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Abstract

The core challenge of de novo protein design lies in creating proteins with specific
functions or properties, guided by certain conditions. Current models explore to
generate protein using structural and evolutionary guidance, which only provide in-
direct conditions concerning functions and properties. However, textual annotations
of proteins, especially the annotations for protein domains, which directly describe
the protein’s high-level functionalities, properties, and their correlation with target
amino acid sequences, remain unexplored in the context of protein design tasks. In
this paper, we propose Protein-Annotation Alignment Generation (PAAG), a multi-
modality protein design framework that integrates the textual annotations extracted
from protein database for controllable generation in sequence space. Specifically,
within a multi-level alignment module, PAAG can explicitly generate proteins
containing specific domains conditioned on the corresponding domain annotations,
and can even design novel proteins with flexible combinations of different kinds
of annotations. Our experimental results underscore the superiority of the aligned
protein representations from PAAG over 7 prediction tasks. Furthermore, PAAG
demonstrates a nearly sixfold increase in generation success rate (24.7% vs 4.7%
in zinc finger, and 54.3% vs 8.7% in the immunoglobulin domain) in comparison to
the existing model. We anticipate that PAAG will broaden the horizons of protein
design by leveraging the knowledge from between textual annotation and proteins.

1 Introduction

Protein design Marshall et al. (2019) is a crucial task for its immense potential on drug discovery Sli-
woski et al. (2014), enzyme engineering Sterner et al. (2008), immunongineering Swartz et al. (2012)
and so on. The generation of proteins with specific properties, behaviors, or functions, such as
optimizing the binding affinity to given molecules Houk et al. (2003) or incorporating a particular
ion-binding site Regan (1995), is known as de novo protein design. This process presents a significant
challenge due to the vast space of protein sequences and the complexity of protein functions. Recently,
machine learning models have shown profound potential for protein design. The existing studies
mostly rely on the structural Watson et al. (2023) or evolutionary information Alamdari et al. (2023a)
as the guidance to design proteins. However, in many cases, these conditions can only offer indirect
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Figure 1: (a) The example of property annotations (in bold) and domain annotations (in colors).
(b). The illustration of annotation-guided protein design with PAAG. Given the input of textual
description within immunoglobulin domain annotation, PAAG can generate the proteins containing
immunoglobulin domain.

guidance towards the desired protein design targets to their inherent ambiguity. For example, the
same protein sequence segment can be either act as receptors to regulate synaptic function Stathakis
et al. (1997) or helpers to locate target proteins to specific subcellular locations Mohandas et al.
(1995).

For instance, as one of crucial functional domains of DNA/RNA binding proteins Cassandri et al.
(2017), the zinc-finger domain naturally has many variants, such as C2H2 type, CCHC type and Zinc
ribbon type. These variants exhibit significant differences in both structural and evolution features
among them which is hard covered by structural and evolutionary conditions. On the contrary, the
“zinc-finger” annotation from the protein database inherently provides a more effective means of
describing the high-level knowledge span across both sequences and structures. Hence, we aim to
investigate the following question: Is it possible to leverage such textual annotations to guide the
delicate controllable protein design?

Recently, several primary attempts have been made to leverage such textual annotations to guide the
protein generation. Examples include extracting tags from labels to create unique tokens Madani
et al. (2023), training an individual protein caption model to guide the diffusion generation pro-
cess Ingraham et al. (2023), and incorporating the an overall text description through a global
language-to-protein alignment model Liu et al. (2023b). However, current models cannot flexibly
combine the different conditions and lack of the capability for fine-grained control, such as specifying
the generation of particular domains.

To fill these gaps, in this paper, we introduce a novel framework, Protein-Annotation Alignment
Generation(PAAG), that enables annotation-guided protein design by aligning protein sequences
with their textual annotations. Specifically, we first consider both property and domain annotations in
proteins and design a multi-level alignment module to align the representations of sequences and
annotations extracted from the existing encoders in both global and local level. For the generation
task, PAAG utilizes an autoregressive decoder to generate protein sequences guided by the aligned
representation of textual annotations. Additionally, PAAG employs an end-to-end training pipeline
that joint training of alignment and generation tasks without freezing the parameters in sequence
and text encoders. This joint training enhances the understanding of the complex and flexible
annotation condition, resulting in improved guided generation. Figure 1 demonstrates an example of
annotation-guided generation.

In experiments, we first investigate the quality of protein representations from PAAG by seven
predictive downstream tasks. PAAG surpasses state-of-the-art benchmarks with an average relative
improvement of 1.5%. Subsequently, three protein generation tasks are conducted to assess the
capabilities of PAAG. In the case of unconditional generation, PAAG produces sequences exhibiting
the highest degree of novelty while maintaining the distribution of natural proteins. For the two
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conditional protein design tasks, PAAG demonstrates a nearly threefold increase in generation success
rate (24.7% vs 4.7% in zinc finger, and 54.3% vs 8.7% in the immunoglobulin domain)3 in comparison
to the existing model.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to propose a new annotation-guided paradigm for
protein design, which can simultaneously integrate local and global annotation information. Our
proposed framework PAAG is the first approach that can generate proteins containing specific
domains, guided by their corresponding annotations with high success rate.

• PAAG features a multi-level alignment module for handling annotation and protein data alignment
at various granularities. Joint training of alignment and generation tasks allows the model to
produce improved protein representations, consequently boosting performance in predictive and
generative tasks.

• Comprehensive experiments on 7 predictive and 3 generative tasks showcase PAAG’s superiority
compared to the exisiting methods. Notably, PAAG is not only capable of generating proteins
that include a single domain, but it also successfully generates proteins adhering to the flexible
conditions of multiple annotation combinations.

2 Preliminaries

2.1 Protein and Its Textual Annotations

The primary structure of a protein can be represented as an amino acid sequence S = (s1, s2, · · · , sn),
where si is the i-th amino acids chosen from 20 different amino acids which are represented as 20
characters.

Given a protein S, the annotation-sequence pair setDS = {(Tk, S
k
i:j)}

KS

k=1 is constructed by extracting
the correspondence between textual annotations and protein domains & properties from protein
database, such as UniProtKB Consortium (2022), where Tk is the textual annotations of the k-th
domain Sk

i:j of the protein and KS is the number of annotation-domain pairs of the protein S. For the
property annotation, the corresponding domain is the entire sequence, i.e, S1:|S|. This annotation-
domain pair set DS provides comprehensive knowledge about the protein S and, therefore, plays an
important role in training the protein generation model.

2.2 Encoders for Proteins and Annotations

We adopt a protein encoder (PE) to generate both the protein and its domain representations based on
the amino acid sequence as zS = fPE(S), where fPE is the protein encoder and zS is the embedding
of S.

For textual annotations, we generate their representations using the pre-trained language model
fLM as zAS

= fLM(G(AS)), where AS ⊆ {Tk|(Tk, S
k
i:j) ∈ DS} is a subset of the annotations in

the annotation-domain pair set for a protein S, G() is a template function which converts a set of
annotations to a textual description, and zA is the embedding of the annotation set. Note that the
annotation subset can cover all annotations in DS or just one. If AS covers only one annotation T0,
we can skip the template function and directly generate the embedding of T0 using fLM.

We employ transformer-based protein encoder and text encoder as our base model and initialize them
with pre-trained models. Specifically, we employ SciBERTBeltagy et al. (2019), which is pre-trained
on computer science and biological datasets, to initialize the text encoder fLM. The pre-trained protein
encoder, ProtBERTElnaggar et al. (2021), is used to initialize the protein encoder fPE.

3 Methodology

In this section, we propose a multi-modal framework, Protein-Annotation Alignment
Generation(PAAG), which enables the flexible annotations-guided protein design. Figure 2 il-

3This is the success rate with quality threshold e = 1, i.e., SR1.
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Figure 2: The overall framework of PAAG. The same parameters share the same color. PAAG contains
three modules. (1) Protein & Annotation Encoding module encode the input protein sequence &
domains and corresponding annotations to the embeddings. (2) Multi-level alignment module projects
the protein and annotation embeddings into and employs Annotation-Protein Contrasive (APC) loss,
Annotation-Domain Contrasive (ADC) loss and Annotation-Protein Matching (APM) loss to align
them in a same latent space. (3) Conditional Protein Decoding accepts the annotation embedding as
input and generate the protein sequence.

lustrates the overall framework of PAAG. In the following, we present the details of each component
of PAAG.

3.1 Conditional Protein Decoding

Our ultimate goal is generating functional proteins conditioned on a set of annotations A = {Tk}Kk=1.
We will first employ template function G to translate these annotations as textual descriptions and then
utilize a language model to extract the representation of the annotation set zA = fLM(G(A)). Then
the protein sequence is generated using a decoder fD based on this representation as S = fD(zA).

Protein Decoder. We adopt an auto-regressive protein decoder fD that can receive the condition
from the language model. Specifically, the decoder will first process the protein sequence through
causal attention layers to enable auto-regressive generation, then integrate the information from
annotations via cross-attention layers followed by feed-forward layers. Note that the causal attention
layers are initialized using the same weights as the self-attention layers in the protein encoder and the
feed-forward layers share the same parameters as the protein encoder. Here, the parameter-sharing
mechanism enables higher training efficiency Li et al. (2023). The cross-attention layers are randomly
initialized and trained from scratch.

Protein Modeling (PM) Loss. To guide the learning of the model, we estimate the PM loss as

LPM = −
l∑

i=1

log p(Si|S<i;A), (1)

where l is the length of the protein S and p(Si|S<i;A) is the predicted probability of the i-th amino
acid given all previous amino acids and the annotation set.

3.2 Multi-level Protein and Annotation Alignment

To better integrate the information between proteins and annotations, we aim to align the multi-level
representations of proteins and annotations. Specifically, we conduct local alignment and global
alignment by performing contrastive learning at domain level and protein level, respectively.
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We measure the alignment score using the cosine similarity between the embeddings of protein and
the annotation set, which is defined as

s(A, S) = ⟨ProjA(zA),ProjS(zS)⟩
∥ProjA(zA)∥∥ProjS(zS)∥

, (2)

where Proja(z) = Waz+ b projects the input z into a latent space with dimension h. Wa ∈ Rh×|z|

and b ∈ Rh are trainable parameters. During alignment, we encourage the matched (positive) pairs to
have representations with higher similarity s than unmatched (negative) pairs. We next will explain
in detail how to construct the positive and negative pairs in our multi-level framework.

3.2.1 Local Alignment

Given a protein S, and its annotation-domain pairs set DS , in domain-level, we aim to align the
representation of the domain Sk

i:j and its corresponding annotation Tk and use all annotation-domain
pairs in DS as positive pair. To construct the negative pairs, we randomly sample the sub-regions
outside the domain Sk

i:j , i.e. Sk
1:i−1 ∪ Sk

j+1:l, as the negative samples Sk−
i:j of the domain.

Annotation-Domain Contrastive(ADC) Loss: We adopt InfoNCE loss as the ADC loss to align the
representations of local annotation zT and functional domain zSi:j

as

LADC = − 1

KS

KS∑
k=1

log
exp(s(Sk

i:j , Tk)/τ)∑N
n=1 exp(s(S

n−
i:j , Tn)/τ)

, (3)

where KS is the number of functional domains for the protein S, N is the number of negative samples,
and τ is a learnable temperature parameter.

The local alignment enables PAAG to explicitly learn the relation between the functional domain
and its annotation. Therefore, we can use the model to controllably generate the specific functional
domain given annotations.

3.2.2 Global Alignment

To enable global alignment, we utilize template function G(·) to construct protein-level textual de-
scription and form the positive protein-description pairs as {(G(AS), S)}. Since multiple annotations
and the entire protein will be more complex, to enlarge the number of negative samples for global
alignment, we follow the setting of MOCO He et al. (2020) to construct momentum encoders fm as

fm ← mfm + (1−m)f. (4)

where the encoder f can be either protein encoder fPE or text encoder fLM, and m is the momentum
hyperparameter. We follow implementation details in Li et al. (2021) and Li et al. (2022) to construct
the momentum encoders for both encoders.

The momentum encoders extract consistent features to increase the number of negative samples, and
the dynamic dictionaries will store these features.

Annotation-Protein Contrastive (APC) Loss is designed to align the representations of global
properties zA with protein zS . Specifically, for each protein sequence and annotation set, we calculate
the softmax-normalized sequence-to-annotation and annotation-to-sequence similarity as:

ps2am (S) =
exp(s(S,Am)/τ)∑M

m=1 exp(s(S,Am)/τ)
, (5)

pa2sm (A) =
exp(s(A,Sm)/τ)∑M

m=1 exp(s(A,Sm)/τ)
, (6)

where τ is a learnable temperature parameter, Am and Sm indicate their representations will be
extracted by respective momentum encoders.

Denote y⃗ a2s(A) and y⃗ s2a(S) as the ground-truth one-hot similarity, where negative pairs have a
probability of 0 and the positive pair has a probability of 1. The annotation-protein contrastive loss is
defined as the cross-entropy H between p⃗ and y⃗:
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LAPC =
1

2
E(S,A)∼D

[
H(y⃗ s2a(S), p⃗ s2a(S))

+H(y⃗ a2s(A), p⃗ a2s(A))
]. (7)

Annotation-Protein Matching (APM) Loss. Inspired by Li et al. (2022), we introduce a multimodal
encoder fME, which integrates the representation of annotations and protein as zM

S,A = fME(S,G(A)),
to identify whether the given pairs of protein description G(A) and protein S are matched or not.
Specially, the multimodal encoder fME is transformer-based and shares the parameters of self-attention
and feed-forward layers with fPE and has additional cross-attention layers between self-attention
layers and feed-forward layers to integrate the text information. The cross-attention layers share the
same cross-attention parameters as the decoder.

Annotation-Protein Matching (APM) Loss aims to facilitate the learning of multimodal representa-
tions. Additionally, we use the hard negative strategy, where we first select the most similar negative
pairs and then use these most challenging negative pairs to optimize the model through in the training
of the model with the APM loss, enabling the encoder to learn informative representations. To
construct the APM loss, we extract the multi-modal representation as zM

S,A = fME(S,G(A)) and use
a classifier to classify its probability of being positive or negative, which is denoted by p⃗APM(A, S).
And we compute the cross-entropy between the ground-truth label y⃗APM(A,S) indicating the protein-
description pair being positive or negative to obtain the APM loss as

LAPM = E(A,S)H(y⃗APM(A,S), p⃗APM(A,S)). (8)

3.3 Training Objectives

In the training of PAAG, we optimize four objective functions. These functions are designed to
align the representations between annotations and protein sequences, integrate the two modalities,
and reconstruct the protein sequence. In contrast to ProteinDT Liu et al. (2023a), which splits the
training process into three separate stages, PAAG jointly optimizes these four objective functions in
an end-to-end manner.

The overall pretraining objective of PAAG is :
L = LADC + LAPC + LAPM + LPM. (9)

3.4 Annotation-guided Protein Design

After obtaining the model F of PAAG, we can use F to design the proteins with given textual
annotations. In the following, we given the definition of annotation-guided protein design.

Definition 3.1 (Annotation-guided Protein Design) Given an annotation set A = {Tk}Kk=1 with
K annotations, a generative model F can leverage the information from {Tk}Kk=1 to generate the
protein S which satisfies the condition described in {Tk}Kk=1. Quantitatively, this task aims to
maximize the following objective function:

max
∑
T∈A

MT (S), s.t. S = F (A). (10)

where MT () is corresponding metric function for the annotation T .

In this paper, we mainly focus on two type of measures, functional-domain measure and global-
property measure.

• Functional-domain metric: for the annotation describing a certain functional domain, MT () will
invoke a profile hidden Markov models from Pfam Mistry et al. (2021) to search for the optimal
match within protein S regarding to the domain described by annotation T and assign an e-value s
to this match. Given an e-value threshold e, we have:

MT,e(S) = 1S(s < e), (11)

where 1S(cond) outputs 1 when cond = True, otherwise, outputs 0.
• Global-property metric: for the annotations describing protein’s global properties, MT () employ

a pre-defined oracle to determine if the given S has the property described by the annotation T and
output a score s in the range of [0, 1]. Here, 0 denotes the absence of the property, while 1 signifies
its presence.
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4 Experiment

In this section, we extensively evaluate PAAG from two aspects: (1). quality of aligned protein
representation for the predictive tasks; (2) evaluation on the unconditional sequence generation and
protein design with textual annotations.

4.1 Construction of ProtAnnotation Dataset

To enable multi-level alignment, we build the ProtAnnotation dataset with annotation-sequence
pair set for protein design task. Specifically, we select all proteins with “Domain” entry in UniPro-
tKB Consortium (2022) to build ProtAnnotation dataset, resulting 129, 727 proteins. The domain
annotations are extracted by these “Domain” entries including the domain description and start &
end index of this domain. Additionally, we select four properties as the property annotations, that
is, “protein_name”, “organism_name”, “length” and “SIMLARITY”. The textual description is
assembled by the template function G, which can accept any subset of annotation as input. More
details, including the data examples are deferred in Appendix A.2.

4.2 Quality of Aligned Representation

We first conduct multiple experiments on predictive tasks. to evaluate the quality of protein represen-
tation produced by PAAG.

Settings To make a fair comparison with ProtST, we use the same proteins in dataset ProtDescribe Xu
et al. (2023) to first pretrain PAAG, followed by full-model fine-tuning on various downstream tasks.
For the full-model fine-tuning, we add a task head for each task and fine-tune the model for 100
epochs. We use the validation set to select the model and report the results on random seed 0, adhering
to the same settings as in ProtST Xu et al. (2023). More details are deferred in Appendix A.6.

Benchmark Tasks: We adopt 7 downstream tasks within two task types as the benchmark task.

• Protein Localization Prediction aims to forecast the subcellular locations of proteins. Derived
from DeepLoc Almagro Armenteros et al. (2017), we focus on two similar tasks. The subcellular
localization prediction (Abbr. as, Sub) encompasses 10 location categories and binary localization
prediction (Abbr. as, Bin) that includes 2 location categories, soluble and membrane-bound. The
splits of data follow the original split in DeepLoc.

• Fitness Landscape Prediction is primarily focused on the prediction of the effects of residue
mutations on the fitness of proteins. We evaluate our models on β-lactamase (Abbr., β-lac)
landscape from PEER Xu et al. (2022), the AAV and Thermostability (Abbr., Thermo) landscapes
from FLIP Dallago et al. (2021), and the Fluorescence (Abbr., Flu) and Stability (Abbr., Sta)
landscapes from TAPE Rao et al. (2019). The splits of data follow the splitting setting of ProtST Xu
et al. (2023)

Baselines: We adopt two types of baseline. The first type is the models train from scratch, including
CNN Shanehsazzadeh et al. (2020), ResNet Rao et al. (2019), LSTM Rao et al. (2019), Trans-
former Rao et al. (2019). The second type is the pretrained models with full model tuning, including
OntoProtein Zhang et al. (2022), ProtBert Elnaggar et al. (2021) and ESM2 Lin et al. (2023). For
the ProtST and PAAG, we train two variants with different initialization weights from ProtBert and
ESM2 to verify the enhancement of text knowledge on protein representations from different protein
encoders. We utilize distinct subscripts to denote the initialized parameters, such as PAAGProtBert and
PAAGESM2.

Results: Table 1 reports the results of all models on seven baselines. As illustrated in Table 1,
PAAG achieves superior performance in comparison to the baselines on all 7 tasks. These results
highlight the robust generalization capabilities of PAAG for downstream tasks. Specifically, PAAG
outperforms the vanilla pretrained models, ProtBert and ESM2, in all cases, indicating that PAAG
can further enhance the quality of protein representation by incorporating the knowledge from
textual annotations. Furthermore, to assess the impact of multimodal training on enhancing protein
representations, we visualize the relative improvements of ProtST and PAAG in comparison to the
vanilla pre-trained models in Figure 3. As observed in Figure 3, multi-modal training has a positive
influence on the performance of downstream tasks in both ProtST and PAAG. Additionally, the

7



Table 1: Results on protein localization prediction and protein landscape prediction benchmarks.
Bold in green and underlined numbers indicate the best and the second best result, respectively.

Model
Loc. pred. (Acc%) Fitness pred. (Spearman’s ρ)
Bin ↑ Sub ↑ ρ-lac ↑ AAV ↑ Thermo ↑ Flu ↑ Sta ↑

Models trained from scratch

CNN 82.67 58.73 0.781 0.746 0.494 0.682 0.637
ResNet 78.99 52.30 0.152 0.739 0.528 0.636 0.126
LSTM 88.11 62.98 0.139 0.125 0.564 0.494 0.533
Transformer 75.74 56.02 0.261 0.681 0.545 0.643 0.649

Models with full model tuning

OntoProtein 92.47 77.59 0.757 0.791 0.662 0.630 0.731
ProtBert 91.32 76.53 0.731 0.794 0.660 0.679 0.771
ESM2 91.72 78.67 0.867 0.817 0.672 0.677 0.718
ProtSTProtBert 91.78 78.71 0.863 0.804 0.673 0.679 0.745
ProtSTESM2 92.52 80.22 0.879 0.825 0.682 0.682 0.738

PAAGProtBert 92.63 78.96 0.820 0.825 0.668 0.680 0.788
PAAGESM2 92.46 81.30 0.888 0.839 0.684 0.682 0.737

Bin Sub -lac AAV Thermo Flu Sta

0%

5%

10%

15%

R
el

at
iv

e 
Im

pr
ov

em
en

t ProtBert
PAAG
ProtST

Bin Sub -lac AAV Thermo Flu Sta0.0%

1.0%

2.0%

3.0%
R

el
at

iv
e 

Im
pr

ov
em

en
t

ESM2
PAAG
ProtST

Figure 3: Visualization of jointly generation with domain and property annotations. PAAG is capable
of integrating domain and property annotations.

performance improvement of PAAG surpasses that of ProtST in 10 out of 14 cases, further validating
the effectiveness of PAAG in augmenting the quality of protein representation.

4.3 Unconditional Protein Generation

To verify the learning effect of the decoder, we compare the ability of different models in unconditional
generation task. A good decoder is able to generate protein sequences that conform to the distribution
of the training set while simultaneously exhibiting adequate novelty.

Setting: In unconditional generation task, we only specify the length of generated proteins and
conditions. We sample the same length from natural proteins, to ensue a fair comparisons across
different models.

Baselines: We compare PAAG with two representative protein design models, i.e., ProGen Madani
et al. (2023) and Chroma Ingraham et al. (2023). Furthermore, we introduce two naive baselines:
RandomUniform and RandomEmpirical. RandomUniform generates protein sequence by randomly selecting
amino acids based on a uniform distribution, while RandomEmpirical adheres to the empirical amino
acid distribution observed in the training dataset. Additionally, we also report the results of the
sequence set sampled from natural proteins, denoted as Natural, to serve as a reference. The details
of baselines are deferred to Appendix A.5.

Evaluation metrics: To evaluate the quality of generated protein sequences, we employ three metrics:
Distinct-n, Diversity and Novelty. Suppose S is the protein sequence set.

• Distinct-n Li et al. (2016) is a classical metric in natural language processing that measures
textual diversity of generated text by counting distinct n-grams. We use this metric to assesses
the fraction of repetitive sequence motifs in sequences from S, which exhibits the biological
importance Andrade et al. (2000). A higher Distinct-n suggests fewer repetitive amino acid
segments. We set n = 2 here.
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Table 2: Results of the unconditional generation task. The values in parentheses ∆% represent the
absolute relative difference from the values of Natural.

Model Distinct-n (∆%) Diversity(∆%) Novelty ↑
Natural 235.76(0) 0.829(0) -

RandomUniform 273.89(16.17%) 0.847(2.17%) 0.713
RandomEmpirical 243.04(3.09%) 0.834(6.03%) 0.721

ProGEN 165.54(29.78%) 0.845(1.93%) 0.374
Chroma 175.72(25.47%) 0.855(3.14%) 0.638

PAAG 231.88(1.66%) 0.815(1.69%) 0.766
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Figure 4: Figure (a) and (b) show the SRe on zinc-finger domain and immunoglobulin domain over
all models. Figure (c) and (d) show their distributions of e-value. White bar indicates the mean
e-value of each set. PAAG consistently exhibits better performance on all metrics compared with
other models. Fine-tuning also introduces additional improvement for PAAG.

• Diversity measures the dissimilarity of sequences in S . We employ Mmseq2 Steinegger and Söding
(2017) to compute the dissimilarity between each pair of sequences, and utilize the mean of these
dissimilarities as Diversity. A higher Diversity signifies a greater diversity in S.

• Novelty measures the novelty of sequences in S compared to a reference set. We take UniprotKB
Consortium (2022) as the reference set. For each sequences in S , we employ Mmseq2 Steinegger
and Söding (2017) to return the dissimilarity score of the most similar sequence in UniprotKB.
Novelty is defined as the mean of dissimilarity score for all sequences in S. A higher Novelty
indicates the generated sequences exhibit substantial novelty comparing with the reference set.

Results: Table 2 shows the results of unconditional generation under three metrics. From Table 2,
we can observe that:

• PAAG achieves the highest novelty, indicating PAAG captures the intrinsic relationship between
amino acids, rather than merely memorizing protein sequences in the training set.

• PAAG exhibits the closet Distince-n score compared with natural proteins, which proves that
proteins generated by PAAG possess similar amino acid distribution as natural proteins.

• PAAG also maintains the closest diversity to natural proteins, proving PAAG has the similar
distribution at protein level.

• ProGen and Chroma have considerably lower Distince-n score in comparison to PAAG and natural
proteins, implying an abundance of repetitions within their generated protein sequence.

In a summary, PAAG is capable of generating high-quality protein sequences, aided by the alignment
process.

4.4 Protein Design with Domain Annotations

In this section, we evaluate the performance of PAAG in generating proteins under the given domain
annotations.

Settings: We utilize two biologically significant domains, zinc-finger domain Klug and Rhodes
(1987) and immunoglobulin domain Brummendorf (1995), as the target domain annotation to
generate the proteins respectively. For each case, we generate N = 300 protein sequences given the
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Prompt: From Human, contains 200 
amino acids, has 8 C2H2-type Zinc finger, 
has 1 C2H2-type 2; degenerate Zinc finger.
E-value: 1.8e-7

Zinc-finger

Zinc1
Zinc3

Zinc2

Zinc6
Zinc4

Zinc5

Prompt: From Zebrafish, contains 200 amino 
acids, has 11 C2H2-type Zinc finger, has 1 
C2H2-type 6; degenerate Zinc finger.
E-value: 1.8e-7

Zinc3

Zinc1

Zinc2

Zinc4 Zinc-finger
Prompt: From Human, contains 117 amino 
acids, has 1 Ig-like Immunoglobulin domain.
E-value: 1.4e-08

Immunoglobulin
Prompt: From Human, contains 200 amino 
acids, has 3 Ig-like V-type Immunoglobulin 
domain.
E-value: 1.6e-08

Immunoglobulin

Figure 5: Visualization of the generated results on zinc-finger and immunoglobulin domain. The
corresponding prompt and generation qualify (e-value) is listed below.

length of the proteins and the annotation set containing the domain annotations of “zinc-finger” or
“immunoglobulin domain”. For all models, the protein sequences are generated with the same length
sampled from natural proteins that have corresponding domain in UniprotKB.

Based on (11), we further define a metric: success rate SRe =
MT,e(S)

N to measure the generation
quality with the proportion of proteins that successfully identify the specific domain with the quality
threshold e.

Model training: We train PAAG on ProtAnnotation for total 100 epochs, employing a learning rate
of 3e-5 and incorporating a warm-up phase with a batch size of 32. Additionally, we extract a subset
of ProtAnnotation which only contains proteins with “zinc-finger” and “immunoglobulin domain”.
This subset is subsequently utilized to fine-tune the model over 5 epochs, adopting a learning rate of
1e-5 and maintaining the batch size at 32. We denote this fine-tuned version as PAAGft. More details
are deferred to Appendix A.6.

Baselines: We adopt Chroma Ingraham et al. (2023) and ProGen Madani et al. (2023) as the baselines
due to their public availability of model weights and their capacity to accept text and keywords as
conditional inputs for protein generation. ProGen utilizes keywords as its condition tags. Here, we
take the keywords correspond to zinc-finger (“KW-0863”) and immunoglobulin domain (“KW-0393”)
in Uniport to generate functional proteins. Chroma adopts ProCap to understand the textual conditions
to guide its diffusion process. We give the same text prompts to Chroma to enable its controllable
generation. We also include two trivial baselines RandomUniform and RandomEmpirical as the blank
references.

Results: In Figure 4 (a) and (b), we plot the curves depicting the variation in success rate SRe for
different models in two protein design tasks as the quality threshold e varies from 0.001 to 100.
Additionally, in Figure 4 (c) and (d), we employ violin plots to illustrate the distribution of e-value e
for generated sequences matched in Pfam. Due to Pfam’s limitations, e-values exceeding 100 are
adjusted to the maximum e-value score among all method results for the current task. We also show
the distribution of e-values calculated on natural proteins with domains as a reference. From Figure 4,
we can observe that:

• PAAG significantly outperforms the other baselines in success rates SR1 across all tasks by a large
margin, e.g. , 51% versus 9% in the immunoglobulin domain task with quality threshold e = 1.
Furthermore, the fine-tuned version PAAGft can further improve the success rates (54.3% on
SR1) consistently, indicating that the finetuning process can help to generate proteins with high
quality domains.

• ProGen outperforms other baseline methods, maintaining consistent results as the threshold changes.
This may be due to ProGen remembering the zinc and lg domain sequences present in the training
data and output them when using keywords and the first four amino acid sequences as prompts for
generation.

• Chroma’s performance is not good, resembles the unconditioned results. This may be because
Chroma’s training text primarily focuses on structural descriptions, making it less sensitive to the
domain annotations.

Visualizations: We provide the visualization of generated proteins in Figure 5. In Figure 5, all
generated domains are marked in red. The textual descriptions generated by the annotation set and
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Table 3: The result of protein design with “membrane-bound” and “soluble” annotations.

Annotation Total Matched Success Rate

membrane-bound 660 351 53.18%
soluble 894 811 90.72%

overall 1554 1162 74.78%

Table 4: Ablation study of the effectiveness of each component. Performance of SR1 for zinc-finger
and immunoglobulin domains.

LADC LAPC LAPM Zinc-finger Immunoglobulin

✓ ✓ 0.00% 0.33%
✓ ✓ 39.00% 18.33%
✓ ✓ 41.33% 19.33%

✓ ✓ ✓ 51.00% 22.67%

the e-value e of this sequence are listed below. The protein structure are folded by Omegafold Wu
et al. (2022). As observed in Figure 5, the generated sequences can accurately produce the target
domain as per the condition given in the annotation set. Interestingly, in scenarios such as two zinc
finger case, when the prompt specifies the presence of multiple zinc finger domains, PAAG generates
multiple functional domains in response. However, PAAG falls to capture the precise numbers of
these domains, which can be a direction for future improvement.

4.5 Protein Design with Property Annotations

In this section, we explore the potential of PAAG to generate proteins with certain properties guided
by property annotations.

Settings: We employ the subcellular location of proteins as an example property. An additional
dataset, termed ProtLocation, is generated by extracting subcellular location labels, encompassing
both Bin (2-class) and Sub (10-class) tasks as delineated in Section 4.2, from Deeploc Almagro Ar-
menteros et al. (2017). These labels are then incorporated into annotation-sequence pairs derived
from Uniprot. ProtLocation includes 10100 proteins for training, while a separate set of 2434 test
proteins is reserved for constructing the annotation set for generation. More details can be found in
Appendix

Evaluation protocol: For the generated sequences, we employ the official server provided by
Deeploc Almagro Armenteros et al. (2017) and Deeploc2 Thumuluri et al. (2022) as the pre-defined
oracle to construct the Global-property metric MT () for predicting binary location label and 10-class
label respectively. A generation is deemed successful if the predicted label aligns with the input
annotation label.

Results: Table 3 depicts the generation result of PAAG on binary localization annotation. PAAG
achieves overall 74.78% success rate, indicting PAAG captures the difference between soluble and
membrane-bound, and can generate properties given corresponding property annotations. As for a
more challenging setting, PAAG achieves overall 49.71% success rate for the 10-class subcellular
localization annotation, still indicating a strong correlation between property annotations and the
generated proteins by PAAG. The detailed confusion matrix about 10-class subcellular localization
annotation are depicted in Figure 8 in Appendix.

4.6 Ablation Study

To ascertain the contribution of each component towards the generation of the functional proteins,
the ablation study reports the SR1 of zinc-finger and immunoglobulin domains in the absence
of each alignment loss, as presented in Table 4. We observe that LADC is the key to the high
SuccessRate of PAAG. The SuccessRate decreases to 0% withoutLADC , underscoring the importance
of incorporating domain range into the learning framework. Furthermore, LAPC and LAPM also
enhance the SuccessRate of generating high-quality immunoglobulin domains by 4.33% and 3.33%,
respectively. Moreover, LAPC and LAPM are more important to zinc-finger domain, by improving
the SR1 by 12% and 9.67%.
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Prompt: From Mouse, contains 200 amino 
acids, has 5 C2H2-type Zinc finger, is 
membrane-bound.
E-value: 3.4e-06
Predicted Property: membrane-bound

Zinc-finger
Prompt: From Human, contains 293 amino 
acids, has 1 C2H2-type Zinc finger, is 
membrane-bound.
E-value: 1.6e-08
Predicted Property: membrane-bound

Zinc-finger

Figure 6: Visualization of jointly generation with domain and property annotations. PAAG is capable
of integrating domain and property annotations.
4.7 Case study: Joint Generation with Domain and Property Annotations

Due to the flexibility of combining annotations, PAAG can jointly generate the proteins with both
specific domain and property. Specifically, we generate the zinc-finger proteins in membrane-bound
by the model in Section 4.5. We showcase two examples of the generated results in Figure 6. As
shown in Figure 6, PAAG can successfully generate proteins under the conditions derived from both
domain and property annotations, demonstrating its potential in complex protein design tasks.

5 Related Work

Moltimodal Representation Learning. By harnessing the potential of extensive image-text pair data,
the Contrastive Language-Image Pretraining (CLIP) model, as proposed by Radford et al. Radford
et al. (2021), employs contrastive learning to align the representations between image and text
modalities.Following by CLIP, many image-text pertaining model are proposed, such as BILP Li et al.
(2022), BLIP-2 Li et al. (2023) and ClipCap Mokady et al. (2021). Beyond the image-text pretraining,
several studies introduce the more modalities, such as videos Xu et al. (2021), audios Tang et al.
(2023) and even molecules Liu et al. (2022) into a unified representation. Specifically, for multimodal
learning on protein sequences, OntoProtein Zhang et al. (2022) first learns protein representations by
combining them with textual descriptions in a knowledge graph. ProtST Xu et al. (2023) constructs
a large-scale dataset containing aligned pairs of protein sequences and property descriptions, and
pretrain a protein-biotext model to improve performance on downstream predictive task and enables
zero-shot retrieval.

Protein Generation Model. With huge success of language models Devlin et al. (2019), several
studies Elnaggar et al. (2021); Shin et al. (2021); Ferruz et al. (2022); Rives et al. (2019) treat
protein sequences consisting chains of amino acids as a type of “languages” and pretrain models on
millions of protein sequences. Upon the pretrained model, they generate the protein sequences in
an autoregressive manner. In addition to the autoregressive model, Evodiff Alamdari et al. (2023b)
extracts the evolutionary information from protein sequences and proposes an evolution-guided
diffusion model to generate protein sequences. Given the significance of structural information for
protein function, a group of methods Hsu et al. (2022); Ingraham et al. (2019); Tan et al. (2022);
Jing et al. (2020), known as inverse folding, utilize the structure as a conditional input, allowing
for the generation of amino acid sequences. Some studies Shi et al. (2022); Watson et al. (2023)
integrate both sequential and structural information and propose a co-design model that accepts
sequences and structures as conditions. Recently, ProteinDT Liu et al. (2023b) first proposes a
text-sequence alignment framework, enabling its capabilities for text-guided protein generation and
editing. Chroma Ingraham et al. (2023) trains a protein caption model ProCap and utilize it as a
classifier guidance to generate proteins via a diffusion model.

6 Conclusion

In this paper, we present PAAG, a multi-modality framework that first incorporates the rich annotation
information derived from protein database, achieving the superior performance in various applications,
such as representation learning and annotation-guided protein design. Crucially, we demonstrate
that it is possible to use the flexible combinations of various kinds of textual annotations to guide
the protein design process. We hope that PAAG will expand the possibilities of protein design
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and establish a robust foundation for future advancements in protein-related applications. Future
research directions include functional protein editing, co-design of protein sequence-structure within
alignment frameworks, and exploring the potential of larger protein dataset with lower annotation
quality.
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A Experimental settings

A.1 General settings

Backbone Models of PAAG: Unless otherwise specified, we utilize the weights from ProtBert-
BFD Elnaggar et al. (2021) as the initialization of our protein encoder. For the text encoder, we
choose SciBert Beltagy et al. (2019) as the initial backbone. The scarcity of training data does not
allow us to train a large decoder, we utilize a lighter decoder, initialized by DistilProtBert Geffen
et al. (2022). A decoder that contains more parameters is also our future direction.

Training Configurations: We train PAAG on ProtAnnotation, using the AdamW optimizer (with
a learning rate of 3e-5 and zero weight decay) for 100 epochs. Our generation experiments are
conducted on 16 NVIDIA Tesla A100-SX4-40GB GPUs.

A.2 ProtAnnotation and the template function G(·)

Figure 5 depicts additional statistics of ProtAnnotation. We demonstrate several example data samples
in ProtAnnotation as well as the corresponding textual description generated by the template function
G(·).

Table 5: The statistics of ProtAnnotation

# of proteins # of distinct domains average # of domains per protein average length

129,727 1,416 1.60 419.40

The explanation of four property annotations:

• protein_name: The protein name is a naming method used to describe the function, characteristics,
or origin of a protein. These names usually contain information about the protein’s structure,
function, substrate specificity, and biological process.
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• organism_name: Organism names are used to identify and classify different species of living
organisms, including bacteria, fungi, plants, and animals. These names usually consist of the
genus and species of the organism, and sometimes include additional information such as strain or
cultivar.

• length: The number of amino acids in the protein sequence.
• SIMILARITY: In the context of biology and protein classification, “similarity” refers to the shared

characteristics or features among different proteins. This can include similar structures, functions,
or evolutionary origins. Proteins with high similarity are often grouped into the same family or
subfamily.

Table 6: Examples of annotations and description of protein in ProtAnnotation
Entry name Domain Annotation Property Annotation Textual Description G(D)

Q8W4R8 [38, 95], Ubiquitin-like; degenerate
domain
[158, 459],PI3K/PI4K catalytic do-
main

organism_name: Mouse-ear cress,
protein_name: Phosphatidylinositol 4-kinase
gamma 6,
length: 622,
SIMILARITY: Belongs to the PI3/PI4-kinase
family, Type II PI4K subfamily

This is Phosphatidylinositol 4-kinase gamma 6
protein, from Mouse-ear cress, belongs to the
PI3/PI4-kinase family, Type II PI4K subfamily,
contains 622 amino acids, has 1 Ubiquitin-like;
degenerate domain, has 1 PI3K/PI4K catalytic
domain.

Q8XAW7 [5, 241], ABC transporter domain
[252, 495], ABC transporter domain

organism_name: Escherichia coli O157:H7,
protein_name: Ribose import ATP-binding pro-
tein RbsA 1,
length: 501,
SIMILARITY: Belongs to the ABC transporter
superfamily, Ribose importer (TC 3,A,1,2,1)
family

This is Ribose import ATP-binding protein
RbsA 1 protein, from Escherichia coli O157:H7,
belongs to the ABC transporter superfamily, Ri-
bose importer (TC 3,A,1,2,1) family, contains
501 amino acids, has 2 ABC transporter do-
main.

Q8Y2D7 [254, 288], FPG-type Zinc finger organism_name: Pseudomonas solanacearum,
protein_name: Formamidopyrimidine-DNA
glycosylase,
length: 288,
SIMILARITY: Belongs to the FPG family

This is Formamidopyrimidine-DNA glycosy-
lase protein, from Pseudomonas solanacearum,
belongs to the FPG family, contains 288 amino
acids, has 1 FPG-type Zinc finger.

A.3 Biological background of zinc-finger and immunoglobulin domain

We provide some introductions of zinc-finger and immunoglobulin domain from biological perspec-
tive, elucidating their significance and functions within the context of molecular biology.

• Zinc-finger: Zinc finger Klug and Rhodes (1987) domains are compact protein structural motif with
multiple protrusions that interact with target molecules. Initially identified in the transcription factor
TFIIIA from Xenopus laevis as a DNA-binding motif, these domains are now recognized for their
ability to bind DNA, RNA, proteins, and lipids. Their binding characteristics depend on the amino
acid sequence, the linker structure, the higher-order structures, and the number of fingers. Often
found in clusters, each finger within the Zinc finger domain can have unique binding specificities.
Despite being present in several unrelated protein superfamilies, these domains maintain stable
structures and play a crucial role in diverse cellular processes such as gene transcription, translation,
mRNA trafficking, and more. Zinc-binding motifs, part of the Zinc finger domains, rarely undergo
significant conformational changes upon target binding.

• Immunoglobulin domain: Immunoglobulin (Ig) domains Brummendorf (1995), also referred to
as immunoglobulin-like domains or Ig-like domains, are protein domains that of importance in the
immune system and are found in a wide range of proteins, both within and beyond the immune
system. These domains are characterized by their highly conserved structure, which typically
consists of 70 to 110 amino acid residues that form a compact, globular fold. The Ig domains
are ubiquitous in nature and can be found in a diverse array of proteins, including antibodies,
T-cell receptors, major histocompatibility complex (MHC) molecules, cell adhesion molecules,
and various receptor proteins. The primary function of Ig domains is to facilitate protein-protein
interactions, particularly in the context of the immune system, where they mediate the recognition,
binding, and neutralization of foreign antigens.

An illustration of Zinc-finger and Immunoglobulin domains is shown in Figure 7.

A.4 The evaluation metric for the unconditional generation

In the computation of the Distinct-n metric, we assign a value of n to 2. For the Novelty metric,
the default parameters of Mmseq2 are employed with an exception for the e-value threshold, which
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Zinc-finger Immunoglobulin

Figure 7: Visualization of typical proteins containing Zinc-finger (P26634, left figure) protein and
Immunoglobulin domain (A0M8Q6, right figure).

is designated as 100. In the case of the Diversity metric, the default parameters of Mmseq2 are
again utilized, but with alterations to the e-value threshold and sensitivity, set to 1000000 and 15
respectively. During the application of Mmseq2 for the calculation of Novelty and Diversity metrics,
the dissimilarity for unmatched sequences is assumed to be 1.0.

A.5 More details of baselines

ProGen Madani et al. (2023) first forms each property of protein as keyword tags. In the training
stage, ProGen prepends the keyword tags to the corresponding amino acid sequence, and try to
reconstruct the amino acid sequence in the auto-regressive manner. ProGen consequently has the
ability to generate the protein sequence given the keyword tags. During controllable generation,
ProGen first translates desired properties into keyword tags, then can controllably generate protein
sequence.

Chroma Ingraham et al. (2023) is also a protein design model that but focus more on generating
the protein backbone structure. Specifically, Chroma is a diffusion model that can generate protein
backbone with desired properties and functions by accepting the classifier guidance. Therefore,
Chroma introduces ProCap, a protein-to-text model, as the classifier guidance to enable text-guided
protein design. With an additional sequence sampling model, Chroma is capable of sampling both
structure and sequence based on the conditions.

In unconditional generation, PAAG only accept the length l of the protein sequence. We also define
this is the k-th protein we generated Consequently, we set the template function as “protein number k,
contains l amino acids.”

While generate proteins with functional domains, we randomly sample the organism name, length
and similarity from natural proteins that have corresponding functional domain. We specify the
generative hyper-parameters in A.8. When given property annotations. Deeploc Almagro Armenteros
et al. (2017) contains training data and test data in its original split. We utilize template function G()
to form the textual descriptions of test data. Then PAAG can generate protein with properties given
these descriptions.

A.6 Training configurations

A.6.1 Predictive Task

In downstream prediction tasks, PAAG utilizes the embedding in the aligned space. Specifically, we
not only use the protein encoder to extract the protein representations. We also keep the projector
head to extract the more informative aligned features. Furthermore, we also incorporate dropout rate
and weight decay to improve the generalization ability.

A.6.2 Protein Design with Domain Annotations

While training PAAG with ProtAnnotation, we introduce momentum contrast He et al. (2020), and
we set the queue size as 16384, and momentum as 0.995. In the contrastive learning, we initialize the
learnable temperature as 0.07. Moreover, we align the our latent space in 256 dimension with one
linear layer. Also, following the setting of Li et al. (2022), to enable soft labeling, we initialize the
learnable alpha as 0.4. When fine-tuning on the dataset only contains zinc-finger and immunoglobulin
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domains, we keep these hyper-parameters but decrease queue size to 4096 since the number training
data also decreases.

Besides, we also set the weight decay as 0.05 for AdamW during the learning.

A.6.3 Protein Design with Property Annotations

Due to the scarcity of training data, we conduct fine-tuning process based on the models trained in
Section 4.4 for 100 epochs. We mostly keep hyper-parameters as training on ProtAnnotation but
decrease the learning rate to 1e-5 without warming up.

For binary localization properties, soluble and membrane-bound, we set template function G()
as “is soluble” or “is membrane-bound”. For 10-class subcellular localization, G() is “locates in
{location}”.

Table 7: Configurations of full-model tuning of PAAG-ProtBert on three task types. Abbr., lr.:
learning rate; lrr.: learning rate ratio; dr.: dropout rate; wd.: weight decay; bs.: batch size; MSE:
mean squared error; CE: cross entropy; BCE: binary cross entropy.

Task optimizer lr. lrr. dr. wd. bs. #epochs loss
Localization

Bin Adam 2.0× 10−5 0.15 0 0 4 100 BCE
Sub Adam 2.0× 10−5 0.15 0.1 0 4 100 CE

Fitness

ρ-lac Adam 2.0× 10−4 0.02 0 3.0× 10−4 36 100 MSE
AAV Adam 9.0× 10−4 0.02 0 0 36 100 MSE
Thermo Adam 2.0× 10−4 0.02 0 0 6 100 MSE
Flu Adam 2.0× 10−4 0.02 0.3 4.0× 10−4 36 100 MSE
Sta Adam 5.0× 10−4 0.02 0.7 0 36 100 MSE

Table 8: Configurations of full-model tuning of PAAG-ESM-2 on three task types. Abbr., lr.: learning
rate; lrr.: learning rate ratio; dr.: dropout rate; wd.: weight decay; bs.: batch size; MSE: mean squared
error; CE: cross entropy; BCE: binary cross entropy.

Task optimizer lr. lrr. dr. wd. bs. #epochs loss
Localization

Bin Adam 1.0× 10−5 0.15 0 0 4 100 BCE
Sub Adam 2.0× 10−5 0.15 0 0 4 100 CE

Fitness

ρ-lac Adam 1.0× 10−4 0.02 0 0 16 100 MSE
AAV Adam 8.0× 10−4 0.02 0 0 16 100 MSE
Thermo Adam 3.0× 10−4 0.02 0.6 0 2 100 MSE
Flu Adam 3.0× 10−4 0.02 0 0 16 100 MSE
Sta Adam 8.0× 10−5 0.02 0 0 16 100 MSE

A.7 Additional experimental results

A.7.1 Results of protein generation with 10-class subcellular location annotation

We represent the confusion matrix of 10-class subcellular location annotation result in Figure 8 for
clearer illustration.
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Figure 8: Confusion matrix of protein design within 10 subcellular localization annotations. Numbers
indicate the count of generated instances given the condition annotation in the column while predicted
as row annotation.

A.8 Hyper-parameters

A.8.1 Hyper-parameters of generative task

In our generative task, we utilize nucleus sampling in our decoder. Specifically, we will sample the
amino acids based on their probability instead of always choosing the amino acids with the highest
probability. We set the Top-p hyperparameter as 0.9 in nucleus sampling, which means the decoder
will only consider the most likely amino acids that make up 90% of the probability mass. Besides,
we set the repetition penalty of decoder as 1.2.

A.8.2 Hyper-parameters of the predictive task

The hyperparameters for the predictive task concerning PAAG-ProtBert and PAAG-ESM-2 can be
found in Table 7 and Table 8, respectively.
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