s.
so

c-
ph

]
 1

7
A

pr
 2

02
4

forms a walk. The length of a walk is the sum of the weights of the edges that make up the walk, i.e.,
∑k

i=1 wi,i+1. If

the edges in a walk are distinct, then the walk is referred to as a path.

Introduce the adjacency matrix A = [wij]
n
i,j=1 ∈ Rn×n associated with the graph G. The adjacency matrix A is

sparse in most applications, i.e., the matrix has many more zero entries than positive entries. The matrix is symmetric

if for each edge there also is an edge in the opposite direction with the same weight. The graph determined by such

an adjacency matrix is said to be undirected. If at least one edge of a graph is directed, or if wij ̸= wji for at least

one index pair {i, j}, then the graph is said to be directed. The adjacency matrix associated with a directed graph is

nonsymmetric. Since we assume that there are no edges that start and end at the same vertex, the diagonal entries

of the adjacency matrix A vanish.

Let exp0(t) = exp(t)− 1 and consider the power series expansion

exp0(A) = A+
A2

2!
+

A3

3!
+ (1)

Let Ak = [a
(k)
ij]ni,j=1 for k = 1, 2, . . . , where a

(1)
ij = wij for 1 ≤ i, j ≤ n. A nonvanishing entry a

(k)
ij for some k > 0

indicates that there is at least one walk of k edges from vertex vi to vertex vj . The denominators in the terms of the

expansion (1) ensure that the expansion converges and that terms Ak

k!
with k large contribute only little to exp(A).

It follows that short walks typically are more important than long ones, which is in agreement with the intuition that

messages propagate better along short walks than along long ones. This led Estrada and Rodriguez-Velazquez [13] to

use exp(A) to study properties of a graph; we use the function exp0(A) because the term with the identity matrix

I in the expansion of exp(A) has no natural interpretation in the context of network modeling. Other functions also

can be used such as a resolvent or a Mittag-Leffler function; see Estrada and Higham [12] and Arrigo and Durastante

[2] for discussions.

Estrada and Rodriguez-Velazquez [13] define for graphs with a symmetric adjacency matrix the communicability

matrix exp(A); we will use the matrix

C = [cij]
n
i,j=1 = exp0(A).

The entry cij , i ̸= j, is referred to as the communicability between the vertices vi and vj . A relatively large value

implies that it is easy for the vertices vi and vj to communicate. Estrada and Rodriguez-Velazquez [13] measure the

importance of the vertex vi of an undirected graph by the subgraph centrality cii+1; we will use cii. Related measures

of communicability can be defined when the adjacency matrix A is nonsymmetric; see [6].

We define the total communicability of the graph G as

TG(w11, w21, . . . , wnn) = eT exp0(A)e, (2)

where e = [1, 1, . . . , 1]T ∈ Rn denotes the vector with all entries 1 and the superscript T stands for transposition.

Benzi and Klymko [3] introduced the related measure eT exp(A)e, which differs from (2) by the additive constant n.

Note that the expression (2) is invariant under transposition. We have

TG(w11, w21, . . . , wnn) = eT exp0(A
T)e =

1

2
eT (exp0(A) + exp0(A

T))e.

The graph associated with the adjacency matrix AT is known as the reverse graph to G. Thus, the total communi-

cability of the graph G and of the reverse graph are the same.

We are interested in investigating the importance of the edges of a graph G and, in particular, in determining

which edge weights can be reduced or set to zero without significantly affecting the total communicability. A possible

approach to investigate the importance of edges is to consider the line graph associated with the graph. The edges

of G correspond to vertices in the associated line graph, and the importance of the edges in G can be measured by

the subgraph centrality of the vertices of the line graph. This approach is investigated in [7, 8]. However, it is quite

cumbersome to construct the line graph except for small graphs. A simple heuristic technique was proposed by Arrigo

and Benzi [1], who define the importance of an edge in terms of the importance of the vertices where the edge starts

and ends. However, this approach is not guaranteed to correctly rank the importance of edges; see [7, Section 5.4]

for an example. More recently an approach that uses the right and left Perron vectors of the adjacency matrix in

combination with the Wilkinson perturbation to determine which weights to increase in order to increase the total

2

communicability has been described in [4, 21]. An analogous technique is applied in [10] to discern which weights in

a weighted multilayer network can be decreased without affecting the total communicability significantly.

Another approach to study the importance of edges is to evaluate the Fréchet derivatives of the total communi-

cability (2) with respect to the weights. This approach was advocated by De la Cruz Cabrera et al. [4] and recently

Schweitzer [27] described how to speed up the computations. Introduce the gradient

∇TG(w11, w21, . . . , wnn) =

[
∂

∂w11
eT exp0(A)e,

∂

∂w21
eT exp0(A)e, . . . ,

∂

∂wnn
eT exp0(A)e

]T
. (3)

When the partial derivative
∂

∂wij
eT exp0(A)e (4)

is (relatively) large, a small increase in the positive weight wij results in a substantial change in the total communi-

cability. We will show below that the partial derivatives (4) are nonnegative.

For example, let the graph represent a road map, where the edges model roads and the vertices represent inter-

sections of roads. Let vertex vj be adjacent to vertex vi. Then widening an existing road from vi to vj may result in

a significant increase in the total communicability of the graph; the widening of this road is modeled by increasing

the weight wij . Also, when (4) is relatively large, and vertex vj is not adjacent to vertex vi, i.e., there is no road from

vi to vj , building such a road may increase the total communicability substantially. This is modeled by making the

vanishing weight wij positive.

Conversely, if the partial derivative (4) is relatively small and the weight wij > 0 is small, then setting wij to zero,

i.e., removing the edge from vertex vi to vertex vj , will not affect the total communicability (2) much. This implies

that blocking the road from vertex vi to vj , e.g., due to construction, does not change the total communicability of

the network significantly.

This paper is organized as follows. Section 2 discusses how the gradient can be applied to assess the importance

of edges. The first part of the section is concerned with small to medium-sized problems for which it is feasible to

evaluate the gradient (3). The latter part of the section discusses the application of Krylov subspace methods to

project large-scale problems to problems of fairly small size. The computations use a result by Schweitzer [27] on

the evaluation of Fréchet derivatives, but differ in various aspects. Section 3 reviews methods described in [4, 10, 21]

based on evaluating the right and left Perron vectors and the Wilkinson perturbation to determine important and

unimportant edges. Numerical examples are reported in Section 4. These examples compare the methods of Sections

2 and 3. Section 5 contains concluding remarks.

We conclude this section with comments on some related methods. A scheme that combines regression, soft-

thresholding, and projection is applied in [5] to approximate an unweighted network by a simpler unweighted network.

This scheme performs well but may be expensive and is restricted to unweighted networks. Massei and Tudisco [17]

consider the problem of determining a low-rank perturbation E ∈ Rn×n to the adjacency matrix A so that the

perturbed matrix A + E maximizes the robustness of the network. For instance, E may be chosen to maximize the

trace of f(A+E)−f(A) for a user-specified matrix-valued function f . The perturbation E is determined by a greedy

algorithm for solving an optimization problem. A careful comparison with this method is outside the scope of the

present paper.

2 Network modifications based on the gradient

This section discusses methods for modifying, adding, or removing edges of a network by using information

furnished by the gradient (3). We first describe methods for small to medium-sized networks for which all entries of

the gradient (3) can be evaluated. Subsequently, we will consider Krylov subspace methods that can be applied to

large-scale networks.

2.1 Methods for small to medium-sized networks

Let the matrix function f : A ∈ Rn×n → f(A) ∈ Rn×n be continuously differentiable sufficiently many times

in a region in the complex plane that contains all eigenvalues of A. Then the function f has a Fréchet derivative

3

Lf (A,E) ∈ Rn×n at A in the direction E ∈ Rn×n for all matrices E of sufficiently small norm. The Fréchet derivative

satisfies

f(A+E) = f(A) + Lf (A,E) + o(∥E∥), (5)

as ∥E∥ → 0, where ∥ · ∥ is any matrix norm; see, e.g., [15] for details. Schweitzer described an efficient approach to

evaluate Lf (A,E) in several directions E simultaneously.

THEOREM 1. (Schweitzer [27, Theorem 2.3]) Let A ∈ Rn×n and u, v ∈ Rn\{0}, and assume that f is Fréchet

differentiable at A. Define Eij = eie
T
j , where ek = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn denotes the kth column of the identity

matrix. Then

uTLf (A,Eij)v = eTi Lf (A
T , uvT)ej . (6)

Thus, the entries of the matrix Lf (A
T , uvT) furnish Fréchet derivatives in all directions Eij = eie

T
j , 1 ≤ i, j ≤ n.

We are primarily interested in the situation when f(t) = exp0(t) and

u = v = e = [1, 1, . . . , 1]T ∈ Rn. (7)

THEOREM 2. All entries of the gradient (3) are nonnegative.

Proof. Let Eij = eie
T
j . Then for f(t) = exp0(t), we have

∂

∂wij
eT exp0(A)e = eTLf (A,Eij)e.

It follows from (5) that

Lf (A, hEij) = exp0(A+ hEij)− exp0(A) + o(h) as h ↘ 0.

The power series expansion of f(t) = exp0(t) gives

Lf (A, hEij) = h

(
Eij +

AEij +AEij

2!
+

A2Eij +AEijA+EijA
2

3!
+ . . .

)
+ o(h)

= h

(
∞∑
ℓ=1

ℓ−1∑
k=0

AkEijA
ℓ−1−k + o(1)

)
.

Each term in the above sum is a matrix with nonnegative entries. Hence, the sum is a matrix with nonnegative

entries. The term o(1) vanishes as h ↘ 0. Since Lf (A, hEij) is linear in h, we obtain

Lf (A,Eij) = lim
h↘0

Lf (A, hEij)

h
=

∞∑
ℓ=1

ℓ−1∑
k=0

AkEijA
ℓ−1−k. (8)

This completes the proof.

A possible way to evaluate the matrix Lf (A
T , uvT) in (6) when AT ∈ Rn×n is to use the relation

f

([
AT uvT

0 AT

])
=

[
f(AT) Lf (A

T , uvT)

0 f(AT)

]
; (9)

see, e.g., [15, p. 253]. However, when f(t) = exp0(t), the computation of f(AT) requires O(n3) arithmetic floating

point operations (flops). Therefore, the evaluation of the left-hand side of (9) demands about 8 times more flops than

the calculation of f(AT). It is cheaper to approximate Lf (A
T , uvT) by using the finite-difference approximation

Lf (A
T , uvT) ≈ f(AT + huvT)− f(AT − huvT)

2h
(10)

for some h > 0. We will use h = 2
n
· 10−4 in the computed examples in Section 4. This is suggested by the following

simple computations. We have used the fact that ∥uvT ∥2 = n, which holds for the vectors (7). Here and throughout

this paper ∥ · ∥2 denotes the spectral matrix norm or the Euclidean vector norm.

4

Example 2.1. Let f(t) = exp0(t) be evaluated with a relative error δt bounded by δ > 0 and let h > 0 be a small

scalar. Then

f(t+ h)− f(t− h)

2h
≈ fexact(t+ h) + δt+hfexact(t)− (fexact(t− h) + δt−hfexact(t))

2h

≈ f ′
exact(t) +

h2

6
f ′′′
exact(t) +

δt+h − δt−h

2h
fexact(t).

Thus, the error is bounded by about (
h2

6
+

δ

h

)
exp(t).

Minimization over h > 0 yields

h ≈ (3δ)1/3.

The computation of the scalar exponential is carried out with high relative accuracy in MATLAB. However, evaluation

of the matrix exponential exp(AT) is more difficult. It can be computed in several ways; see, e.g., [15, Chapter 10] as

well as [24, 30]. The accuracy achieved depends on the method use as well as on the size and properties of the matrix

AT ; see, e.g., [15, Chapter 10] and [24] for computed examples. We therefore include a factor 103 in the bound δ

for the relative accuracy. This bound is valid for most matrices of sizes of interest to us. Letting δ ≈ 103ϵmach with

ϵmach ≈ 2 · 10−16 gives h ≈ 2 · 10−4. □

THEOREM 3. Let f(t) = exp0(t). Then

f(AT + hEij)− f(AT − hEij)

2h
= Lf (A

T ,Eij) +O(h2).

Proof. The right-hand side of (10) with uvT replaced with Eij can be expressed as

f(AT + hEij)− f(AT − hEij)

2h
= Eij +

1

2!
(ATEij +EijA

T)

+
1

3!
((AT)2Eij +ATEijA

T +Eij(A
T)2)

+
1

4!
((AT)3Eij + (AT)2EijA

T +ATEij(A
T)2 +Eij(A

T)3)

+ . . . +O(h2).

The result now follows from (8) with A replaced by AT .

The evaluation of the right-hand side of (10) with f(t) = exp0(t) gives approximations of all the entries of the

gradient (3). We will refer to ∥∇TG(w11, w21, . . . , wnn)∥2 as the total transmission of the graph G.

2.1.1 Network simplification by edge removal

One of the aims of this paper is to discuss how to reduce the complexity of a network by removing edges without

changing the total transmission or total communicability significantly. A simple way to achieve the former is to set

positive weights wij to zero when the associated entries of the gradient (4) are (relatively) small, thus removing the

corresponding edges e(vi → vj). This determines a new network G̃ with fewer edges than G with about the same total

transmission. However, in order for the network G̃ also to have about the same total communicability as G, we also

have to require that the removed weights be small. We therefore introduce the vector ELf ∈ Rm, whose kth entry

is the edge importance of ek = e(vi → vj), defined as the product of the weight wij and the corresponding partial

derivative (4) normalized by the total transmission. Observe that ||Lf (A
T , eeT)||F = ||∇TG ||2, where ∥ · ∥F stands

for the Frobenius norm. We refer to the norm ∥ELf ∥2 as the total edge importance.

The following simple procedure can be used to construct the edge importance vector ELf for undirected graphs:

Procedure 1:

1. Multiply the adjacency matrix A element by element by the matrix Lf (A
T , eeT).

5

2. Divide the elements of the so obtained matrix that correspond to edges of G by the total transmission ||∇TG ||2
and put them column by column into the vector ELf .

If the graph is undirected, then the kth entry of the vector ELf ∈ Rm gives the importance of the edge

ek = e(vi ↔ vj). We obtain the following procedure:

Procedure 2:

1. Extract the strictly lower triangular portion L of the adjacency matrix A, and multiply L element by element

by the strictly lower triangular portion of the matrix Lf (A
T , eeT).

2. Divide the elements of the matrix so obtained that correspond to the edges e(vi → vj) of G with i > j by
||∇TG ||2

2
and put them column by column into the vector ELf .

Consider the cone A of all nonnegative matrices in Rn×n with the same sparsity structure as A and let M|A denote

a matrix in A that is closest to a given matrix M ∈ Rn×n with respect to the Frobenius norm. It is straightforward

to verify that M|A is obtained by setting all the entries outside the sparsity structure of A to zero.

In the first step of the Procedure 1, one considers the matrix Lf (A
T , eeT)|A, whereas in the first step of the

second procedure one considers the projected matrix Lf (A
T , eeT)|L with L the cone of all nonnegative matrices in

Rn×n with the same sparsity structure as L. It follows that L = A|L.
In computations, we order the entries of ELf from smallest to largest and set the weights wij (or wij = wji if the

graph is undirected) associated with the first few of the ordered edge importances to zero. Some post-processing may

be necessary if the reduced graph G̃ obtained by removing the edges associated with the weights that are set to zero

is required to be connected. A graph is said to be connected if for every pair of vertices vi and vj , there is a path

from vertex vi to vertex vj and from vertex vj to vertex vi. Directed graphs with this property are sometimes referred

to as strongly connected. A directed graph is said to be weakly connected if the undirected graph that is obtained

by replacing all directed edges by undirected ones is connected. The graph G̃ is strongly connected if and only if

the adjacency matrix associated with the graph is irreducible. This provides a computational approach to determine

whether a graph is strongly connected. Further, an undirected graph is connected if the second smallest eigenvalue

of the associated graph Laplacian is positive; see e.g., [11, 19].

2.1.2 Network modification to increase or decrease total communicability

We turn to the task of increasing or decreasing the total communicability of a network by changing a few weights.

The weights to be changed are chosen with the aid of the entries of the vector ELf ∈ Rm. We obtain a relatively

large increase/reduction in the total communicability by slightly increasing/reducing the weights associated with the

largest entries of ELf . To this end, we order the entries of ELf from the largest to the smallest. More than one of the

weights can be modified to achieve a desired increase or reduction in the total communicability.

Assume that the given graph G is strongly or weakly connected, and that we would like the modified graph to

have the same property. Consider the situation when removing an edge ek associated with one of the first few of

the ordered entries of the vector ELf results in a graph that does not have this property. Then typically the total

communicability can be decreased considerably by reducing the corresponding edge-weight wij to a small positive

value (or both the weights wij and wji to the same small positive value if the graph is undirected), with the perturbed

graph so obtained having the same connectivity property as the original graph.

2.1.3 Network modification by inclusion of new edges

The partial derivatives (4) reveal which edges would be important to add to a given graph to increase the com-

munication in the network significantly, namely nonexistent edges, whose associated partial derivative is large. Let

Â denote the cone of the nonnegative matrices in Rn×n with sparsity structure given by the zero entries of A except

for the diagonal entries. The virtual importance of the nonexistent edge e(vi → vj) /∈ E is given by the corresponding

entry of Lf (A
T , eeT) normalized by the total transmission. The construction of the virtual edge importance vector

ÊLf ∈ Rn2−n−m, which makes use of matrix-entries in the sparsity structure associated with Â, can be summarized

6

as follows:

Procedure 3:

1. Construct the matrix Lf (A
T , eeT)|Â.

2. Divide the entries of the matrix so obtained that belong to the sparsity structure associated with Â by the total

transmission ||∇TG ||2 and put them column by column into the vector ÊLf .

If the graph is undirected, then the virtual importance of the virtual edge e(vi ↔ vj) /∈ E is defined as twice

the corresponding entry in Lf (A
T , eeT) normalized by the total transmission. Let L̂ be the cone of the nonnegative

matrices in Â, where all the entries in the strictly upper triangular portion are set to zero. The procedure for the

construction of the virtual edge importance vector ÊLf ∈ R(n2−n−2m)/2, which makes use of matrix-entries in the

sparsity structure associated with L̂, becomes:

Procedure 4:

1. Construct the matrix Lf (A
T , eeT)|L̂.

2. Divide the entries of the matrix so obtained that belong to the sparsity structure associated with L̂ by
||∇TG ||2

2

and put them column by column into the vector ÊLf .

In case ∥Lf (A
T , eeT)|A∥F ≪ ||∇TG ||2 many of large derivatives are not in the structure of A. Then making

suitable zero weights wij positive, or if the graph is undirected giving suitable pairs of zero weights {wij , wji} the

same positive value, might be beneficial. We recall that giving a zero weight wij a positive weight wij is equivalent

to including a weighted edge e(vi ↔ vj) into the graph.

In computations, we order the entries of ÊLf from largest to smallest and add the positive weights wij (or pairs

of positive entries wij = wji if the graph is undirected) associated with the first few of the virtual ordered edge

importances.

2.2 Methods for large networks

Recently, Kandolf et al. [16] derived a method for evaluating approximations of the Fréchet derivative of a matrix

function by Krylov subspace methods. Applications of this technique to network analysis have recently been discussed

by De la Cruz Cabrera et al. [4] and Schweitzer [27]. We first outline this method and subsequently discuss some

alternatives.

Let A ∈ Rn×n and assume that the function f is analytic in an open simply connected set Ω in the complex plane

that contains the spectrum of A. Then

f(A) =
1

2πi

∫
Γ

f(z)(zI−A)−1dz,

where Γ is a curve in Ω that winds around the spectrum of A exactly once and i =
√
−1. In this paper, we are primarily

interested in the situation when f(z) = exp0(z), but the techniques discussed apply to other analytic functions as

well. Let u, v ∈ Rn be nonvanishing vectors. Kandolf et al. [16] show that the Fréchet derivative of f at A in the

direction uvT can be expressed as

Lf (A, uvT) =
1

2πi

∫
Γ

f(z)(zI−A)−1uvT (zI−A)−1dz,

and determine an approximation of this expression by using Krylov subspace techniques to approximate the vectors

s(z) = (zI−A)−1u, t(z) = (zI−A)−Hv, z ∈ Γ,

where the superscript H denotes transposition and complex conjugation. Kandolf et al. [16] and Schweitzer [27]

approximate the vectors s(z) and t(z) by a Krylov subspace technique based on the Arnoldi process. Application of

7

1 ≤ m ≪ n steps of the Arnoldi process to A with initial vector u, and to AT with initial vector v, generically, yields

the Arnoldi decompositions

AVm = VmGm + ṽm+1e
T
m, ATWm = WmHm + w̃m+1e

T
m, (11)

where the matrices Gm,Hm ∈ Rm×m are of upper Hessenberg form, the matrix Vm ∈ Rn×m has orthonormal

columns with initial column u/∥u∥2, the vector ṽm+1 ∈ Rn is orthogonal to the range of Vm, the matrix Wm ∈ Rn×m

has orthonormal columns with initial column v/∥v∥2, and the vector w̃m+1 ∈ Rn is orthogonal to the range of

Wm; see, e.g., Saad [26, Chapter 6] for details on the Arnoldi process. Here we only note that the evaluation of

the decompositions (11) requires the evaluation of m matrix-vector products with the matrix A and m matrix-vector

products with the matrix AT . This is the dominating computational work when the matrix A is large and the number

of Arnoldi steps is fairly small. We assume here that the Arnoldi processes do not break down when computing (11);

in case of breakdown, the formulas (11) simplify.

Kandolf et al. [16] propose to use the Arnoldi approximation

Lf,Arnoldi(A, uvT) = VmXmWT
m, (12)

of Lf (A, uvT), where Xm is the upper right m×m submatrix of the 2m× 2m matrix

f

([
Gm ∥u∥2∥v∥2e1eT1
0 HT

m

])
=

[
f(Gm) Xm

0 f(HT
m)

]
(13)

with e1 = [1, 0, . . . , 0]T . Schweitzer [27] applies formulas (11), (12), and (13) with A replaced by AT and u = v = e;

cf. (6). Convergence results are provided by Kandolf et al. [16].

An alternative approach to compute an approximation of the Fréchet derivative Lf (A
T , eeT) is to apply finite-

difference approximations analogously as (10). Application of m steps of the Arnoldi process to the matrix AT with

initial vector e gives the Arnoldi decomposition

ATVm = VmHm + ṽm+1e
T
m,

where the columns of Vm ∈ Rn×m are orthonormal and span the Krylov subspace

Km(AT , e) = span{e,AT e, (AT)2e, . . . , (AT)m−1e}

and the first column of Vm is e/
√
n. Moreover, the vector ṽm+1 ∈ Rn is orthogonal to Km(AT , e) and Hm ∈ Rm×m

is an upper Hessenberg matrix. Then

VT
mATVm = Hm.

We will use the approximations

AT ≈ VmHmVT
m (14)

and

f(AT) ≈ Vmf(Hm)VT
m. (15)

The approximation (15) is quite accurate when f(AT) can be approximated well by a matrix of low rank. This is the

case for many real-life undirected networks when f(t) = exp(t); see [14]. The adjacency matrix A is for many directed

graphs that arise in real-life applications quite close to symmetric. This suggests that the approximation (15) is fairly

accurate for these kinds of graphs. Illustrations that this, indeed, is the case can be found in Section 4.

It follows from (14) that

AT + heeT ≈ VmHmVT
m + heeT = Vm(Hm + hne1e

T
1)V

T
m

and from (15) that

f(AT + heeT) ≈ Vmf(Hm + hne1e
T
1)V

T
m,

where h is a scalar of small magnitude and e1 = [1, 0, . . . , 0]T ∈ Rm. Hence,

f(AT + heeT)− f(AT − heeT)

2h
≈ Vm

f(Hm + hne1e
T
1)− f(Hm − hne1e

T
1)

2h
VT

m. (16)

8

We will use the expression on the right-hand side as an approximation of Lf (A
T , eeT) in computed examples with h

the same as in Example 2.1. Note that the evaluation of this expression only requires the computation of m matrix-

vector products with the matrix AT . For large-scale problems for which the evaluation of matrix-vector products

is the dominant computational work, the use of the right-hand side of (16) halves the computational burden when

compared with the evaluation of (12).

We turn to the situation when the matrix A ∈ Rn×n is symmetric and first review the computations described

by Kandolf et al. [16] of the analogue of the expression (12) when the direction is eeT . Then the calculation of the

Arnoldi decompositions (11) can be replaced by application of m steps of the symmetric Lanczos process to A with

initial vector e. Generically, we obtain

AVm = VmTm + ṽm+1e
T
m,

where the matrix Tm ∈ Rm×m is symmetric and tridiagonal, the matrix Vm ∈ Rn×m has orthonormal columns with

initial column e/∥e∥2, and the vector ṽm+1 ∈ Rn is orthogonal to the range of Vm; see, e.g., Saad [25] for details on

the symmetric Lanczos process.

The analogue of the expression (12) is given by

Lf,Lanczos(A, eeT) = VmXmVT
m, (17)

where Xm is the upper right m×m submatrix of the 2m× 2m matrix

f

([
Tm ne1e

T
1

0 Tm

])
=

[
f(Tm) Xm

0 f(Tm)

]
; (18)

see [16] for further details.

It remains to discuss how to determine approximations of the elements of Lf (A
T , eeT) of largest and smallest

magnitude by using the right-hand sides of (12) or (16). We first consider the former. To determine an approximation

of an entry of largest magnitude of Lf (A
T , eeT), we first locate an entry xij of the matrix Xm of largest magnitude

and then determine entries of largest magnitude of columns i and j of the matrices Vm and Wm, respectively. The

product of these entries furnishes an approximation of an entry of Lf (A
T , eeT) of largest magnitude. We proceed

analogously to determine an approximation of an entry of Lf (A
T , eeT) of smallest magnitude. Other entries of closest

to largest or smallest magnitudes can be computed similarly.

We turn to the use of the right-hand side of (16). To determine an approximation of an entry of largest magnitude

of Lf (A
T , eeT), we first locate an entry of the matrix

f(Hm+hne1e
T
1)−f(Hm−hne1e

T
1)

2h
of largest magnitude. Assume it

is entry {i, j}. Then determine entries of largest magnitude of columns i and j of the matrix Vm. The product of

these entries yields an approximation of an entry of largest magnitude of Lf (A
T , eeT).

3 Network modifications based on Perron root sensitivity

The methods of this section require right and left Perron vectors of the adjacency matrix A. When the matrix

A is of small to moderate size, these vectors can be determined with the MATLAB function eig, which computes

all eigenvalues and eigenvectors of A. For large networks, we can compute the Perron vectors with the MATLAB

function eigs or with the two-sided Arnoldi method. The latter method was introduced by Ruhe [23] and improved

by Zwaan and Hochstenbach [31].

Our interest in the method of this section stems from the fact that it is easy to implement because the required

computations are quite straightforward. However, the method does not identify edge weights whose modification

yields a relatively large change in the total communicability (2). Instead, it identifies edge weights whose modification

gives a relatively large change in the Perron root of the adjacency matrix. Computed examples in Section 4 indicate

that modifications of edge weights identified by this method also results in relatively large changes in the total

communicability.

9

3.1 Perron communicability for small to medium-sized networks

Let the adjacency matrix A for the graph G be irreducible and let ρ be its Perron root. Then there are unique

right and left eigenvectors x = [x1, x2, . . . , xn]
T ∈ Rn and y = [y1, y2, . . . , yn]

T ∈ Rn, respectively, of unit Euclidean

norm with positive entries associated with ρ, i.e.,

Ax = ρx, yTA = ρyT .

They are referred to as Perron vectors. Let F ∈ Rn×n be a nonnegative matrix of unit spectral norm, ∥F∥2 = 1, and

introduce the small positive parameter ε and denote the Perron root of A+ εF by ρ+ δρ. Then

δρ = ε
yTFx

yTx
+O(ε2)

and
yTFx

yTx
≤ ∥y∥2∥F∥2∥x∥2

yTx
=

1

cos θ
, (19)

where θ is the angle between x and y. The quantity 1/ cos θ is referred to as the condition number of ρ and denoted

by κ(ρ); see [29, Section 2]. Note that when A is symmetric, we have x = y, hence θ = 0. Equality in (19) is attained

when F is the Wilkinson perturbation W = yxT associated with ρ; see [18, 29] for details.

The total communicability (2) of the graph G can be approximated by the Perron communicability of G [4]:

PG(w11, w21, . . . , wnn) = exp(ρ)eT yxT e = exp(ρ)eTWe (20)

with

TG(w11, w21, . . . , wnn) ≈ κ(ρ)PG(w11, w21, . . . , wnn).

Typically, exp(ρ) is a fairly accurate indicator of the Perron communicability and, consequently, of the total commu-

nicability. In fact, one has [4]:

exp(ρ) ≤ PG(w11, w21, . . . , wnn) ≤ n exp(ρ). (21)

Perturb the entry wij with i ̸= j of A and let

F = eie
T
j ∈ A (22)

for some index pair {i, j}. The perturbation δρ of ρ due to the perturbation εF of A is

δρ = ε
yixj

yTx
+O(ε2). (23)

3.1.1 Network simplification by edge removal

To reduce the complexity of a network by removing edges without changing the Perron communicability signifi-

cantly, we choose the matrix (22) so that ρ (and hence exp(ρ)) changes as little as possible and, therefore, choose the

indices i and j so that

wijyixj = min
1≤h,k≤n
whk>0

whkyhxk,

and use A− εF with ε = wij .

If the graph is undirected, then we choose the matrix

F =
eie

T
j + eje

T
i

2
∈ A,

with the indices i and j determined as above, and use A− εF with ε = 2wij = 2wji.

Introduce the vector Eρ ∈ Rm, whose kth entry is the Perron edge importance of the edge ek = e(vi → vj), defined

as the product of the edge-weight wij and the corresponding entry yixj of W. Observe that ||W||F = ||W||2 = 1.

The procedure to construct the Perron edge importance vector Eρ consists of two steps:

Procedure 5:

10

1. Multiply the adjacency matrix A element by element by W|A.

2. Put column by column the m nonvanishing entries of the matrix so obtained into the vector Eρ.

If the graph is undirected, then the Perron edge importance of edge ek = e(vi ↔ vj) is defined as twice the product

of the edge-weight wij and the corresponding entry yixj of W, so that the procedure to construct the Perron edge

importance vector Eρ becomes:

Procedure 6:

1. Multiply A|L element by element by W|L.

2. Multiply by 2 the m nonvanishing entries of the matrix so obtained and put them column by column into the

vector Eρ.

In computations, we order the entries of Eρ from smallest to largest, and set the entries wij (or the pair of entries

wij = wji if the graph is undirected) associated with the first few of the ordered edge importances to zero. As

mentioned before some post-processing may be necessary if the reduced graph is required to be connected.

3.1.2 Network modification by edge-weight tuning

We describe how to increase the total communicability and use the notation of subsection 3.1.1. The discussion

follows [21]. We would like to choose a perturbation εF of A, where ε > 0 and F is of the form (22), so that the

Perron root ρ increases as much as possible. This suggests that we choose the indices i and j in (22) so that

wijyixj = max
1≤h,k≤n,
whk>0

whkyhxk.

Thus, we choose the weight associated with the largest entry of the vector Eρ that yields the Perron edge importance

of each edge.

We turn to the reduction of the total communicability. Define the matrix F as above and consider the perturbed

matrix A − εF. The parameter ε > 0 should be chosen small enough so that this matrix has nonnegative entries

only. Moreover, if removing an edge ek = e(vi → vj) associated with of one of the first few of the ordered entries of

Eρ results in a disconnected graph and this is undesirable, then we choose ε > 0 so that 0 < ε < wij . Analogously, if

removing the edges e(vi ↔ vj) of an undirected graph G makes the graph disconnected and this is undesirable, then

we choose ε > 0 so that ε < 2wij = 2wji.

3.1.3 Network modification by inclusion of new edges

Let F ∈ A be a nonnegative matrix of unit Frobenius norm, ∥F∥F = 1, and let ε > 0 be a small constant. Then

yTFx

yTx
≤ ∥y∥2∥∥yxT |A∥F ∥x∥2

yTx
=

∥W|A∥F
cos θ

,

with equality for the A-structured analogue of the Wilkinson perturbation,

F =
W|A

∥W|A∥F
.

This is the maximal perturbation for the Perron root ρ induced by a unit norm matrix F ∈ A; see [10, 20]. The

quantity
∥W|A∥F
cos θ

= κ(ρ)∥W|A∥F

is referred to as the A-structured condition number of ρ and denoted by κA(ρ). Thus, κA(ρ) ≤ κ(ρ).

To increase the Perron communicability, we would like to modify the edges of the graph G so that the Perron root

is increased as much as possible; cf. (21). In case the m edges of G are such that

∥W|A∥F ≈ ∥W∥F = 1, (24)

11

i.e., when κA(ρ) ≈ κ(ρ), increasing positive entries of A should be a successful strategy to increase the Perron

communicability. In fact, the matrix S = [sij]
n
i,j=1 ∈ A, with entries sij =

yixj

yT x
, if wij > 0 and sij = 0 otherwise,

referred to as the structured Perron sensitivity matrix, is such that

S = κ(ρ)W|A = κ(ρ)∥W|A∥F
W|A

∥W|A∥F
,

so that ∥S∥F = κA(ρ) ≈ κ(ρ). If F is of the form (22), the perturbation (23) of ρ induced by εF can be written as

δρ = εsij +O(ε2).

Conversely, if κA(ρ) ≪ κ(ρ), then the addition of a suitable edge with weight wij > 0 (or a suitable pair of edges

with weights wij = wji > 0, if the graph is undirected) that increases the ratio κA(ρ)/κ(ρ) may be an appropriate

strategy to increase the Perron communicability. Recall that Â denotes the cone of the nonnegative matrices in Rn×n

whose sparsity structure is given by the zero entries of A except for the diagonal entries. Perturb the entry wij with

i ̸= j of A and let

F = eie
T
j ∈ Â

for some index pair {i, j}. The entries of Wilkinson perturbation W reveal which edges should be added to the

network graph to increase the communicability, namely edges whose associated entries of the matrix W are large.

The procedure for the construction of the vector Êρ ∈ Rn2−n−m that gives the Perron virtual importance of the virtual

edges is the following:

Procedure 7:

1. Construct the matrix W|Â.

2. Put column by column the entries of the matrix so obtained that belong to the sparsity structure associated

with Â into the vector Êρ.

If the graph is undirected, then the Perron virtual importance of the nonexistent edge e(vi ↔ vj) /∈ E is defined

to be twice the corresponding entry in W. The procedure for the construction of the Perron virtual edge importance

vector Êρ ∈ R(n2−n−2m)/2 is given by:

Procedure 8:

1. Construct the matrix W|L̂.

2. Multiply by 2 the entries of the matrix so obtained that belong to the sparsity structure associated with L̂ and

put them column by column into the vector Êρ.

3.2 Network modification criteria for large-sized networks

Introduce the structured Perron communicability of G:

PA
G (w11, w21, . . . , wnn) = exp(ρ)eTW|A e.

One has, entry-wise, W|A ≤ W, so that the structured Perron communicability PA
G (w11, w21, . . . , wnn) is a lower

bound for the Perron communicability (20). When κA(ρ) ≈ κ(ρ), i.e., when (24) holds, the two measures are very

close.

Additionally, if G is undirected, then one has

PA
G (w11, w21, . . . , wnn) = 2 exp(ρ)eTW|L e,

with L the cone of all nonnegative matrices in Rn×n with the same sparsity structure as the strictly lower triangular

portion of A.

If our aim is to perturb or set to zero suitable positive entries of A ∈ A, then the Wilkinson perturbation W

does not have to be constructed, since one only needs the entries of W|A ∈ A. The Perron edge importance vector

Eρ ∈ Rm, relevant to the m edges of G, can be evaluated as discussed in Subsection 3.1.1.

12

4 Computed examples

The numerical tests reported in this section have been carried out using MATLAB R2023a on a 3.2 GHz Intel

Core i7 6 core iMac.

4.1 Medium-sized networks

EXAMPLE 4.1. Consider the adjacency matrix A ∈ R500×500 for the network Air500 in [9]. This data set describes

flight connections for the top 500 airports worldwide based on total passenger volume. The flight connections between

airports are for the year from 1 July 2007 to 30 June 2008. The network is represented by a directed unweighted

connected graph G with n = 500 vertices and m = 24009 directed edges. The vertices of the network are the airports

and the edges represent direct flight routes between two airports.

The total communicability in (2) is TG = 1.9164 · 1038. The gradient ∇TG in (3) has been computed by evaluating

the matrix Lf (A
T , eeT) in (8) using (9). The total transmission is ∥∇TG∥2 = 1.9205 · 1038. Also, the gradient ∇TG

has been approximated by evaluating Lf (A
T , eeT) using (10) with h = 2

n
· 10−4 = 4 · 10−7, obtaining ∇̃TG . The

resulting total transmission is ∥∇̃TG∥2 = 1.9205 · 1038 with

∥∇TG − ∇̃TG∥2
∥∇TG∥2

= 1.9688 · 10−9.

As for both the edge importance vector ELf and the virtual edge importance vector ÊLf , the same results displayed

below are obtained regardless of whether ∇TG or ∇̃TG is used.

The Perron communicability in (20) is PG = 1.9132 · 1038. The Perron root and left and right Perron vectors have

been evaluated by using the MATLAB function eig.

ELf
e(vi → vj) Eρ e(vi → vj)

9.0980 · 10−8 TSA → MZG 3.1829 · 10−9 TSA → MZG

9.0980 · 10−8 MZG → TSA 3.1829 · 10−9 MZG → TSA

5.1931 · 10−7 UKB → ISG 1.5705 · 10−8 SDU → CGH

5.8446 · 10−7 ISG → UKB 1.5705 · 10−8 CGH → SDU

8.8771 · 10−7 SDU → CGH 6.9399 · 10−8 UKB → ISG

9.2224 · 10−7 CGH → SDU 8.5792 · 10−8 ISG → UKB

9.6419 · 10−7 GMP → HND 1.2677 · 10−7 HND → GMP

9.7169 · 10−7 HND → GMP 1.2979 · 10−7 GMP → HND

1.0369 · 10−6 DUR → PLZ 1.7020 · 10−7 UKB → HND

1.0376 · 10−6 PLZ → DUR 1.9511 · 10−7 HND → UKB

Table 1: Example 4.1. The first 10 flight connections to remove, in order to reduce the complexity of

Air500 without changing the network communication significantly, according to determination of the edge

importance based on gradient and on Perron root sensitivity, respectively.

In Table 1 the 10 smallest entries of both the edge importance vector ELf and the Perron edge importance vector

Eρ are shown, along with the corresponding edges. This is useful for determining which edges to remove in order to

reduce the complexity of the Air500 network (cf. Subsections 2.1.1 and 3.1.1). One can observe that the elimination

of the air connection from Santos Dumont Airport - Rio de Janeiro, Brazil (SDU) to Congonhas Airport - S. Paulo,

Brazil (CGH), at the third position in the ranking given by Eρ, would disconnect the network. We therefore only

remove the two edges in bold face in Table 1, i.e., the two most irrelevant edges - according to edge importance

determination based on both gradient and Perron root sensitivity - which correspond to the flight connection between

San Antonio International Airport - San Antonio, Texas (TSA) and Penghu Airport, Taiwan (MZG). This results in

13

the network G1, for which we have:

TG1 = 1.9164 · 1038; TG − TG1

TG
= 1.8014 · 10−7; PG1 = 1.9132 · 1038; PG − PG1

PG
= 1.8014 · 10−7.

ELf
e(vi → vj) Eρ e(vi → vj)

1.9810 · 10−2 JFK → ATL 2.0038 · 10−2 JFK → ATL

1.9757 · 10−2 ORD → JFK 1.9987 · 10−2 ORD → JFK

1.9660 · 10−2 JFK → ORD 1.9882 · 10−2 JFK → ORD

1.9625 · 10−2 ATL → JFK 1.9861 · 10−2 ATL → JFK

1.9152 · 10−2 JFK → LAX 1.9369 · 10−2 JFK → LAX

1.9068 · 10−2 EWR → JFK 1.9280 · 10−2 EWR → JFK

1.8959 · 10−2 JFK → EWR 1.9239 · 10−2 ORD → ATL

1.8945 · 10−2 ORD → ATL 1.9165 · 10−2 JFK → EWR

1.8727 · 10−2 LAX → JFK 1.8970 · 10−2 ATL → ORD

1.8677 · 10−2 ATL → ORD 1.8936 · 10−2 LAX → JFK

Table 2: Example 4.1. The first 10 flight connections to increase/decrease, in order to increase/decrease the

network communication in Air500, according to determination of the edge importance based on gradient and

on Perron root sensitivity, respectively.

Table 2 shows the 10 largest entries of both the edge importance vector ELf and the Perron edge importance vector

Eρ along with the corresponding edges. In order to obtain a relatively large reduction in the total communicability,

we set to zero the weights associated with the two largest entries of both ELf and Eρ. This means we remove the

edges that represent air route between John F. Kennedy International Airport - New York City (JFK) and Atlanta

Hartsfield-Jackson Airport, Georgia (ATL). This results in the network G2, for which, as it is apparent, the reduction

in the total communicability is much larger than in G1:

TG2 = 1.8423 · 1038; TG − TG2

TG
= 3.8680 · 10−2; PG2 = 1.8392 · 1038; PG − PG2

PG
= 3.8689 · 10−2.

Following the discussion in Subsections 2.1.2 and 3.1.2, in order to obtain a relatively large increase in the total

communicability, we increase by 1 the edge-weights associated with the two largest entries of both ELf and Eρ (i.e.,

the air route between John F. Kennedy International Airport - New York City (JFK) and Atlanta Hartsfield-Jackson

Airport, Georgia (ATL)). For the so obtained network G3, one has

TG3 = 1.9943 · 1038; TG3 − TG

TG
= 4.0658 · 10−2; PG3 = 1.9910 · 1038; PG3 − PG

PG
= 4.0661 · 10−2.

Finally, following the discussion in Subsections 2.1.3 and 3.1.3, we display in Table 3 the 10 largest entries of the

total virtual edge importance vector ÊLf and the 10 largest entries of the Perron virtual edge importance vector Êρ,

along with the corresponding nonexistent edges. Notice that the edges associated with the two largest entries of both

ÊLf and Êρ cannot be considered because they consist in the missing air route between John F. Kennedy International

Airport - New York City (JFK) and LaGuardia Airport - New York City (LGA). While taking note of the suggestion

to strengthen or create a shuttle service bus between such airports, we proceed to consider the third and the fourth

best nonexistent edges according to determination of the edge importance based on gradient, that is to say the routes

from Heathrow Airport - London, England (LHR) to Atlanta Hartsfield-Jackson Airport, Georgia (ATL) and from

Amsterdam Schiphol Airport, Netherlands (AMS) to Dallas/Fort Worth International Airport, Texas (DFW), and

set their weights to 1. This way, we obtain the network G4, for which one has:

TG4 = 1.9643 · 1038; TG4 − TG

TG
= 2.5020 · 10−2.

14

ÊLf
e(vi → vj) Êρ e(vi → vj)

1.3153 · 10−2 JFK → LGA 1.3385 · 10−2 JFK → LGA

1.3102 · 10−2 LGA → JFK 1.3328 · 10−2 LGA → JFK

1.2402 · 10−2 LHR → ATL 1.2383 · 10−2 MDW → JFK

1.2276 · 10−2 AMS → DFW 1.2278 · 10−2 LHR → ATL

1.2252 · 10−2 ATL → LHR 1.2264 · 10−2 JFK → MDW

1.2160 · 10−2 MDW → JFK 1.2212 · 10−2 AMS → DFW

1.2039 · 10−2 JFK → MDW 1.2136 · 10−2 ABQ → JFK

1.1915 · 10−2 ABQ → JFK 1.2093 · 10−2 ATL → LHR

1.1581 · 10−2 DFW → AMS 1.1775 · 10−2 ORD → MDW

1.1525 · 10−2 ORD → LGW 1.1472 · 10−2 DFW → AMS

Table 3: Example 4.1. The first 10 flight connections that should be added, in order to enhance the network

communication in Air500, according to determination of the virtual edge importance based on gradient and

on Perron root sensitivity, respectively.

Conversely, setting to 1 the weight of the third and the fourth best nonexistent edges according to Êρ, i.e., from

Midway International Airport - Chicago, Illinois (MDW) to John F. Kennedy International Airport - New York City

(JFK) and from Heathrow Airport - London, England (LHR) to Hartsfield-Jackson Airport - Atlanta, Georgia (ATL),

we get the network G5, where:

PG5 = 1.9609 · 1038; PG5 − PG

PG
= 2.4915 · 10−2; TG5 = 1.9641 · 1038; TG5 − TG

TG
= 2.4908 · 10−2.

In this example, edge addition is less effective than increasing the weights of existing edges. We observe that the

matrix in A that is closest to the Wilkinson perturbation W associated to the Perron root ρ of A with respect to the

Frobenius norm, i.e., W|A, has Frobenius norm ∥W|A∥F = 7.5920 · 10−1, meaning that the A-structured condition

number κA(ρ) is approximately 76% of the condition number κ(ρ).

EXAMPLE 4.2. Consider the undirected unweighted graph G that represents the German highway system network

Autobahn. The graph, which is available at [9], has n = 1168 vertices representing German locations and m = 1243

edges representing highway segments that connect them. Therefore, the adjacency matrix A ∈ R1168×1168 for this

network has 2486 nonvanishing entries.

The total communicability in (2) is TG = 1.2563 · 104. The gradient ∇TG in (3) has been computed by evaluating

the matrix Lf (A
T , eeT) in (8) using (9). The total transmission is ∥∇TG∥2 = 1.4464 · 104. The gradient ∇TG has

been approximated by evaluating Lf (A
T , eeT) using (10) with h = 2

n
· 10−4 = 1.7123 · 10−7, obtaining ∇̃TG . The

resulting total transmission is ∥∇̃TG∥2 = 1.4464 · 104 with

∥∇TG − ∇̃TG∥2
∥∇TG∥2

= 5.4537 · 10−9.

The slight difference in the edge importance vectors computed using (9) or (10) gives rise to a different ordering of the

edges corresponding with their 10 smallest entries (which in fact differ of O(10−12)) as displayed in Table 4. Despite

the fact that removing the two edges in bold face in the second column of Table 4 results in the (disconnected) network

G1 (see Figure 1(a)) while removing the two edges in bold face in the third column of Table 4 returns the disconnected

network G̃1 (see Figure 1(b)), however we have the same results for both G1 and G̃1:

TG1 = 1.2550 · 104; TG − TG1

TG
= 1.0171 · 10−3; TG̃1

= 1.2550 · 104;
TG − TG̃1

TG
= 1.0171 · 10−3.

Conversely, the largest entries of the edge importance vectors and the virtual edge importance vectors computed

using (9) or (10) correspond to the same edges displayed in Table 5. Setting to zero the weights associated with the

15

h!tb

(a) (b)

(c)

Figure 1: Example 4.2. The vertices (marked in red) that are connected by the edges to be removed in order

to simplify the network according to ELf
for (a), according to ẼLf

for (b), and according to Eρ for (c).

16

two highway segments Duisburg - Düsseldorf and München - Kirchheim (both in bold face in the first column of Table

5) results in the network G2, for which one has

TG2 = 1.2108 · 104; TG − TG2

TG
= 3.6214 · 10−2,

while increasing by one the weights associated with the same edges results in the network G3, for which one has

TG3 = 1.3359 · 104; TG3 − TG

TG
= 6.3330 · 10−2.

On the other hand, setting to one the (vanishing) entries of A associated with the two virtual highway segments

München - Duisburg and München - Hamburg (both in bold face in the second column of Table 5) returns the

network G4 with

TG4 = 1.3662 · 104; TG4 − TG

TG
= 8.7477 · 10−2.

As for Perron communicability in Autobahn, one has PG = 2.2448 · 103. Although the graph G is irreducible, some

entries of the Perron vector x are close to machine precision. In particular, the edges to remove in order to simplify

the network, that are associated with the two smallest entries of the Perron edge importance vector, are the final

highway segments Wildsdruff - Wildeck and Wüstenbrand - Wommen, connecting the four vertices associated with

such quasi-zero components of x (see Figure 1(c)). This results in the (disconnected) network G5, for which we have

PG5 = 2.2448 · 103; PG − PG5

PG
= −4.8619 · 10−15; TG5 = 1.2547 · 104; TG − TG5

TG
= 1.2521 · 10−3.

So the simplification is slightly less satisfactory than that obtained in G1 or in G̃1. Elimination of the edges associated

with the two highway segments Duisburg - Düsseldorf and Essen - Duisburg (both in bold face in the first column of

Table 6) returns the network G6, for which we

PG6 = 1.2677 · 103; PG − PG6

PG
= 4.3527 · 10−1; TG6 = 1.2155 · 104; TG − TG6

TG
= 3.2513 · 10−2.

Again the decrease is less than that in G2. Conversely, increasing by one the weights associated with the same edges

results in the network G7, for which one has

PG7 = 2.5248 · 103; PG7 − PG

PG
= 1.2472 · 10−2; TG7 = 1.3480 · 104; TG7 − TG

TG
= 7.2982 · 10−2.

The increase in this case is greater than that in G3. Finally, setting to one the (vanishing) entries of A associated with

the two virtual highway segments Essen - Düsseldorf and Gelsenkirchen - Duisburg (both in bold face in the second

column of Table 6) results in the network G8 with

PG8 = 2.4892 · 103; PG8 − PG

PG
= 1.0885 · 10−1; TG8 = 1.3271 · 104; TG8 − TG

TG
= 5.6327 · 10−2.

Therefore the result is less satisfactory than that obtained for the network G4.

Notice that one has ∥W|A∥F =
√
2∥W|L∥F = 5.1765 · 10−1.

17

ELf
[or ẼLf

] e(vi ↔ vj) associated with ELf
e(vi ↔ vj) associated with ẼLf

6.5794 · 10−4 Allershausen ←→ Allersberg Wüstenbrand ←→ Wommen

6.5794 · 10−4 Bünde ←→ Bissendorf Thiendorf ←→ Teupitz

6.5794 · 10−4 Zarrentin ←→ Witzhave Zrbig ←→ Wiedemar

6.5794 · 10−4 Wunsiedel ←→ Wolnzach Zarrentin ←→ Witzhave

6.5794 · 10−4 Thiendorf ←→ Teupitz Aitrach ←→ Aichstetten

6.5794 · 10−4 Wüstenbrand ←→ Wommen Wesuwe ←→ Weener

6.5794 · 10−4 Alsfeld ←→ Achern Wunsiedel ←→ Wolnzach

6.5794 · 10−4 Wesuwe ←→ Weener Zwingenberg ←→ Zeppelinheim

6.5794 · 10−4 Zwingenberg ←→ Zeppelinheim Bünde ←→ Bissendorf

6.5794 · 10−4 Zrbig ←→ Wiedemar Alsfeld ←→ Achern

Table 4: Example 4.2. The first 10 highway segments that could be removed, in order to reduce the complexity

of Autobahn without changing the network communication significantly, according to determination of the

edge importance based on gradient. The edges in the second and in the third column are determined using

(9) and (10), respectively.

ELf
e(vi ↔ vj) ÊLf

e(vi ↔ vj)

2.1662 · 10−2 Duisburg ←→ Düsseldorf 2.6669 · 10−2 München ←→ Duisburg

1.9101 · 10−2 München ←→ Kirchheim 2.5163 · 10−2 München ←→ Hamburg

1.8792 · 10−2 Essen ←→ Duisburg 2.3688 · 10−2 München ←→ Düsseldorf

1.8106 · 10−2 Duisburg ←→ Dortmund 2.3072 · 10−2 Hamburg ←→ Duisburg

1.7092 · 10−2 Krefeld ←→ Duisburg 2.1296 · 10−2 München ←→ Frankfurt

1.6862 · 10−2 Hamburg ←→ Hagen 2.0550 · 10−2 München ←→ Essen

1.4823 · 10−2 Duisburg ←→ Dinslaken 2.0448 · 10−2 Hamburg ←→ Düsseldorf

1.4348 · 10−2 Gelsenkirchen ←→ Essen 2.0325 · 10−2 München ←→ Gelsenkirchen

1.4105 · 10−2 Flughafen ←→ Duisburg 1.9993 · 10−2 München ←→ Groá

1.3341 · 10−2 Hagen ←→ Groá 1.9701 · 10−2 München ←→ Dortmund

Table 5: Example 4.2. The first 10 highway segments that should be widened/narrowed, in order to in-

crease/decrease the network communication in Autobahn (in the first column) and the first 10 highway

segments that should be built in order to increase the network communication in Autobahn (in the second

column), according to the edge importance vector ELf
and the virtual edge importance vector ÊLf

, respec-

tively.

18

Eρ e(vi ↔ vj) Êρ e(vi ↔ vj)

3.2881 · 10−1 Duisburg ←→ Düsseldorf 2.4476 · 10−1 Essen ←→ Düsseldorf

2.9148 · 10−1 Essen ←→ Duisburg 2.0210 · 10−1 Gelsenkirchen ←→ Duisburg

2.2093 · 10−1 Duisburg ←→ Dinslaken 1.8389 · 10−1 Düsseldorf ←→ Dortmund

2.1899 · 10−1 Duisburg ←→ Dortmund 1.6971 · 10−1 Gelsenkirchen ←→ Düsseldorf

1.8552 · 10−1 Düsseldorf ←→ Dinslaken 1.6446 · 10−1 Essen ←→ Dinslaken

1.8126 · 10−1 Krefeld ←→ Duisburg 1.6302 · 10−1 Essen ←→ Dortmund

1.5044 · 10−1 Gelsenkirchen←→ Essen 1.6216 · 10−1 Elmpt ←→ Duisburg

1.4553 · 10−1 Flughafen ←→ Duisburg 1.5221 · 10−1 Krefeld ←→ Düsseldorf

1.3617 · 10−1 Elmpt ←→ Düsseldorf 1.3493 · 10−1 Krefeld ←→ Essen

1.2071 · 10−1 Essen ←→ Elmpt 1.3345 · 10−1 Eilsleben ←→ Duisburg

Table 6: Example 4.2. The first 10 highway segments that should be widened/narrowed, in order to in-

crease/decrease the network communication in Autobahn (in the first column) and the first 10 highway

segments that should be built in order to increase the network communication in Autobahn (in the second

column), according to the Perron edge importance vector Eρ and the Perron virtual edge importance vector

Êρ, respectively.

19

EXAMPLE 4.3. Consider the directed weighted graph G that represents the network C.elegans available at [28],

i.e., the metabolic network of the Caenorhabditis elegans worm. The network contains n = 306 vertices that represent

neurons and m = 2345 edges. Two neurons are connected if at least one synapse or gap junction exists between them

and the associated edge-weight is the number of synapses and gap junctions. The network is disconnected.

The total communicability in (2) is TG = 3.3401 · 106. The gradient ∇TG in (3) has been computed by evaluating

the matrix Lf (A
T , uvT) in (8) using (9). The total transmission is ∥∇TG∥2 = 7.9032 · 106. The gradient ∇TG has

been approximated by evaluating Lf (A
T , uvT) using (10) with h = 2

n
· 10−4 = 6.5359 · 10−7, obtaining ∇̃TG . The

resulting total transmission is ∥∇̃TG∥2 = 7.9032 · 106, having

∥∇TG − ∇̃TG∥2
∥∇TG∥2

= 4.4914 · 10−9.

As for both the edge importance vector ELf and the virtual edge importance vector ÊLf , one obtains the same results,

displayed in Table 7, regardless of whether ∇TG or ∇̃TG is used.

Removing the two edges in bold face in the second column of Table 7, associated with the smallest entries of the

edge importance results in the network G1 one obtains

TG1 = 3.3401 · 106; TG − TG1

TG
= 5.9879 · 10−7.

Setting to zero the weights associated with the two edges in bold face in the fourth column of Table 7) results in the

network G2, for which one has

TG2 = 2.9282 · 106; TG − TG2

TG
= 1.2332 · 10−1,

while increasing by one the weights associated with the same edges results in the network G3, for which one has

TG3 = 3.8047 · 106; TG3 − TG

TG
= 1.3909 · 10−1.

Finally, setting to one the (vanishing) entries of A associated with the two virtual edges in bold face in the sixth

column of Table 7) returns the network G4, with

TG4 = 7.3327 · 106; TG4 − TG

TG
= 1.1954 · 100.

Turning to the network modifications based on Perron root sensitivity in C.elegans, one has PG = 9.1975 · 105. The

graph G is reducible, some entries of the Perron vector x are vanishing. In particular, removing the edges in bold

face in the second column of Table 8, which are associated with two vanishing entries of the Perron edge importance

vector, results in the network G5, for which one has

PG5 = 9.1931 · 105; PG − PG5

PG
= 4.7732 · 10−4; TG5 = 3.3381 · 106; TG − TG5

TG
= 6.0666 · 10−4.

So the simplification is less satisfactory than that obtained in G1. Elimination of the edges in bold face in the fourth

column of Table 8) returns the network G6, for which one has

PG6 = 7.4856 · 105; PG − PG6

PG
= 1.8613 · 10−1; TG6 = 2.9298 · 106; TG − TG6

TG
= 1.2284 · 10−1.

The decrease is less than that in G2. Conversely, increasing by one the weights associated with the same edges results

in the network G7, for which one has

PG7 = 1.1140 · 106; PG7 − PG

PG
= 2.1122 · 10−1; TG7 = 3.7933 · 106; TG7 − TG

TG
= 1.3569 · 10−1.

The increase is less than that in G3. Finally, setting to one the (vanishing) entries of A associated with the two virtual

edges in bold face in the sixth column of Table 8) results in the network G8, having

PG8 = 3.5870 · 106; PG8 − PG

PG
= 2.8999 · 100; TG8 = 7.3364 · 106; TG8 − TG

TG
= 1.1965 · 100.

Therefore the result is more satisfactory than that obtained in the network G4. Notice that ∥W|A∥F = 1.2817 · 10−1.

20

ELf
e(vi → vj) ELf

e(vi → vj) ÊLf
e(vi → vj)

1.2653 · 10−7 v53 → v303 2.8888 · 10−2 v71 → v217 1.1107 · 10−1 v305 → v149

1.2653 · 10−7 v151 → v305 2.6446 · 10−2 v72 → v216 1.0213 · 10−1 v305 → v219

1.2653 · 10−7 v191 → v305 2.5673 · 10−2 v73 → v178 9.6897 · 10−2 v305 → v218

1.2653 · 10−7 v243 → v305 2.2681 · 10−2 v72 → v144 8.9795 · 10−2 v305 → v216

1.2653 · 10−7 v259 → v305 2.1866 · 10−2 v76 → v217 8.9722 · 10−2 v305 → v217

1.2653 · 10−7 v267 → v305 2.1271 · 10−2 v78 → v217 8.9222 · 10−2 v305 → v178

1.2653 · 10−7 v291 → v305 2.0888 · 10−2 v75 → v216 8.5450 · 10−2 v305 → v174

1.2653 · 10−7 v292 → v305 2.0012 · 10−2 v77 → v216 8.2518 · 10−2 v305 → v81

1.2653 · 10−7 v293 → v305 1.9903 · 10−2 v71 → v47 7.9914 · 10−2 v305 → v82

1.2653 · 10−7 v294 → v305 1.9752 · 10−2 v71 → v72 7.7984 · 10−2 v305 → v198

Table 7: Example 4.3. The smallest entries of the edge importance vector and the relevant junctions that could

be removed without changing the network communication in C.elegans significantly (displayed in the first two

columns). The largest entries of the edge importance vector and the relevant junctions to increase/decrease

in order to increase/decrease the network communication (in the third and fourth columns). The largest

entries of the virtual edge importance vector and the relevant junctions to add in order to increase the

communication in C.elegans (in the fifth and sixth columns).

Eρ e(vi → vj) Eρ e(vi → vj) Êρ e(vi → vj)

0 v53 → v1 2.7208 · 10−2 v73 → v178 1.3484 · 10−1 v305 → v149

0 v11 → v5 2.4126 · 10−2 v71 → v217 1.3000 · 10−1 v305 → v219

0 v12 → v6 2.2348 · 10−2 v72 → v216 1.2205 · 10−1 v305 → v218

0 v11 → v19 2.0573 · 10−2 v72 → v144 1.1067 · 10−1 v305 → v178

0 v11 → v23 1.8951 · 10−2 v76 → v217 1.0811 · 10−1 v305 → v174

0 v12 → v24 1.8489 · 10−2 v71 → v47 1.0128 · 10−1 v305 → v81

0 v12 → v25 1.8419 · 10−2 v75 → v216 9.7793 · 10−2 v305 → v82

0 v8 → v26 1.7529 · 10−2 v74 → v177 9.5414 · 10−2 v305 → v157

0 v11 → v26 1.7392 · 10−2 v216 → v81 8.7441 · 10−2 v305 → v216

0 v12 → v26 1.7269 · 10−2 v78 → v217 8.6713 · 10−2 v305 → v217

Table 8: Example 4.3. The smallest entries of the Perron edge importance vector and the relevant junctions

that could be removed without changing the communication in C.elegans significantly (displayed in the

first two columns). The largest entries of the Perron edge importance vector and the relevant junctions to

increase/decrease in order to increase/decrease the network communication in C.elegans (in the third and

fourth columns). The largest entries of the virtual Perron edge importance vector and the relevant junctions

to add in order to increase the network communication (displayed in the fifth and sixth columns).

4.2 Large networks

EXAMPLE 4.4. Consider the unweighted undirected graph G that represents the continental US road network

Usroads-48. The graph G, which is available at [28], has n = 126146 vertices, which represent intersections and road

endpoints. The m = 161950 edges represent roads which connect the intersections and endpoints. We analyze the

network Usroads-48 with the tools discussed in Subsections 2.2 and 3.2 for large networks.

We would like to determine approximations of the smallest and largest elements of Lf (A, eeT)|L that correspond

to edges that should be removed to simplify the network or whose edge-weight should be modified to increase or

decrease the total communicability. Moreover, we would like to determine approximations of the smallest and largest

21

elements of Lf (A, eeT)|L̂ that correspond to edges that should be added to increase total communicability. We first

carry out 5 steps of the symmetric Lanczos process, computing V5 and T5, and make use of the latter to construct

both X5 in (17), thanks to (18), and

X̃5 =
f(T5 + hne1e

T
1)− f(T5 − hne1e

T
1)

2h
,

with h = 2
n
· 10−4. Then, proceeding as discussed in Subsection 2.2, both the approaches give the same estimates.

The smallest element of the approximate Lf (A, eeT)|L is 9.7462 ·10−7 and is associated with edge e(v123259 ↔ v123258)

while its largest element is 1.5008 · 101 and is associated with edge e(v19694 ↔ v19186); the smallest element of the

approximate Lf (A, eeT)|L̂ is 2.2047 · 10−9 and is associated with edge e(v25416 ↔ v11651) while its largest element is

1.9380 · 101 and is associated with edge e(v58080 ↔ v1).

Turning to the the structured Perron communicability, one has PA
G = 1.9138 · 102. The smallest entries of the

Perron edge importance vector Eρ and the relevant edges are displayed in Table 9 in the first and second columns,

while the largest entries of Eρ and the relevant edges are shown in the third and fourth columns. In order to increase

the network communication one should add edge e(v44182 ↔ v44035), which is associated with the largest entry of the

L̂-analogue of the Wilkinson perturbation.

Eρ e(vi ↔ vj) Eρ e(vi ↔ vj)

1.2197 · 10−40 v105751 ↔ v105743 2.2346 · 10−1 v44182 ↔ v44067

3.3336 · 10−40 v42664 ↔ v42479 1.8605 · 10−1 v44182 ↔ v44154

5.0488 · 10−40 v114032 ↔ v42664 1.8090 · 10−1 v44182 ↔ v44087

7.3043 · 10−40 v44150 ↔ v44015 1.5882 · 10−1 v44154 ↔ v44067

8.8379 · 10−40 v68387 ↔ v68213 1.5443 · 10−1 v44087 ↔ v44067

1.0103 · 10−39 v39830 ↔ v39787 1.5077 · 10−1 v44323 ↔ v44182

1.0695 · 10−39 v29088 ↔ v29056 1.4155 · 10−1 v44255 ↔ v44182

1.2043 · 10−39 v90123 ↔ v89379 1.4099 · 10−1 v44356 ↔ v44182

1.2478 · 10−39 v78533 ↔ v78388 1.1663 · 10−1 v44067 ↔ v44035

1.2821 · 10−39 v35630 ↔ v35115 9.2663 · 10−2 v44067 ↔ v44019

Table 9: Example 4.4. The smallest entries of the Perron edge importance vector and the edges associated

with the roads that could be removed in order to reduce the complexity of the network without changing

the communication in Usroads-48 significantly (displayed in the first two columns). The largest entries

of the Perron edge importance vector and the edges associated with the first ten roads that should be

widened/narrowed in order to increase/decrease the network communication the most (in the third and

fourth columns).

Removing the two edges in bold face in the second column of Table 9, associated with the smallest entries of the

edge importance results in the network G1, for which one has

PA
G1

= 1.9138 · 102;
PA
G − PA

G1

PA
G

= 1.4851 · 10−16.

Setting to zero the weights associated with the two edges in bold face in the fourth column of Table 9) results in the

network G2, having

PA
G2

= 1.7487 · 102;
PA
G − PA

G2

PA
G

= 8.6228 · 10−2,

while increasing by one the weights associated with the same edges results in the network G3, for which one has

PA
G3

= 3.6445 · 102;
PA
G3

− PA
G

PA
G

= 9.0435 · 10−1.

22

Finally, setting to one the (vanishing) entry w44182,44035 of the adjacency matrix A associated with the virtual edge

e(v44182 ↔ v44035) returns the network G4, with

PA
G4

= 2.4540 · 102;
PA
G4

− PA
G

PA
G

= 2.8228 · 10−1.

Notice that one has ∥W|A∥F =
√
2∥W|L∥F = 2.9318 · 10−1.

5 Conclusion and comments on related work

The identification of important and unimportant edges is a fundamental problem in network analysis. Several

techniques for this purpose have been described in the literature; see, e.g., [7, 8, 5, 10, 21, 22]. In [4] the authors

propose a method that uses the gradient of the total communicability, and Schweitzer [27] recently described how the

computational effort required by this method can be reduced. Section 2 of this paper reviews this method and discusses

computational aspects when this technique is applied to small and medium-sized networks, as well as to large-scale

networks. In particular, further ways to speed up the computations when the method is applied to large-scale networks

are described.

Another approach to identify important and unimportant edges is to determine edge weights whose modification

yields a relatively large change in the Perron root of the adjacency matrix. This is described in [10, 21]. The

computations required are quite straightforward and the method discussed in the latter reference is easy to implement

also for large-scale problems. We therefore are interest in whether modifications of the weights of the edges identified

by this technique give a relatively large change in the total communicability. Section 3 reviews the method described in

[21] and extends it to include edge removal. Computed examples reported in Section 4 show that, indeed, modifications

of edge weights identified by the technique discussed in [21] yield relatively large changes in the total communicability.

Acknowledgments

Research by SN was partially supported by a grant from SAPIENZA Università di Roma, by INdAM-GNCS, and

by the PRIN 2022 research project “Inverse Problems in the Imaging Sciences (IPIS)”, grant n. 2022ANC8HL.

23

References

[1] F. Arrigo and M. Benzi, Edge modification criteria for enhancing the communicability of digraphs. SIAM J.

Matrix Analysis Appl., 37 (2016), pp. 443–468.

[2] F. Arrigo and F. Durastante, Mittag-Leffler functions and their applications in network science, SIAM J. Matrix

Anal. Appl., 42 (2021), pp. 1581–1601.

[3] M. Benzi and C. Klymko, Total communicability as a centrality measure, J. Complex Netw., 1 (2013), pp.

124–149.

[4] O. De la Cruz Cabrera, J. Jin, S. Noschese, and L. Reichel, Communication in complex networks, Appl. Numer.

Math., 172 (2022), pp. 186–205.

[5] O. De la Cruz Cabrera, J. Jin, and L. Reichel, Sparse approximation of complex networks, Appl. Numer. Math.,

in press.

[6] O. De la Cruz Cabrera, M. Matar, and L. Reichel, Analysis of directed networks via the matrix exponential, J.

Comput. Appl. Math., 355 (2019), pp. 182–192.

[7] O. De la Cruz Cabrera, M. Matar, and L. Reichel, Edge importance in a network via line graphs and the matrix

exponential, Numer. Algorithms, 83 (2020), pp. 807–832.

[8] O. De la Cruz Cabrera, M. Matar, and L. Reichel, Centrality measures for node-weighted networks via line graphs

and the matrix exponential, Numer. Algorithms, 88 (2021), pp. 583–614.

[9] Dynamic Connectome Lab - Data Sets. https://sites.google.com/view/dynamicconnectomelab

[10] S. El-Halouy, S. Noschese, and L. Reichel, Perron communicability and sensitivity of multilayer networks, Numer.

Algorithms, 92 (2023), pp. 597–617.

[11] E. Estrada, The Structure of Complex Networks: Theory and Applications, Oxford University Press, Oxford,

2011.

[12] E. Estrada and D. J. Higham, Network properties revealed through matrix functions, SIAM Rev., 52 (2010), pp.

696–714.

[13] E. Estrada and J. A. Rodriguez-Velazquez, Subgraph centrality in complex networks, Phys. Rev. E, 71 (2005),

Art. 056103.

[14] C. Fenu, D. Martin, L. Reichel, and G. Rodriguez, Network analysis via partial spectral factorization and Gauss

quadrature, SIAM J. Sci. Comput., 35 (2013), pp. A2046–A2068.

[15] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.

[16] P. Kandolf, A. Koskela, S. D. Relton, and M. Schweitzer, Computing low-rank approximations of the Fréchet

derivative of a matrix function using Krylov subspace methods, Numer. Linear Algebra Appl., 28 (2021), Art.

2401.

[17] S. Massei and F. Tudisco, Optimizing network robustness via Krylov subspaces,

https://arxiv.org/pdf/2303.04971.pdf

[18] A. Milanese, J. Sun, and T. Nishikawa, Approximating spectral impact of structural perturbations in large

networks, Phys. Rev. E, 81 (2010), Art. 046112.

[19] M. E. J. Newman, Networks: An Introduction, Oxford University Press, Oxford, 2010.

[20] S. Noschese and L. Pasquini, Eigenvalue condition numbers: Zero-structured versus traditional, J. Comput. Appl.

Math., 185 (2006), pp. 174–189.

[21] S. Noschese and L. Reichel, Estimating and increasing the structural robustness of a network, Numer. Linear

Algebra Appl., 29 (2022), Art. e2418.

[22] S. Noschese and L. Reichel, Network analysis with the aid of the path length matrix, Numer. Algorithms, 95

(2024) pp. 451–470.

24

https://sites.google.com/view/dynamicconnectomelab

[23] A. Ruhe, The two-sided Arnoldi algorithm for nonsymmetric eigenvalue problems, Matrix Pencils, eds. B.

K̊agström and A. Ruhe, Lecture Notes in Mathematics #973, Springer, Berlin, 1983, pp. 104–120.

[24] P. Ruiz, J. Sastre, J. Ibáñez, and E. Defez, High performance computing of the matrix exponential, J. Comput.

Appl. Math., 291 (2016), pp. 370–379.

[25] Y. Saad, Numerical Methods for Large Eigenvalue Problems, revised ed., SIAM, Philadelphis, 2011.

[26] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.

[27] M. Schweitzer, Sensitivity of matrix function based network communicability measures: Computational methods

and a priori bounds, SIAM J. Matrix Anal. Appl., 44 (2023), pp. 1321–1348.

[28] SuiteSparse Matrix Collection, https://sparse.tamu.edu.

[29] J. H. Wilkinson, Sensitivity of eigenvalues II, Util. Math., 30 (1986), pp. 243–286.

[30] S. Xu and F. Xue, Inexact rational Krylov subspace methods for approximating the action of functions of matrices,

Electron. Trans. Numer. Anal., 58 (2023), pp. 538–567.

[31] I. N. Zwaan and M. E. Hochstenbach, Krylov–Schur-type restarts for the two-sided Arnoldi method, SIAM J.

Matrix Anal. Appl., 38 (2017), pp. 297–321.

25

https://sparse.tamu.edu

	Introduction
	Network modifications based on the gradient
	Methods for small to medium-sized networks
	Network simplification by edge removal
	Network modification to increase or decrease total communicability
	Network modification by inclusion of new edges

	Methods for large networks

	Network modifications based on Perron root sensitivity
	Perron communicability for small to medium-sized networks
	Network simplification by edge removal
	Network modification by edge-weight tuning
	Network modification by inclusion of new edges

	Network modification criteria for large-sized networks

	Computed examples
	Medium-sized networks
	Large networks

	Conclusion and comments on related work

