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Abstract—Zk-SNARKs help scale blockchains with Verifiable
Off-chain Computations (VOC). zk-SNARK DSL toolkits are key
when designing arithmetic circuits but fall short of automating
the subsequent proof-generation step in an automated manner.
We emphasize the need for portability, interoperability, and
manageability in VOC-based solutions and introduce a Proving
Service that is designed to provide a scalable and reusable
solution for generating zk-SNARK proofs leveraging clouds.

Index Terms—Blockchain, Zero-knowledge Proofs, zk-
SNARKs, ZoKrates, Proving, Service Architecture, Cloud
Computing

I. INTRODUCTION

The succinctness property and the short verification times
of zk-SNARKs come at the cost of large computational com-
plexity, static execution models, and memory overheads during
the proof generation process [1]. These limitations represent
a problem in VOC applications which require handling large
and varying workloads, like rollups. This type of application
would benefit from scalable, interoperable, and manageable
system environments like clouds. However, DSL toolkits like
ZoKrates [2] or Circom [3] concentrate on circuit development
and put little emphasis on how to integrate these circuits
into production systems. Bridging the gap between advanced
cryptography and modern systems engineering also helps to
create standardized benchmarks for proving systems and tools.

II. PROVING SERVICE

We introduce a service-oriented approach for VOC that
facilitates the use of the cryptographic procedures of zk-
SNARKs within cloud system architectures. Our system allows
for executing arithmetic circuits as encapsulated application
logic in containers that are deployable to different machines re-
alizing scalability, provide interoperability with other services,
and are better manageable. For that, we give an overview of the
service-oriented system architecture and describe the internals
of the proving service.

A. Service Oriented Verifiable Off-chain Computation

The problems above can be fulfilled through a service-
oriented approach as depicted in Figure 1. Starting from a
higher-level system’s perspective, we treat the proving service
as a black box which, upon a request, returns the proof together

Fig. 1: Proving Service Model

with the computation’s output. Following the VOC model [2],
we distinguish between the blockchain infrastructure hosting
the verifier contract and a cloud-based off-chain infrastruc-
ture that runs outside the consensus protocol and hosts the
consumer and the proving service.

The consumer service is responsible for managing the
proving service’s inputs and outputs and interacting with the
relying verifier contract. It receives data from external sources
and translates them into a proof request. Upon a request
through the prover client, the proving service executes the
VOC and returns the ZKP attesting to the computational
integrity of the VOC. The consumer service then submits the
ZKP to the verifier contract through its verifier client. On
submission, the verifier contract verifies the proof computed
by the proving service.

Fig. 2: Proving Service Architecture

B. Service Architecture

The Proving Service depicted in Figure 2 is an application
service that runs stand-alone on the prover’s off-chain infras-
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Fig. 3: Proving Time and Memory Consumption

tructure. It serves proof requests by exposing the proving-
related operations through an Application Program Interface
(API) as minimal functionality to the consumer service.

The procedure can be summarized in four simple steps:
First, the proving service receives the Proof Request containing
the public (x) and private (x′) proof arguments and the
identifier of the addressed Executable Constraint System (ecs)
(id). Second, using the id the API fetches the corresponding
ecs and private key (pk) from the Proof Registry which
is the persistent storage component containing these large,
recurrently requested files needed for proving. The proof
registry manages different reusable pairs of ecs and pk, each
addressable through a unique id.

Third, the Proving Instance is executed in two stages: the
witness computations and the proof generation. Fourth, the
ZKP is returned to the consumer service through the API upon
successful execution.

III. ZOKRATES-API

The previous service-oriented architecture serves as a
technology-agnostic blueprint for building proving services for
DSL circuits. For evaluation, we technically instantiate the
proving service for ZoKrates [2] and present the ZoKrates-
API1 as a ready-to-use open-source software. We servicify
ZoKrates by wrapping an API around the ZoKrates inter-
preter, the central component of the ZoKrates software that
previously has only been addressable through a Command
Line Interface and a Javascript library. The ZoKrates-API
exposes the methods of the ZoKrates interpreter through HTTP
endpoints. We containerized the ZoKrates-API using Docker,
making the services easily deployable among a wide range of
machines and allowing us to further leverage cloud-native tools
like Kubernetes for horizontal scalability, manageability, and
observability. Furthermore, the ZoKrates-API supports multi-
threading so a single instance can compute multiple proofs in
parallel.

IV. EVALUATION

To test the presented implementation, we deployed the
containerized ZoKrates-API on a Kubernetes cluster. As a

1https://github.com/ZK-Plus/zokrates-api

workload for our experiments, we generated a large number
of EdDSA signatures [4] which amounts for more than 229 of
circuit constraints similar to [5].

We conducted three experiments (see Figure 3) to measure
the average proving time per signature in [sec] and the mem-
ory consumption in [gb] using various cluster configurations.
Figure 3A) shows a 33% improvement in proving time for a
single machine when choosing an appropriate machine size.
An argument in favour of vertical escalability. For a single
machine as well, Figure 3B) shows that the proving time
can be brought down drastically when few parallel threads
are enabled, though the gains plateaued rapidly due to the
increasing resources needed. Running the same experiments
in parallel VMs instead of threads, Figure 3C) demonstrate a
better approach to scaling proving as the computational burden
is distributed over several machines, proportional increasing
the processing time.

V. CONCLUSION

As the experiments demonstrate, significant performance
improvements can be gained from horizontal (more nodes) and
vertical (larger nodes) scalability of an arbitrary zk-SNARK
proof. We facilitate this process by leveraging modern cloud-
native architectures such as Docker and Kubernetes.
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