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Charged pion vortices in rotating systems
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Possibilities for formation of the charged pion field vortices in a rotating empty
vessel (in vacuum) and in the rotating pion gas with a dynamically fixed particle
number at zero temperature are studied within the λ|φ|4 model. It is shown that
in the former case at a rapid rotation a supervortex of a charged pion field can be
formed. Important role played by the electric field is demonstrated. Field configu-
rations in presence and absence of the pion self-interaction are found. Conditions
for formation of the vortex lattice at the rotation of the charged pion gas at zero
temperature are studied. Observational effects are discussed.

1. Introduction

In heavy-ion collisions at some collision stage a hadron fireball is formed.
At LHC and top RHIC collision energies number of produced pions exceeds
the baryon/antibaryon number by an order of magnitude [1,2]. At the fireball
expansion stage from chemical to thermal freeze out the pion number is
approximately (dynamically) conserved. If the state formed at the chemical
freeze-out was overpopulated by pions, then during the cooling they may form
the Bose-Einstein condensate characterized by the dynamically fixed pion
number, as was suggested in [3] and studied then in a number of works, cf.
[4–7]. The ALICE Collaboration observed a significant suppression of three
and four pion Bose–Einstein correlations in Pb-Pb collisions at

√
sNN = 2.76

TeV at the LHC [8]. Analysis [6] indicated that about 5% of pions could
stem from the Bose-Einstein condensate.

Estimates show on angular momenta L ∼ √
sAb/2 <∼ 106~ in peripheral

heavy-ion collisions of Au + Au at
√
s = 200 GeV, for the impact parameter

b = 10 fm, where A is the nucleon number of the ion [9]. The global polariza-
tion of Λ(1116) hyperon observed by the STAR Collaboration in non-central
Au-Au collisions [2] indicated existence of a vorticity with rotation frequency
Ω ≃ (9± 1) · 1021 Hz ≃ 0.05mπ, mπ ≃ 140MeV is the pion mass.

Formation of vortices in resting quantum liquids is energetically unfavor-
able. Vortex structures in the rotating liquid helium and cold Bose gases of
nonrelativistic bosons have been extensively studied, cf. [10, 11].

Besides a rotation, also strong magnetic fields are expected to occur at
heavy-ion collisions and in compact stars. Estimates [12] predicted values of
the magnetic field up to ∼ (1017 − 1018)G for peripheral heavy-ion collisions
at the energy ∼ GeV per nucleon. Also, fields H <∼ (1015 − 1016)G should
exist at surfaces of magnetars, and m.b. still stronger fields in interiors.

Question about condensation of the noninterating charged pions in vac-
uum at a simultaneous action of the rotation and a strong magnetic field was
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studied in [13]. Work [14] included the pion self-interaction within the λ|φ|4
model and suggested appearance of a giant pion vortex (supervortex). Limit
H → 0 was not allowed and effects of the electric field were disregarded. Ref-
erence [15] studied possibilities of the appearance of the pion-σ supervortex
in the rapidly rotating empty vessel and in rotating nuclear systems, as well
as formation of the vortex lattice in the rotating pion gas at zero tempera-
ture, T = 0, within the σ model with taking into account the charge effects.
In the given paper these problems will be considered on example of the λ|φ|4
model. Units ~ = c = 1 will be used.

2. Charged pion field in rotation frame

Let us study behavior of the charged pion vacuum and a pion gas at T = 0
with a dynamically fixed particle number, in the rigidly rotating cylindrical
system at the constant rotation frequency ~Ω ‖ z in the cylindrical coordinates
(r, θ, z), ∇ = (∂r, ∂θ/r, ∂z), r =

√
x2 + y2. Interval in rotation frame is [16],

(ds)2 = (1− Ω2r2)(dt)2 + 2Ωydxdt− 2Ωxdydt− (dr3)
2 , r3 =

√
r2 + z2, with

the tetrad et0 = ex1 = ey2 = ez3 = 1, ex0 = yΩ, ey0 = −xΩ. Other elements are
zero; eα = eβα∂β, and thereby e0 = ∂t + yΩ∂x − xΩ∂y, ei = ∂i. Lattin index
i = 1, 2, 3, Greek index α, β = 0, 1, 2, 3. Region r > 1/Ω is beyond light cone.

In presence of the electromagnetic field Aα
lab in the laboratory frame, the

pion term in the Lagrangian density in the rotation frame renders [13,14,16]:

Lπ = |(Dt + yΩDx − xΩDy)φ|2 − |Diφ|2 −m2
π|φ|2 − λ|φ|4

2
, (1)

where Dα = ∂α + ieAα, eAα = eAlab
β eβα, e is the charge of the electron, λ is

a positive constant. Let us focus on the case Vlab = Vlab(r) produced by the

external charge density nlab
p (~r), ~Alab = 0 at Ω = 0. In the rotation frame we

seek solution of the equation of motion in the form of the individual vortex
with the center at r = 0, cf. [10], φ = φ0χ(r)e

iξ(θ)−iµt+ipzz , with φ0 = const,
pz = const. Being interested in description of ground state we put pz = 0.
Circulation of the ξ(θ)-field,

∮
d~l∇ξ = 2πν , yields integer values of the

winding number ν = 0,±1, ... and ∇ξ = ν/r, ξ = νθ, thereby. The quantity
µ has the sense of the energy of the ground state level of the π−. In case of
the pion gas at T = 0 it coincides with the chemical potential.

Lagrangian density with account of the rotation can be presented as

Lπ,V = Lπ + LV , Lπ = |µ̃φ|2 − |∂iφ|2 −m 2
π |φ|2 − λ|φ|4

2
, (2)

LV = (∇V )2

8πe2
+ npV , µ̃ = µ+ Ων − V (r) .

The rotation term acts as a constant contribution to the electric potential
for r < 1/Ω. Equation of motion for the vortex field in the rotation frame is

[µ̃2 +∆r−ν2/r2 −m2
π]χ(r)− λ|φ0|2χ3(r) = 0 , (3)

∆r = ∂2
r + ∂r/r, and the equation for the electric field is

∆V = 4πe2(np − nπ) , nπ =
∂Lπ,V

∂µ
= 2µ̃|φ|2 , (4)
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nπ is the charged pion field (particle) density. Simplifying, we will assume
that np is produced by very heavy particles (e.g., by protons being 7 times
heavier than pions) and thereby we put np ≃ nlab

p and we take np = n0
pθ(R−

r), and either n0
p = const > 0 or zero, and θ(x) is the step function, R < 1/Ω.

The angular momentum associated with the charged pion field φ is

~Lπ =
∫
d3X [~r3 × ~Pπ] , P i

π = T 0i
π = − ∂Lπ

∂∂tφ
∇φ− ∂Lπ

∂∂tφ∗
∇φ∗, (5)

T 0i
π is the (0i) component of the energy-momentum. The energy density is

Eπ,V = Eπ + EV = µnπ −Lπ,V . (6)

Question arises what is distribution of vortices if they appear: a supervortex
with the winding number ν ≫ 1 or the lattice of vortices with ν = 1 each?

3. Rotation and laboratory frames

The question how to treat the rotating reference frame and the response
of the Bose field vacuum and the Bose gas at T = 0 (i.e. the Bose-Einstein
condensate) on the rotation in this frame is rather subtle due to necessity
to fulfill the causality condition r < 1/Ω. Thereby, we will associate the
rotation frame with a rotating rigid body of a finite transversal size. For
instance, we may consider either vacuum or the pion gas inside a long empty
cylindric vessel of a large internal transversal radius R, external radius R>,
hight dz ≫ R, a large mass M and constant mass-density ρM , rotating in
the z direction with constant cyclic frequency Ω at Ω < Ωcaus = 1/R>, as
requirement of causality. Otherwise solid vessel will be destroyed by rotation.

In case of the vortex placed in the center of the cylindric coordinate system
Pθ = 2µ̃|φ|2ν/r = nπν/r and using (5) we have Lπ

z = 2πdz
∫ R

0
rdrνnπ = νNπ.

There are two possibilities: (1) the charged pion system responses on
the rotation creating the vortex field in the rotation frame, and (2) it does
not rotate, cf. [10, 11]. Further, there are two possibilities: (i) conserving

rotation frequency ~Ωfin = ~Ωin of the rotating rigid body representing the

rotation frame, and (ii) conserving angular momentum ~Lfin = ~Lin.
In case (i) the kinetic energy of the vessel measured in the laboratory

(resting) reference frame, Ein = πρMΩ2
indz(R

4
> − R4)/4, given for simplicity

for the nonrelativistic motion, does not change with time, i.e. Ein = const.
The loss of the energy due to a radiation is recovered from an external source.
We will consider situation when in the laboratory frame the pion vortex field
does not appear from the vacuum. It is so if external fields (the electric field
V in our case) are not too strong. However there is still a possibility of the
formation of the pion field from the vacuum in the rotation reference frame.
In presence of Bose excitations the final energy of the system is given by

Efin = Ein + Eπ[Ωin] ,
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Eπ[Ωin] is the rotation part of the energy associated with a boson field in
the rotating system. Note that in a deep electric potential well in absence
of the material walls, instability for the creation of π± pairs occurs, if the
pion ground energy level, µ, reaches −mπ. In the rotating piece r < R of the
vacuum inside the vessel the pions can be produced via reactions on the walls
of the vessel already when the lowest energy level, µ, reaches zero. Further,
studying vacuum in empty rotating vessel we put µ = 0 whereas in a formal
treatment of rotation frame one would put µ = −mπ. The condition for the
formation of the condensate in these cases is

Eπ[Ωin] < 0 . (7)

The same condition holds, if we deal with the pion gas with a dynamically
fixed particle number, with the difference that for the gas the chemical po-
tential, µ > 0, is determined from condition of the fixed particle number.

In case (ii) the vessel is rotated owing to the initially applied angular mo-

mentum ~Lin =
∫
d3X [~r3× ~Pin], ~Pin = ρM [~Ωin, ~r3]. The value ~Lin is conserved,

provided one ignores a weak radiation, but it can be redistributed between
the massive vessel (stiff subsystem) and the pion field (a softer subsystem),

~Lin = ~LM,fin + ~Llab
π , Efin = πρMΩ2

findz(R
4
> − R4)/4 + E lab

π , (8)

and for the gas with fixed particle number we have E lab
π = Eπ[ν,Ω = 0] .

Employing (8) and neglecting O(1/M) term we obtain

δE = Efin − Ein ≃ −Llab
π Ωin + E lab

π [ν,Ω = 0] . (9)

The vortex-condensate field appears provided δE < 0. For V0 < m, Eπ[ν,Ω =
0] > 0. Conditions (7) and (9) should coincide, see below.

4. Charged pion vortex field in absence of self-interaction

Equation of motion, boundary conditions, energy in rotation frame. Let
us consider the case λ = 0. From Eq. (3) we have

[
∂2
r + ∂r/r − ν2/r2 + (µ̃2 −m2)

]
χ(r) = 0 . (10)

Eq. (10) describes a spinless relativistic particle of energy ǫn,ν = µ, mass m
and z-projection of the angular momentum ν, placed in the potential well
U(r) = −Ων + V (r) for r < R. Behavior at r > R depends on the boundary
condition put at r = R. We are interested in the description of the ground
state, then µ = min{ǫn,ν} plays a role of the chemical potential. The term
−2Ων(µ − V )|φ|2 in the energy density is associated with the Coriolis force
and the term −Ω2ν2|φ|2 is an attractive relativistic ∝ 1/c2 contribution to
the centrifugal force term (ν2/r2)|φ|2.
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The Schrödinger equation for a nonrelativistic spinless particle follows
from the Klein-Gordon equation (10) after replacement µ → m + µn.r. and
subsequent dropping of small quadratic terms (µn.r.+Ων−V )2. Then we get

[
−∆r/(2m)− Ων + V (r) + ν2/(2mr2)

]
χ = En.r.χ, (11)

Uef = −Ων + V (r) + ν2/(2mr2), En.r. = µn.r.. So, rotation in the rotating
frame acts similarly to a constant electric potential acting on a nonrelativistic
particle with the projection of the angular momentum ν.

In the Schrödinger equation the rotation is ordinary introduced employing
the local Galilei transformation, with the speed given by ~W = [~Ω × ~r3]. It
results in the replacement in the Schrödinger equation, cf. [17],

−∆/(2m) → −(∇− im ~W )2/(2m)−m ~W 2/2 → −∆/(2m)− Ων , (12)

that yields the same Eq. (11), at which we arrived considering the problem in
the rotation frame. Thus we see that uniform rotation acts in nonrelativistic
case similarly to a uniform rather weak magnetic field described by the vector-
potential ~A = 1

2
[ ~H,~r3]. In relativistic case shift of variables ∂t → ∂t − Ω∂θ

in the Klein-Godron equation in the rotation frame is not equivalent to the

shift ∇ → ∇−im[~Ω, ~r3] in the Hamiltonian and subtraction of the m ~W 2

2
term

associated with the motion of the system as a whole, cf. [16].
Further let us for simplicity consider the case V ≃ −V0 = const for r < R.

V0 can be treated as a contribution to the chemical potential. For example
we may assume that an ideal rotating vessel is placed inside the cylindrical
co-axial charged capacitor or itself it represents the capacitor. Appearance
of the field φ 6= 0 produces a dependence of V on r. However, if φ is a
rather small, we can continue to consider V = −V0 ≃ const. Employing
dimensionless variable x = r/r0, with

r0 = 1/
√

µ̄2 −m2 , µ̄ = µ+ Ων + V0 , (13)

for µ̄ > m, V0 = const, from Eq. (10) we obtain equation

(∂2
x + x−1∂x − ν2/x2)χ+ χ = 0 . (14)

Simplest appropriate boundary conditions are

χ(0) = 0 , χ(R/r0) = 0 . (15)

Further to be specific let us consider Ω, ν > 0. Appropriate solution of
Eq. (14) is the Bessel function χ(r) = Jν(r/r0) for ν > 0, cf. [18]. For x → 0
we have Jν ∼ xν . The energy of the n = 1 level is determined by the first
zero of the function Jν(R/r0) = 0, jn=1,ν=0 ≃ 2.403. The n = 1, ν = 1 zero
yields j1,1 = R/r0 ≃ 3.832, j1,ν increases with increase of integer values of ν.
For ν ≫ 1, jas1,ν → ν + 1.85575ν1/3, e.g., j1,100 ≃ 108.84.

Employing the boundary condition χ(x = R/r0 = jn,ν) = 0 we find

ǫn,ν = µ = −Ων − V0 +m
√

1 + j2n,ν/(R
2m2) , (16)
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µ̄ =
√

m2 + j2n,ν/R
2. Notice that with increasing quantity Ων+V0 the n, ν 6= 0

levels become more bound than the level n = 1, ν = 0. From (16) we also
find that the roots ǫn,ν for V0 = 0 do not reach zero for ΩR < 1. Thus for
V0, λ = 0 the field φ would not appear at the rotation of empty vessel.

One could employ the boundary condition χ′(r = R) = 0 instead of the
condition χ(r = R) = 0. In both cases there is no current through the
surface r = R. Such a change of the boundary condition would not affect
our conclusion that at V0 = 0 the energy level does not cross zero. Note that
in cases of the vacuum and the Bose-Einstein condensate in the vessel, usage
of one of mentioned boundary conditions is motivated provided the typical
frequency of atomic transitions in the solid wall, ωat, is larger than difference
between energies of the first excited energy levels and the ground state level,
∼ 1/R for ν ≫ mR and ∼ ν/(R2m) in oppisite case. Otherwise one should
use exact matching conditions for χ(r = R) and χ′(r = R).

Storm of charged pion field in rotation frame. The value of the rotation
frequency, at which Eq. (16) could be fulfilled for µ = ǫ1,ν ≤ 0, V0 6= 0 is

Ω ≥ Ωc = Ω(ǫ1,ν = 0) = (
√
m2 + j21,ν/R

2 − V0)/ν , (17)

where
√

m2 + j21,ν/R
2 →

√
m2 + ν2/R2 for ν ≫ 1 .

For 1 ≤ ν = c1mR ≪ mR, i.e. at c1 ≪ 1, mR ≫ 1, from Eq. (16) we get

ǫ1,ν ≃ −V0 − Ων +m+ ... (18)

The levels ǫ1,ν reach zero for V0 > m(1−c1) at Ω = 1/R. The critical rotation
frequency is then given by

Ωc = Ω(ǫ1,ν = 0, c1 ≪ 1) ≃ (m− V0)/ν > 0. (19)

For V0 < m, Ωc decreases with increasing ν. For V0 > m, Ωc ∼ O(1/(mR2)).
The latter case is similar to the case of the gas with fixed particle number.

For ν = c1mR ≫ mR ≫ 1 (at c1 ≫ 1) from (16) we have

ǫ1,ν ≃ −V0 + (−ΩR + 1)ν/R +Rm2/(2ν) + 1.86ν1/3/R + ... (20)

Setting in (20) the limiting value Ωcaus = 1/R we see that ǫ1,ν → −V0 +
m/(2c1) + ... for 1 ≪ c1 ≪

√
mR. Thus the level ǫ1,ν may reach zero for

ΩR < 1 at V0 > V0c = m/(2c1). With increasing ν, V0c decreases. Formation
of the supervortex becomes energetically favorable for

√
mR ≫ c1 ≫ 1 at

Ω > Ωc = Ω(ǫ1,ν = 0, c1 ≫ 1) ≃ 1
R
− V0−m/(2c1)

c1mR
, V0 > V0c =

m
2c1

. (21)

In case (i) the minimal critical value V0c ∼
√

m/R for c1 ∼
√
mR ≫ 1. For

V0 = V0c, we have Ωc → 1/R. For c1 ≫
√
mR, V0c ≃ 1.86(m/R2)1/3 ≪ m.

The amplitude of the arising vortex field is limited by redistribution of the
charge, which we did not take into account assuming that V0 ≃ const. In
case (ii) c1 is also limited by conservation of the initial angular momentum.



7

In the rotation frame, in case (i), using solution (16) and (6), (14) we find

Eπ(Ω) = ǫn,νNπ = ǫn,νdz4π
∫ R

0
rdr

√
m2

π +
j2n,ν

R2 φ
2
0χ

2(r). (22)

For np 6= 0, Eπ,V ≃ Eπ(Ω) + V0Z , where Z = npπR
2dz.

In case (ii) the angular momentum needed for formation of the vortex is
taken from the bucket walls. Presenting Eq. (16) as ǫn,ν = ǫn,ν [Ω = 0]− Ων
and comparing Eqs. (9) and (22) we get δE = Eπ(Ω) = ǫn,νNπ.

Notice that in case of the vacuum placed in a strong static electric field
in absence of the rotation, the charged bosons are produced nonlocally via
tunneling from the lower continuum to the upper continuum. The typical
time of such processes is exponentially large τ ∼ em

2/|eE|/m for the strength
of the electric field |eE| ≪ m. In case of the rotating empty vessel the
charged pion field can be produced in more rapid processes, in reactions
of particles of the rotating wall of the vessel. Also, as one of possibilities
to create the vortex field, one may inject inside the vessel an admixture of
protons. Accelerated protons will then produce radiation of the charged pion
pairs and the latter can then form the vortex field.

Ideal pion gas with dynamically fixed particle number in rotating system.
In case of the ideal pion gas at T = 0 characterized by the dynamically fixed
particle number Nπ, being put in a resting vessel on the ground state level,
the value φ2

0[Ω = 0] is found from the normalization condition Nπ = µφ2
0[Ω =

0]πR2dz. In the rotation frame ǫ1,ν = µ > 0, the constant φ2
0[Ω] is found from

the condition (22) yielding Nπ ≃ 2µ̄φ2
0[Ω]πR

2dzJ
2
ν+1(R/r0[µ̄]) , with r0 and µ̄

given in Eq. (13), i.e. the relation between the (dynamically) fixed value Nπ

and constant µ̄. Value ǫn,ν = µ depends on Ω through the relation (13).
To understand will the gas be at rest or rotating with the angular velocity

Ω we should compare Eπ[Ω] = Nπǫ1,ν and Eπ[Ω = 0]. The minimal value of
Eπ[Ω = 0] corresponds to ν = 0 and for mπR ≫ 1 is given by

Eπ[Ω = 0] ≃ Nπ[−V0 +mπ + j21,0/(2R
2mπ)] . (23)

For ν ≪ Rmπ and any V0 we find that for

Ω > Ωid
c1(ν) ≃ (j21,ν − j21,0)/(2νR

2mπ) , (24)

Eπ[Ω]− Eπ[Ω = 0] ≃ Nπ[−Ων + (j21,ν − j21,0)/(2R
2mπ)] < 0 , (25)

Ωid
c1(ν) is minimal for |ν| = 1. Comparing (24) and (17), (19) we see that

Ωid
c1 ≪ Ωc(λ = 0) at least for small values V0, i.e. in presence of a pion gas

vortices appear already at much smaller rotation frequencies than in case
of the rotating vacuum. For the former case at mπR ≫ 1 we deal with
a slow rotation for Ω ∼ Ωid

c1(1). For a single vortex with ν = 1 we have
δE (1) ≃ −[Ω − Ωid

c1(1)]Nπ . For νtot single vortices, each with ν = 1, the
energy gain is δE = νtotδE (1). For Ω > Ωid

c1 at increasing rotation frequency
individual vortices may form lattice. For Ω < Ωc1, production of vortices is
energetically not profitable. However, if a vortex appeared by a reason, it
would survive due to conservation of ν.
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5. Self-interacting complex scalar field in rotating system

Equation of motion, boundary conditions, energy. For λ 6= 0, V0 ≃ const,
using Eq. (3) in the dimensionless variable x = r/r0, we arrive at equation:

(∂2
x + x−1∂x − ν2/x2)χ + χ− λφ2

0r
2
0χ

3 = 0 , (26)

where r0 is given by Eq. (14). Choosing λφ2
0r

2
0 = 1 we have

φ0 =
√

(µ̄2 −m2
π)/λ× θ((µ̄2 −m2

π)/λ), (27)

being the solution of Eq. (26) at x → ∞ satisfying condition χ(x → ∞) → 1.
For case of the rotating vacuum, for Ω−Ωπ

c ∼ Ωπ
c , V0 ≪ mπ, cf. Eq. (30)

below, we have r0 ≪ R for mπR ≫ 1. For the pion gas at a low density and
small Ω and V0, from Eq. (4) it follows that nπ ≃ 2µ̄(µ̄2 − m2

π)/λ, and we
have µ̄ ≃ mπ + nπλ/(4m

2
π) for nπ ≪ m3

π/λ and thus r0 ≃
√

2mπ/(nπλ) in
this case and r0 ≪ R for mπR ≫ 1 and r0 ≪ R/ν for c1 ≪ 1.

There exist asymptotic solution of Eq. (26): χ ∝ x|ν| for x → 0 and
χ = 1 − ν2/(2x2) for x ≫ ν. Then the field φ is expelled from the vortex
core and the equilibrium value (27) is recovered at r ≫ νr0. The solution is
modified for R − r ∼ r0 to fulfill condition χ(R/r0) = 0.

To clarify how to fulfill the boundary condition at r = R we can solve Eq.
(26) employing the variable y = (r−R)/r0, x = y +R/r0, now at boundary
conditions χ(y → −∞) = 1 and χ(y = 0) = 0. At νr0 ≪ R for typical
dimensionless distances y ∼ 1, the angular momentum term, ∼ ν2r20/R

2 ≪ 1,
and the curvature term, ∼ r0/R ≪ 1, can be dropped, which means that
geometry can be considered as effectively one-dimensional one, cf. a similar
argumentation employed in [19]. Then appropriate solution gets the form

φ = −φ0e
iνθth[(r −R)/(

√
2r0)], νr0 ≪ R , r < R . (28)

For V0 ≃ const and for (µ̄2 −m2
π)/λ > 0 using (6), (2), (26) we find

Eπ,V ≃ 2πdz
∫ R

0
rdr

[
− (µ̄2−m2

π)
2χ4

2λ
+ 2µµ̃(µ̄2−m2

π)χ
2

λ
+ npV0

]
. (29)

Rotating vacuum. In this case µ = µ̄ − Ων − V0 = 0. For np = 0 only
first term in square brackets (29) remains. So, production of the vortex field
becomes energetically favorable, Eπ,V (Ω) < 0, for Ων + V0 > mπ, i.e. for

Ω > Ωπ
c = (mπ − V0)/ν , c1 > (mπ − V0)/mπ > 0 . (30)

Note that Ωπ
c approximately coincides with Ωc given above by Eq. (19)

derived for λ = 0 and c1 ≪ 1, but differs from (21). On the other hand the
asymptotic solution χ = 1 − ν2/(2x2) works only for R ≫ νr0, being valid
for Ω− Ωπ

c ∼ Ωπ
c , c1 ≪ 1, as well as for Ω near 1/R and V0 ≫ Vc.

Non-ideal gas with fixed particle number in rotating system. Now let us
consider non-ideal pion gas at T = 0 with dynamically fixed particle number



9

at the condition µ ≃ m+O(nπ/m
2) ≫ Ων + V0. This case is similar to that

occurs for cold atomic gases, and He-II when µ ≃ mHe and Ων + V0 ≪ mHe.
In presence of the rotation, in the rotation frame, using the asymptotic

solution χ = 1 − ν2/(2x2) of the equation of motion for x ≫ ν we find that

the energy balance is controlled by the kinetic energy of the vortex, E (1)
kin, and

the rotation contribution LΩ extracted from the first two terms in squared
brackets (29). The same consideration can be performed in the laboratory
frame employing Eq. (9). In the latter case the kinetic energy associated
with the single vortex line with the logarithmic accuracy is given by

E (1)
kin ≃

∫
d3X|∇φ|2 = ln(R̃/r0)dzπν

2nπ/µ̄. (31)

At large distances r we cut integration at r ∼ R̃ ≫ r0, R̃ being the transversal
size of the vessel R in case of the single vortex line with the center at r = 0,
and the distance RL between vortices in case of the lattice of vortices. At
small distances integration is naturally cut at r ∼ r0.

Let us consider the system at approximately constant density nπ. Then
from the condition E (1)

kin−~L~Ω < 0 we find that the first vortex filament appears
(together with the anti-vortex) for

Ω > Ωλ
c1(ν) = ν ln(R/r0)/(R

2µ̄) , (32)

and for a low density and slowly rotating gas µ̄ ≃ µ ≃ m + O(nπ/m
2).

Note that Eq. (32) differs only by a logarithmic pre-factor from a similar
expression Eq. (24) valid for the ideal gas. We should put ν = 1 and take

R̃ ∼ R, getting the minimum value of Ωλ
c1. In case R ≫ r0, following (32)

we have Ωλ
c1R ≪ 1 for a slow rotation, c1 ≪ 1.

Under action of fluctuations the vortex lines may form spirals and rings,
cf. [11, 15]. Vortices may also form a lattice and then the system mimics
rotation of the rigid body characterized by the linear velocity vrig = ΩR < 1.
In case of a vortex lattice we get [10, 15]:

N rig
v κ = nvπR

2κ = 2πR · ΩR , κ = 2πν/µ̄ . (33)

Here N rig
v = R2/R2

L is the total number of vortices inside the vessel of the
internal radius R, which should be formed at given Ω in order the interior
of the vessel would rotate as a rigid body together with the walls, and nv =
1/(πR2

L) is the corresponding number of vortices per unit area. Thus distance
between vortices RL =

√
ν/

√
µ̄Ω , decreases with increasing Ω.

The energy gain due to the rigid-body rotation of the lattice of vortices
mimicking the rotation of the vessel is given by [10],

δE ≃ N rig
v [E (1)

kin(RL)− Lv(RL, ν)Ω] . (34)

This result is obtained within a simplifying assumption of a uniform distri-
bution of vortices [20]. A more accurate result computed for the triangular
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lattice [17, 21], differs only by a factor π
2
√
3
≃ 0.91 from that found for the

uniform approximation. Also, following simplifying consideration of Ref. [10]
we disregarded a small difference of the rotation angular velocity of the vor-
tex lattice, ω, from that of the vessel Ω. For Rm ≫ 1 this difference proves
to be a tiny quantity, cf. [15]. Minimization of (34) yields

N rig
v Lv(RL, ν) = N rig

v πnπν
2dz/(2µ̄Ω) . (35)

Setting (35) to (34) and using (33) we obtain the equilibrium energy

δE ≃ nπνΩπR
2dz[ln(RL/r0)− 1/2] . (36)

Minimum of δE corresponds to ν = 1.
Thus, we demonstrated that at the rotation frequency Ω > Ωλ

c1 in the
rotating vessel filled by a pion gas (in our case at T = 0) there may appear
charged pion vortices, which at subsequent increase of Ω (for Ω > 2Ωλ

c1) may
form the lattice mimicking the rigid-body rotation.

With a further increase of the rotation frequency the lattice can be de-
stroyed. The minimal distance RL ∼ r0 at a dense packing of vortices cor-
responds to the number of vortices per unit area nv ∼ 1/(πr20) in Eq. (33)
and the maximum rotation frequency is Ω ≃ Ωc2 ∼ 1/(r20m) . For Ω > Ωc2,
the φ vortex-state should disappear completely. Note that for an extended
rotating system the value Ωc2R ≫ 1, however now it may not contradict
to causality since the system may consist of independently rotating vor-
tices. Note also that in cold atomic gases breakup of lattice occurs for
Ω > Ωh ∼ Ωc2r0/R ≪ Ωc2 when in the center of vessel arises a hole, cf. [17].

6. Some consequences

Rotating supercharged nuclei and nuclearites. Let us consider a super-
charged nucleus or a piece of nuclear matter (nuclearite) of a large atomic
number A ≃ 2Z for np = n0/2, Z is the proton charge of the nucleus and
n0 is the nuclear saturation density, n0 ≃ m3

π/2. For V0 ∼ Ze2/R > mπ the
ground state π− energy level reaches zero and in reactions, e.g. n → p+ π−,
there may appear the charged π− condensate. For Z|e3| ≫ 1 the charge of
protons is screened by π− condensate at least to the value of a surface charge
Zs

<∼ Z/(Z|e3|)1/3, cf. [19]. The surface energy term is small and the total
energy is given by E ≃ Eπ,V +EA , EA ≃ −32Z MeV. Let for simplicity λ → 0
and m∗(n0) is the effective mass of the pion in muclear matter at n = n0.
Then in case of a resting nuclearite one obtains E ≃ (m∗ − 32MeV)Z . Thus,
if m∗(n0) were < 32MeV or if there existed spinless charged bosons of such a
mass, there would exist nuclearites and nuclei-stars bounded by nuclear and
electromagnetic forces, cf. [22, 23]. However, in spite of the attractive pion-
nucleon interaction, pions have a larger effective mass at n ∼ n0, cf. [23,24].

In case of a rotating supercharged nucleus, using (20), (22), for ǫ1,ν =
µ = 0, and for

√
mπR ≫ c1 ≫ 1 we have V0 ≃ mπ(1− ΩR)c1 and

E − Ein ≃ [mπ(1− ΩR)c1 − 32MeV]Z. (37)
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Vortex condensate state appears for E − Ein < 0. This estimate is changed
only a little in a realistic case, λ ∼ 1 within the λ|φ|4 model. Thus a charged
pion supervortex should be formed at least for Ω close to 1/R. Additionally,
we should notice that the rotating charged nucleus forms a magnetic field,
which presence still improves conditions for formation of the supervortex [15].

Thus in case of a rotating cold piece of the nuclear matter it might be
profitable to form a charged pion vortex field, which will for a while stabilize
the system. The kinetic energy of such a rotating nuclear system is then lost
on a long time scale via a surface electromagnetic radiation. For very large
number of baryons, A, such a radiation is strongly suppressed, e.g. pulsars
radiate their energy during >∼ 106yr.

Pion vortices in heavy-ion collisions. In heavy-ion collisions at LHC,
RHIC conditions typical parameters of the pion fireball estimated in the
resonance gas model [25] are: the temperature T ≃ 155 MeV, the volume is
5300fm3, the π± density is nπ ≃ m3

π and we estimate the electric potential
as V0 ∼ Ze2/R ∼ 0.2mπ for central collisions, where Z is now the charge of
the fireball. For peripheral collisions typical values of V0 can be larger.

Estimates performed for peripheral heavy-ion collisions at
√
s = 200 GeV

give for the rotation angular momentum values Lz
<∼ 106 that yields ν <∼ 103.

Measured global polarization gave for vorticity Ωexp(200GeV) ≃ 0.05mπ,
cf. [2, 9]. Taking for size of the overlapping region of colliding nuclei R = 10
fm we get Ω < Ωcaus = 1/R ≃ 0.14mπ. After the chemical freeze out up to the
thermal freeze out, at Tth < T (t) <∼ mπ, the pion number can be considered
dynamically fixed. Estimates show that TBEC > Tth, where TBEC is the
critical temperature of the pion Bose-Einstein condensation [3,5,7]. Thus we
may expect Ων ≫ mπ. A rough estimate yields that Ωc1 < Ωexp(200GeV),
whereas Ωc2 ∼ m2

π. Thus the fireball can be stabilized for a while by the
formed pion supervortex or the lattice of vortices. Also at these conditions
one may think about occurrence of the charged kaon vortices.

It is believed that the spin polarization of particles emitted in heavy-ion
collisions is induced by the coupling of the angular momentum produced by
colliding nuclei and the spin of particles distributed in the matter. Nucleons
participate in production of strange particles, e.g., Λ hyperons. The polariza-
tion of the Λ is measured, cf. [26]. Being formed, pion vortices absorb a part
of the angular momentum. At the freeze out they return part of the angular
momentum back to baryons affecting Λ polarization. Also, pion and baryon
momentum distributions for particles involved in the vortex structures should
be different from the ordinary thermal distributions.

Superfluidity of baryon Cooper pairs and boson condensates in neutron
stars. Nucleons in pulsars form neutron-neutron and proton-proton Cooper
pairs, playing a role of boson excitations, and µ̄ ≃ 2mN , where mN is the
nucleon mass. Vortices in nucleon superfluids form the lattice, which mimics
the rigid-body rotation of the matter. Besides the nucleons, the hyperons
may appear in the interiors of neutron stars with the mass M >∼ 1.4M⊙,
forming Cooper pairs. Taking ν = 1 and using Eq. (33) one gets estimation
nv ≃ 6.3 ·103(P/sec.)−1 vortices/cm2 provided rotation period P is measured
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in seconds, cf. [27]. Then for the Vela pulsar, P ≃ 0.083 sec, the distance
between vortices is 4 ·10−3 cm. The charged pion condensate superfluid also
can be formed in neutron star interiors [12]. Employing µ̄ ≃ mπ we estimate
the density of pion vortices as nv ≃ 5 ·102(P/sec.)−1 vortices/cm2. Similarly,
the kaon [28] and ρ± condensates [29] may form lattice structures.

Rotating vessel. Let np = 0. In case when an ideal rotating vessel is
placed inside a cylindrical co-axial charged capacitor (with plates placed at
r = Rex and r = Rin for Rex > Rin > R>) when Zin is the charge placed on
the internal surface of the capacitor and −Zex is the charge of the external
surface, the electric field between plates is E(r > Rin) = −2Zex/(rdz) and
V (r = Rin) = RinE(Rin) ln(Rex/Rin). For ρπdzπR

2 ≪ Zex we have V (r <
R) ≃ V (r = Rin). For a surface charge density σ ∼ 104v/cm and Rin ∼ 10m,
Rex

>∼ (2−3)Rin, one gets V0 > mπ and the supervortex arises even for c1 ≪ 1.

In case of the pion gas, with the help of Eq. (33) we may estimate
number of vortices in the lattice at the rigid-body rotation Nv = µ̄ΩR2/ν <
µ̄(R/R>)

2R>/ν , for Ω < 1/R>, 1/R> = 3 ·106Hz for R> = 10m. Then, with
R = 1cm and µ̄ ∼ mπ we estimate Nv < 1010/ν, RL

>∼
√
ν/Ω[Hz]10−2cm.

Formation of vortices in magnetic field. In [13] rotation of the vacuum of
non-interacting charged pions was considered in presence of a strong external
uniform constant magnetic field H . The number of permitted states is given
by N = |e|HS/(2π) = |e|HR2/2 and for |e|H < 2/R2 we have N < 1. Thus
results [13] do not describe the case H → 0, which we have studied above.

Uniform magnetic field inside the rotating ideal vessel can be generated,
if the vessel is put inside a solenoid or if we deal with the charged rotating
cylindrical capacitor. In the latter case simple estimate shows that for R = 1
cm it is sufficient to switch on a tiny external field |e|H > 10−8G in order to
get N > 1 and thereby to overcome the problem with absence of the solution
µ = 0 of Eq. (16) at V0 = 0. Now, at H 6= 0, N > 1, dispersion equation
renders ǫ1,ν = −Ων − V0 +

√
m2 + |e|H and instead of Eq. (17) we obtain

νΩH
c = νΩ(ǫ1,ν = 0) = −V0 +

√
m2 + |e|H , (38)

and νΩH
c ≃ −V0 + m for |e|H ≪ m2

π, compare with Eq. (19), the latter
is valid only for c1 ≪ 1. The dependence on R disappeared, cf. [13]. The
degeneracy factor 0 < ν ≤ N . Fields H <∼ (105 − 107)G can be generated at
the terrestrial laboratory conditions. For |e|H ∼ 106 G at R = 1 cm we have
N ∼ 1014 and ν <∼ N for c1 <∼ 10 and ΩH

c
<∼ 109 Hz.

Injection of the proton gas in rotating vessel. In absence of the capacitor,
in case of the rotation of the charge neutral empty vessel, in which an amount
of heavy positively charged particles is injected (e.g. protons), the positive
charge density np can be compensated by the produced negatively charged
pion vortex field, i.e. |nπ| = µ̄|φ|2 ≃ np. Maximum value of |φ|2 at m2

π ≫
eH ∼ Ze2Ω/R ≫ 1/R2 corresponds to µ̄ ≃ mπ, and thus the minimum of the
pion supervortex energy in the rotation frame is given by Eπ = (mπ − Ων)Z
and it becomes negative for Ω > mπ/ν, for c1 > 1.
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7. Concluding remarks

In this work within the λ|φ|4 model we studied possibilities of the for-
mation of the charged π± vortex fields in various systems: in the rotating
cylindrical empty vessel; in the vessel filled by the charged pion gas at the
temperature T = 0 (Bose-Einstein condensate) with a (dynamically) fixed
particle number; and in case of rotating nuclear systems. In case of the vessel
filled by a pion gas at T = 0, an analogy was elaborated with cold Bose gases
and the condensed 4He. Various applications of the results were discussed.
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