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Two-dimensional materials are a highly tunable platform for studying the momentum space topology of
the electronic wavefunctions and real space topology in terms of skyrmions, merons, and vortices of an order
parameter. Such textures for electronic polarization can exist in moiré heterostructures. A quantum-mechanical
definition of local polarization textures in insulating supercells was recently proposed. Here, we propose a
definition for local polarization that is also valid for systems with topologically non-trivial bands. We introduce
semilocal hybrid polarizations, which are valid even when the Wannier functions in a system cannot be made
exponentially localized in all dimensions. We use this definition to explicitly show that nontrivial real-space
polarization textures can exist in topologically non-trivial systems with non-zero Chern number under (1) an
external superlattice potential, and (2) under a stacking-induced moiré potential. In the latter, we find that while
the magnitude of the local polarization decreases discontinuously across a topological phase transition from
trivial to topologically nontrivial, the polarization does not completely vanish. Our findings suggest that band
topology and real-space polar topology may coexist in real materials.

I. INTRODUCTION

The understanding and control of exotic electronic states of
matter is one of the central aims of condensed matter physics.
One notable avenue in this regard is the study of topologi-
cal materials, hosting anomalous bulk and boundary effects
and protected edge currents [1, 2]. Topological insulators
and semimetals are promised to affect technological advance-
ments, with applications ranging from spintronics to possi-
bly providing platforms for quantum computing [3, 4]. This
field was arguably initiated by the observation that even with-
out a net magnetic field, Hall responses can be achieved in
the form of quantum anomalous Hall effects (QAHE) [5]. In
such QAH systems, wavefunctions exhibit a nontrivial wind-
ing characterized by a topological invariant known as a Chern
class, which is an archetypal example of a characteristic class
associated with complex vector bundles.

On a seemingly different note, there has been a lot of re-
cent interest in engineering exotic states via stacking engi-
neering of layered materials. Combining layers with relative
twist angles or lattice mismatches to form superlattice struc-
tures known as moiré materials [6] can lead to interesting
phenomena such as superconductivity [7–9], Mott-insulating
behaviour [10], ferroelectricity [11–15], nontrivial topology,
both of bands [16–20] and real space quantities including
polarization [21, 22], twist fields [23] and magnetic fields
[24]. A favorable aspect of such stacking-engineered phases
is that they can in principle be tuned through the supercell pe-
riod (twist angle or lattice mismatch), number of layers, and
chemistry (changing the materials). Topological states can
be engineered with constituent materials which are ordinar-
ily trivial, such as transition-metal dichalcogenides (TMDs),
e.g. MoS2, WSe2, etc. [25–27], where fractional Chern states
at zero magnetic field have also been predicted [28] and re-
cently experimentally observed [29–31]. Moreover, because
of the additional length scale of the superlattice potential, lo-
cally nonzero Chern numbers can be found in different stack-
ing domains within the moiré superlattice [32–35]. The idea
that such a topological invariant can be attributed to a regions

in real space, which we refer to as “Chern domains”, is very
intriguing for applications. For example, knowledge of such
domains, and the ability to engineer domains with different
Chern numbers implies that edge currents can be induced and
controlled on the domain walls separating them. The topo-
logical nature of a Chern domain is locally reflected by the
presence of QAHE at the domain walls [32] and they can be
computationally characterized by Chern markers [36, 37].

In moiré heterostructures of non-elemental compounds, the
crystalline superlattices can very naturally break the inversion
symmetry I within a domain, offering a natural platform for
the development of polarization textures, which also can sup-
port topological features therein. Such topological polariza-
tion textures realizing merons or skyrmions, corresponding
topologically to the π2[S2] ∼= Z homotopy, were predicted in
stacked bilayers of hexagonal boron nitride (hBN) under twist
or strain [21, 22]. Similar topological polar textures are also
commonly observed in perovskite nanostructures [38], and
were recently also realized in perovskites layered under moiré
geometry [39]. Currently, it is not clear whether topological
polarization textures can coexist with momentum-space band
topological features. For example, the notion of localizabil-
ity breaks down in topologically non-trivial bands in two or
higher dimensions, where one cannot describe the electronic
states using a basis of exponentially localized Wannier func-
tions. As a result, the definition of local polarization textures,
as applied to a trivial insulator [22], is no longer applicable.

In this work, we address this problem by proposing a def-
inition of local polarization in a Chern insulator, and show-
ing that the real-space polar topology can coexist with band
topology. Our formulation is a natural extension to the defi-
nition of local polarization in a crystal supercell [22], which
is not straightforward, as the Berry phase is a global property
of the system [40–43]. We formulate the local polarization
by decomposing the Berry phase in terms of semilocal hy-
brid polarizations (SHPs), while also making a connection to
Chern topology [44]. In particular, we consider the evolution
of the local polarization in a crystal superlattice and elucidate
the correspondences between the local polarization textures,
local polarization jumps [45], and the changes of the bulk
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FIG. 1. Benchmarking the gauge-independent formulation of the lo-
cal polarization in crystal supercells with topological bands. The
local polarization Pβ (r j) is defined componentwise as a sum of the
semilocal hybrid polarizations (SHPs) Ph

β
(r j,k⊥) over the perpen-

dicular quasimomenta k⊥. SHPs are constituted by the shifts of the
hybrid Wannier charge center (HWCCs), subject to local depolariz-
ing perturbations x(r j). In particular, the shifts in HWCCs at every
fixed k⊥ can be induced by a superlattice potential VSL. (a) A HWCC
localized in the x direction, shifting across the supercell on applying
a perturbation to the central subcell, and defining Pβ (r j = 0). (b) The
Wilson loop representing the winding of Berry phase φ(k⊥) in two-
dimensional supercell. The Berry phase is equivalent to the total sum
of HWCCs corresponding to the occupied bands, which indicates a
total polarization in the supercell. On the other hand, its winding
reflects the non-vanishing Chern number in the occupied topological
bands. As captured by Eq. (7); for supercells with topological bands
there is indeed a net winding of the total hybrid polarization Ph

β
(k⊥)

as a function of k⊥, when all occupied HWCCs are summed.

state topology realized in minibands. We show that, across
a topological phase transition (TPT), the local polarization in
a texture, although decreasing in magnitude, does not vanish
entirely.

II. RESULTS

Since our aim is to define local polarization in a periodic
solid, the most natural setting is to consider a system experi-
encing a superlattice potential (via moiré engineering or ex-
ternal potential), such that within the supercell the polariza-
tion can acquire spatial dependence and its local definition is
meaningful. The local polarization in a crystal supercell can
be defined as the total change in the Berry phase of the su-
percell, subject to a local depolarizing perturbation in a given
subcell starting from a non-polar reference cell configuration
[22]. Equivalently, the corresponding local polarization can

be computed by integrating the Born effective charges along a
path of phonon displacements which connect the atomic con-
figurations in each cell. Alternatively, the local polarization
can be recast as the change in all the Wannier centers in the
system with respect to the local perturbations in a given cell,
as long as the Wannierized bands are topologically trivial.
For topologically trivial systems, the Wannier functions can
be made exponentially localized, and the Wannier centers for
each band are essentially the Berry phases, but with units of
length [40, 41, 46–48]. We briefly review these definitions of
local polarization in App. A. It should be stressed that, con-
trary to the first two approaches of Ref. [22], the third way
via Wannier functions is not directly applicable to topological
systems, which is an issue that we resolve in this work.

As mentioned above, for topologically nontrivial systems,
there is an obstruction to obtaining exponentially localized
Wannier functions, and the Wannier centers cannot be ob-
tained [44]. However, we can describe the winding of the
Bloch states, which is equivalent to the Berry phase, using
hybrid Wannier charge centers (HWCCs) or Wilson loops
(see Fig. 1). The HWCCs can be obtained as the expectation
values of a single component of position operator r̂β :

w̄h
n,β (k⊥)≡ ⟨wh

n(k⊥)| r̂β |wh
n(k⊥)⟩ , (1)

using a basis of hybrid Wannier functions |wh
n(k⊥)⟩ (HWFs),

which are obtained by Fourier transforming the Bloch states
only in the direction β (for more details, see App. B). In the
case of more than two spatial dimensions; to deduce the local
polarization, the Fourier transform in only one direction to ob-
tain HWFs is similarly required. Here, k⊥ are the wavenum-
bers in the direction orthogonal to β . The total hybrid po-
larization in a supercell can be defined in terms of HWCCs
summed over the occupied band indices n,

Ph
β
(k⊥) =− e f

Ωsc

occ

∑
n

w̄h
n,β (k⊥) , (2)

where f is an occupation factor, Ωsc is the supercell volume,
and the HWCCs are localized in the direction k⊥. Analo-
gously, for the purposes of defining the local polarization in
a topological, non-Wannierizable crystal supercell, it is useful
to introduce

Ph
β
(r j,k⊥) =− e f

Ω0

occ

∑
n

∫ x(r j)

0
∂x′κ,α w̄h

n,β (k⊥)dx′κ,α , (3)

which we define as the semilocal hybrid polarization (SHP),
where Ω0 is a subcell volume (see App. B for more details).
In the spirit of Ref. [22]; here, the integral represents the
change of hybrid polarizations on introducing local displace-
ments/reparametrizations: x(r j) = {xκ,α} where κ labels the
atoms and α specifies the perturbation direction. Additionally,
the Einstein summation convention was assumed. In order to
deduce Ph

β
(r j,k⊥), the local perturbations are imposed only

in a subcell r j of a supercell, bringing its configuration to the
non-polar reference state x(r j) = 0. We propose that the in-
troduction of the semilocal hybrid polarizations allows us to
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evaluate the local polarization in a topological supercell as

Pβ (r j) =
∮
C

Ph
β
(r j,k⊥)dk⊥ , (4)

where C is a closed loop in the BZ, starting from k0
⊥ and of

length of the superlattice reciprocal vector b⊥. By substituting
Eq. (3) into Eq. (4), we obtain

Pβ (r j) =− e f
Ω0

occ

∑
n

∮
C

∫ x(r j)

0
∂x′κ,α w̄h

n,β (k⊥)dx′κ,α dk⊥ , (5)

which is a natural extension to the method of computing the
local polarization in terms of the Wannier functions. How-
ever, contrary to the previous definition [22] (see also App. A),
Eq. (5) is valid for both topological and trivial bands. The
above relation states that local polarization in a system with
topologically non-trivial bands can be obtained component-
wise i.e. a certain polarization component is simply the pro-
jection of the flow of hybrid Wannier center that is expo-
nentially localized along the same direction. This definition
is motivated by the fact that change in polarization is the
physical quantity that is fundamentally related to the polar-
ization currents jP ≡ dP/dt flowing through the system as
it is adiabatically evolved from an initial to the final state
(∆P ≡

∫
jP dt = P f −Pi). This relation can be resolved com-

ponentwise, allowing us to contruct hybrid Wannier functions
that are maximally localized in only one direction and observ-
ing their flow as the polariozation currents (See App. B for
more details).

We note that for the two-dimensional case of e.g. Chern
insulators, β = x,y specifies the in-plane directions. Here,
k0
⊥ should be chosen consistently for finding polarization

changes, e.g. Ph
β
(r j,k0

⊥) = 0, when x(r j) = 0, which, upon
choosing a maximally-smooth gauge, should ensure a vanish-
ing polarization for nonpolar configurations [22]. Importantly,
the point (k0

x ,k
0
y) needs to be chosen consistently for the eval-

uation of P(r j) = (Px(r j),Py(r j)), with the real-space inte-
gration limits of Eq. (5), which define initial and final states
with respect to which the local polarization is computed as a
change (P ≡ ∆P = P f −Pi) [49]. If the k-space integral is per-
formed inconsistently in the initial and final real-space states,
the resulting polarizations acquire an erroneous term depend-
ing on the shift in the integration endpoints and C, as was
pointed out for arbitrary Chern insulators in Ref. [44]. The
above definition is analogous to the Berry-phase formulation
of the total polarization in Chern insulators [44] as a global
quantity. Indeed, upon relating HWCCs to Berry phases

φn(kγ) = i
∮

k⊥=kγ

⟨unk|∂kβ
unk⟩dkβ , (6)

our definition is consistent with the previous formulations of
electric polarization in Chern insulators [44] that obtains the
total polarization of a topological system, without partition-
ing into any local contributions to the net electric dipole mo-
ment present in a supercell.

Furthermore, we can relate the SHPs to band topology in
crystal supercells, therefore settling whether any information

about the topological character of the minibands can be in-
ferred from Ph

β
(r j,k⊥). It is known that the Chern number C

of a system can be calculated from the winding of HWCCs
[50], or equivalently, hybrid polarization, along the quasimo-
mentum component (here kγ ). Essentially, it is the winding of
Berry phases φn(kγ) across a Wilson loop,

C =
occ

∑
n

1
Lβ

[
w̄h

n,β (k⊥ = 2π)− w̄h
n,β (k⊥ = 0)

]
=− 1

e f aβ

[
Ph

β
(k⊥ = 2π)−Ph

β
(k⊥ = 0)

]
, (7)

where we impose L⊥ = 1 for simplicity. We propose a further
variant of this correspondence for the local perturbations in
a supercell, namely,

∆C({r j}) =− 1
e f Lβ

∑
j∈{r j}

[
Ph

β
(r j,k⊥ = 2π)−Ph

β
(r j,k⊥ = 0)

]
=− 1

e f Lβ
∑

j∈{r j}
Ph

β
(r j,k⊥)

∣∣∣k0
⊥+b⊥

k0
⊥

. (8)

The natural interpretation of ∆C({r j}) is the change of the to-
tal Chern number in the supercell minibands, as induced by
a depolarizing perturbation imposed in the chosen cells {r j}.
In particular, to induce a non-trivial change ∆C({r j}), the
gap between minibands close to the Fermi level must be very
small, in order to admit topological phase transitions (TPTs)
that cross an intermediate metallic state. Realizations of such
band gaps can be naturally achieved by applying a superlattice
potential to a Chern insulator, bringing it close to the critical
point associated with a TPT. Under such circumstances, local
displacements induced by finite-size probes, or an additional
local depolarizing potential, could change the Chern number
of the supercell ground state; see Fig. 2(d) for reference.

Due to the local nature of this close-to-critical setup, it is
also interesting to compare it with the local Chern markers
C(r j) [37], which are a real space decomposition of the to-
tal Chern number present in the minibands, reflecting the lo-
cal anomalous Hall conductivity (see App. C for a review).
Contrary to the conventional Chern marker C(r j), ∆C({r j}) is
necessarily quantized, although restricted to supercells, i.e. it
cannot be efficiently applied to amorphous, or arbitrarily dis-
ordered systems, unless a finite size of systems supercell is as-
sumed. The reason for quantization is that k⊥ = 0 and k⊥ = 2π

physically correspond to the same value over a compact BZ,
thus also identifying the corresponding states. Hence, the
HWCC flows captured by Ph

β
(r j,k⊥ = 2π) need to be integer

in Lβ , or otherwise k⊥ = 0 and k⊥ = 2π would be physically
distinguishable.

III. MODEL REALIZATIONS

We utilize the above theory and illustrate our findings us-
ing two examples: (i) a Chernful supercell in the presence of
a superlattice potential, and (ii) a twisted moiré system with
Chern topology, realizing a supercell with spatially modulated
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interlayer tunnelling. In the first case, we consider a simple
Chern insulator, namely the Haldane model (see Fig. 2(a)),
subject to an addition of a superlattice potential with mag-
nitude VSL (see Fig. 2(b)), which we refer to as the super-
Haldane model. We first consider a honeycomb lattice with
nearest (t1) and second-nearest (±it2) neighbor hoppings, and
onsite mass ±m on a bipartite lattice of atoms A,B. Further
to this, within the orbital basis A,B, we impose the super-
lattice potential VA j =−VB j =VSL cos

(
πx
N

)
cos

(
πy
N

)
, where

the unit cell j resides at fractional coordinates 0 < x,y < N.
The Hamiltonian for the super-Haldane model is given by

H =−t1 ∑
⟨I,i′⟩

(c†
AicBi′ +h.c.)− i|t2| ∑

⟨⟨I,i′⟩⟩
(c†

AicAi′ + c†
BicBi′ +h.c.)

+∑
j
[(VB j +m)c†

B jcB j +(VA j −m)c†
A jcA j], (9)

where c†
A/B j and cA/B j are the creation and annihilation op-

erators for electron in orbital A/B in the cell located at r j.
Here, ⟨...⟩ denotes first neighbors, and ⟨⟨...⟩⟩ denotes second
neighbors, see also Fig. 2(a). We find that the model realizes
a polarization texture [Fig. 2(c)], and there is a sharp change
of the local polarization across the boundary, where the super-
lattice potential combined with onsite mass m approaches the
value of the topological mass imposed with t2. The texture
in Fig. 2(c) was obtained using Eq. (5) for the parametriza-
tion (t1, t2,m,VSL) = (1,1,0.5,1) of the model introduced in
Eq. (9), with the supercell size, N = 51. Notably, the tex-
ture demonstrates that the local polarization discontinuously
flips on moving away from the supercell centre, as the Hal-
dane mass t2 dominates m combined with the modulated VSL.
Hence, the local polarization forms a circular domain sur-
rounded by a visible ring, consistently with the discontinuities
found between Chern and trivial insulators realized without
supercells [45, 51]. Furthermore, we find that when superlat-
tice potential dominates the hopping locally – effectively as a
local onsite, or Semenoff [52], mass term – a reduction of the
local Hall conductivity occurs. We support this finding by cal-
culating the local Chern marker C(r j) (Fig. 2(d)), which we
contrast with the quantized ∆C({r j}) (Fig. 2(e)) introduced in
the previous section. The changes in local Chern markers are
in close correspondence with the trivialization of the SHP in-
dicated by ∆C({r j}), corresponding to topological transitions
in response to depolarizing perturbations.

Furthermore, we examine the connection between SHPs
and band topology in another example, by stacking two mono-
layer copies of the Haldane model and introducing a relative
twist between the layers. We refer to this system as twisted
bilayer Haldanium, see App. D for more details. The effec-
tive tight-binding model adapted for the studied twisted Hal-
danium bilayer can be compactly written as

HtHB = [m− t2
3

∑
i=1

sin(k ·bi)]τz ⊗12 +[tkτ+⊗12 +h.c.]

+ [T (k,x)⊗σ++h.c.]. (10)

Here, τi are Pauli matrices acting in the single-layer orbital ba-
sis (A,B), whereas the Pauli matrices σi act in the top/bottom

FIG. 2. (a) Sketch of the Haldane model. A bipartite lattice with
nearest neighbor hopping t1 and second nearest neighbor hopping
±it2. (b) Illustration of the superlattice potential VSL. (c) Local po-
larization field in the N = 51 super-Haldane model calculated using
Eq. (5). The local polarization is defined as a change determined
by the integration limits of SHPs, and is expressed in the units of
the quantum of polarization [22]. (d) Quantized ∆C({r j}) numbers
for the N = 51 super-Haldane model, calculated using Eq. (8) for
depolarizing perturbations of size 11× 11 cells around each cell j.
(e) Conventional Chern markers C(r j) for the N = 51 super-Haldane
model.

layer basis (l = t,b), with τ+ = 1
2 (τx + iτy), and analogously

for σ+. Additionally, ⊗ denotes a Kronecker product, and
bi correspond to the second-neighbour hopping vectors. Im-
portantly, tk represents the nearest-neighbour intra-layer hop-
ping, while T (k,x) is a 2 × 2 local stacking/configuration-
dependent interlayer hopping matrix representing the tun-
nelling of electrons between the layers, as expressed ex-
plicitly in App. D. Finally, in addition to the adapted tight-
binding model, for more general possible studies of low-
energy physics associated with topological fermions on a bi-
layer consisting of honeycomb lattice an effective continuum
model for twisted Haldanium reads

Hmoiré = ∑
l=t,b

∫
ψ

†
l

[(
m+b

(
∂rβ

+
∂Dl,γ

∂ rβ

∂rγ

)2
)

τ3

−iv
(

τ
β +

∂Dl,β

∂ rγ

τ
γ

)
∂rβ

+ v(K ·∂rβ
Dl)τ

β

]
ψl d2r

+
∫

ψ
†
t T (Dt −Db)ψb d2r + h.c.

, (11)

per each valley; here, without loss of generality, K (see also
App. D). Consistently with Refs. [22, 53], we introduce Dl as
a deformation field in layer l, ψ

†
l (r), ψl(r) are the fermion

creation/annihilation operators, m/b are the trivial and topo-
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logical masses, while T (Dt −Db) represents the interlayer
tunnelling. The model holds beyond the configuration space
approximation [21, 54], hence as with the super-Haldane
model, the polarization texture can be obtained by general-
izing Eq. (10) to the continuum model, see App. D for de-
tails. As shown in Fig. 3, by tuning the Haldane mass [5] (t2)
and the Semenoff mass [52] (m), we find that the non-trivial
band topology can modify the polarization texture. Corre-
spondingly, the local polarization constituting the polarization
texture can be discontinuously reduced, while preserving the
topological character, i.e. the winding number. In other words;
despite a significant change in the magnitude of the polariza-
tion across the TPT, the vorticity of the polarization texture Q
is preserved. Here, the winding of the polarization texture is
given by [21]

Q =
1

4π

∫
d2x P̂(x) ·

(
∂xP̂(x)×∂yP̂(x)

)
, (12)

where P̂ is the normalized local polarization, and the in-
tegration is performed over an individual polar domain.
Correspondingly, Q = ±1/2 indicates a presence of the
merons/antimerons in the triangular domain span between AA
stacking points. Instead, it should be noted that rather than
trivializing the merons across TPTs, such real-space topologi-
cal polarization features survive discontinuous jumps, and are
retrieved across a metallic critical point. In particular, at every
stacking configuration, apart from the non-polar AA, where
the local polarization is always identically zero, the polariza-
tion approximately retains its direction respecting the stacking
geometry, see Fig. 3.

IV. DISCUSSION

Our findings, supported by analytical arguments and nu-
merical model validation, not only offer a well-defined way
of capturing local polarization in crystal supercells with topo-
logical bands, but also provide natural connection to the band
topology of the supercell, while also going beyond configu-
ration the space approximation used in the previous works
[21, 22]. We stress that, despite the reference to the notion
of a local configuration, the computation of local polariza-
tion P(r j) or SHP Ph

β
(r j,k⊥) does not require the configura-

tion space approximation. This is a crucial distinction, given
that the topological states obtained under such approximations
might be Wannierizable in configuration space, despite the
non-Wannierizability of the minibands in real space. In par-
ticular, such scenario arguably occurs in twisted TMDs such
as t-MoTe2 with Chern bands, while the commensurate ho-
mobilayers MoTe2 are deemed topologically trivial (in the 1T
phase). As we show, our formulations do not suffer from such
kind of ambiguities, and furthermore allow to explicitly study
TPTs which may occur in crystal supercells. While the links
between topological phase transitions and associated changes
in polarization captured by geometric Berry phases according
to the modern theory of polarization [41, 44] have been es-
tablished in simple systems without supercells [45, 56], we
report an analogous effect in crystal supercells, e.g. provided

by polar heterostructures supporting topologically non-trivial
polarization textures in real space. It is important to note that
for the other types of band topologies, i.e. upon the inclusion
of additional symmetries, such as time-reversal in quantum
spin Hall insulators, the bands are completely Wannierizable,
if a gauge is chosen to not respect the symmetry protecting
the invariant. However, if a gauge satisfying the symmetry is
chosen, the non-Wannierizability issue for defining the local
polarization can be tackled similarly to the framework pro-
posed here for the Chernful supercells. The study of polariza-
tion textures in the context of other band topologies is left for
a subject of future research.

In the context of the topology of Chernful supercells,
it should be stressed that our definition of ∆C({r j}), Eq. (8),
captures how the total Chern number changes with respect to
local perturbations in the individual parts of a supercell. It is
naturally quantized, quantifying changes of the total anoma-
lous Hall response of an insulating supercell, and hence is
well-defined. We note that such quantum electronic transi-
tions, as induced in the presence of a superlattice potential,
may be of technological interest, given that it shows that the
Chern topology, partial or local in the form of a domain in
a supercell, can be controlled with an external potential, thus
changing the anomalous Hall conductivity locally. A change
in the magnitude of the polarization texture is associated with
this type of trivialization. This is consistent with the finding
of the polarization jumps on trivializing topology by chang-
ing the Hamiltonian parameters in the Haldane model without
a superlattice potential [45].

Finally, we note that our findings are not limited to the Hal-
dane model, but are expected in any Chern insulator with ad-
ditional supercell lenghtscales and with local inversion sym-
metry breaking. It should be noted, however, that the Hal-
dane model is of particular relevance for the real materials,
and was realized experimentally in monolayer hBN [57], most
recently. Therefore, the polar twisted Haldanium heterostruc-
tures considered in this work can be in principle engineered
in real material setup. Furthermore, we note that the presence
of additional symmetries such as time reversal [58] may lead
to invariants beyond Chern numbers, as captured by the ten-
fold way [59, 60], or by further taking into account the role
of crystalline symmetries [61–66], possibly culminating in
multi-gap topologies [67–72]. The interplay of such symme-
tries within the above context of polarization textures presents
indeed an interesting future pursuit in itself.

V. CONCLUSIONS

In this work, we show how local polarization textures can
be defined in crystal supercells with topologically nontrivial
bands. We introduce the concept of semilocal hybrid polar-
ization, the winding of which captures the quantized Chern
numbers across TPTs within supercells. We demonstrate our
findings with models for Chern insulators under superlattice
potentials imposed externally, or internally, by an adequate
stacking of a moiré structure. We verify these concepts us-
ing two examples, namely a Chern insulator in a superlattice
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FIG. 3. (a) Phase diagram of the twisted Haldanium bilayer with topological winding numbers Q of polarization textures. For |m|< 3
√

3t2,
each of the layers acquires a Chern number, giving a total of |C|= 2. (b) In-plane local polarization (∆P||(r)) along the s direction connecting
AA and AB stackings in twisted Haldanium bilayer with θ ≈ 5◦, as indicated in plots (c)–(d). The TPT occurs at |t2| ≈ 0.43, abruptly changing
the magnitude of the polarization, while preserving the real-space topology of the texture. For an additional plot of ∆P||(r) vs. t2, see App. D.
(c) Polarization texture in twisted Haldanium bilayer for topologically-trivial phase (|C|= 0), realized with the parameters (m, t2) = (2.25,0).
The emergent polarization merons are consistent with the findings in twisted hBN bilayers [55] with trivial bands. (d) Twisted Haldanium
bilayer with topological bands (|C|= 2), at the point (m, t2) = (2.25,0.8) of the phase diagram. The polarization texture preserves the winding,
but the magnitude of the local polarization is significantly reduced across the TPT, upon the addition of next-nearest neighbour hoppings
experiencing staggered fluxes. The local polarization was expressed in the units of the quantum of polarization [22].

potential, and two Chern insulators with a stacking mismatch,
forming a moiré superlattice. By calculating the polarization
textures on both sides of a TPT, we find that the magnitude
of the local polarization decreases when going from a trivial
to a nontrivial phase, but it does not vanish completely. Our
findings show that local polarization textures may persist in
systems with nontrivial band topology, and that band topol-
ogy and polar topology in real space may coexist.

Additionally, we show that one can change the band topol-
ogy of a supercell, purely by the local perturbations imposed
in its subsystems. As a consequence, one could also control
the presence of associated edge currents by the use of an exter-
nal superlattice potential combined with local probes, which
may be of interest for applications of novel electronics involv-
ing Chern insulators.

Our theoretical results are of relevance for real polar materi-
als with Chern bands, such as twisted MoTe2 heterostructures.
Engineering the parameter tuning to manipulate polarization
textures with external superlattice potentials, or within moiré
materials with nontrivial band topology, may be of potential
use in optical or electronic devices. Finally, our theoretical
framework is generalizable to other topological multilayers.
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Appendix A: Local polarization in Wannierizable supercells

Here, we review the formalism of gauge-invariant local
polarization in crystal superlattices, introduced in our previ-
ous work [22]. We start with the equivalent definitions in
terms of Wannier charge centers (WCC) and Born effective
charges, both of which were crucial for studying the local
polarization in moiré polar heterostructures [13, 14, 21, 22],
and were based on the introduction of the local displacements
x(r j) = {xκ,α}, which correspond to perturbing atoms κ in
the directions α . Accordingly, for the local polarization P(r j)
in the unit cell at r j, we could write

P(r j) =− e f
Ω0

occ

∑
n

∫ x(r j)

0
∂x′κ,α w̄n dx′κ,α , (A1)

where the Einstein summation convention for the indices κ

and α was used, n ∈ occ are the band indices of occupied
bands, and WCC are defined as w̄n ≡ ⟨wn,0|r̂|wn,0⟩ in terms of
the Wannier functions represented by the states [40, 41, 46–
48],

|wn,R⟩=
Ωsc

(2π)3

∮
scBZ

e−ik·R |ψn,k⟩dk. (A2)

Here, Ωsc denotes the real-space supercell volume, scBZ is
the corresponding Brillouin zone associated with the super-
lattice, and R is a supercell position vector. Equivalently, we
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can express the local polarization in an alternative form, using
dynamical Born effective charges. Componentwise, it reads

Pβ (r j) =
1

Ω0

∫ x(r j)

0
Z∗

κ,αβ
(x′)dx′κ,α , (A3)

with Born charges defined as Z∗
κ,αβ

= Ωsc
∂Pβ

∂xκ,α
, which in

terms of the bands and phonon displacements of atoms κ in
direction a, xκ,α , can be expressed as [73, 74]

Z∗
κ,αβ

(x(r j)) =
−2ie f Ωsc

(2π)3

occ

∑
n

∮
scBZ

⟨∂xκ,α un,k|∂kβ
un,k⟩dk.

(A4)
Hence, consistently with the previous expression, in the Wan-
nierizable systems, we retrieve,

Z∗
κ,αβ

(x) =− e f
Ω0

occ

∑
n

∂xκ,α w̄n,β . (A5)

Here, Ω0 is the volume of a unit cell, with x(r j) corre-
sponding to a set of displacements of cores in unit cell r j.
Last, we note that in the context of real materials, the Born
charge definition can be naturally extended by the use of the
non-adiabatic Born effective charges (NABECs) introduced in
Ref. [75]. Here, under the implementation of NABECs to de-
duce the local polarization at r j, an analogous integration to
the one adapted for the regular Born charges in Ref. [22] could
be performed, i.e.

Pβ (r j) =
1
Ω

∫ x(r j)

0
Z∗

κ,αβ
(ω → 0, x(r j))dxκ,α , (A6)

which for insulators, in the ω → 0 limit, coincides with the
Eq. (A3). Here, the NABECs at the frequency ω are given by
Z∗

κ,αβ
(ω) [75]; in the context of a two-dimensional, as rele-

vant to this work, topologically nontrivial system, amounting
to

Z∗
κ,αβ

(ω) =−Im limη→0+

∫
BZ

d2k
(2π)2 ∑

n̸=m

fnk − fmk

Enk −Emk +ω + iη

×⟨unk|∂kaumk⟩⟨umk|∂xκ,α H |unk⟩ . (A7)

To obtain the NABECs, the bands |unk⟩ with energies Enk and
Fermi-Dirac occupation factors fnk are used, and the deriva-
tives of the Hamiltonian subject to the local phonon displace-
ments ∂xκ,α H are evaluated. It should be noted that here, as
in the rest of the work, only the electronic contribution to the
polarization is considered, while the ion (core) contribution
(which trivially obtains a dipole moment of core charges) is
not included.

Appendix B: Semilocal hybrid polarization

In this section, we extend our definition of local polariza-
tion to non-Wannierizable systems, such as Chern insulators,
in further detail. As Wannier functions are not exponentially

localized in such case, the polarization in terms of WCC is ill-
defined for arbitrary gauges [44, 45]. However, hybrid Wan-
nier functions (HWFs) exponentially-localized in one direc-
tion, which we denote as ||, can be defined,

|wh
n,R(k⊥)⟩=

Ωsc

(2π)2

∮
scBZ

e−ik||(R)|| |ψn,k⟩ dk||. (B1)

Here, (R)|| is the component of a superlattice vector R, which
is parallel to the direction, in which the polarization com-
ponent is to be deduced. Analogously, the hybrid Wannier
charge centers (HWCC) can be introduced. On introducing a
shortcut notation, |wh

n(k⊥)⟩ ≡ |wh
n,0(k⊥)⟩, we have,

w̄h
n,β (k⊥)≡ ⟨wh

n(k⊥)|r̂β |wh
n(k⊥)⟩ , (B2)

with r̂β , the position operator components. Before defining
the semilocal version of the hybrid polarization with the intro-
duced HWCCs, we define the total hybrid polarization itself.
Componentwise, it reads,

Ph
β
(k⊥) =− e f

Ωsc

occ

∑
n

w̄h
n,β (k⊥). (B3)

On introducing the notion of local configuration for defin-
ing the local polarization, consistently with Ref. [22], we can
now define the semilocal hybrid polarizations (SHPs), see also
Fig. 4. Namely, using phonon displacements, or equivalently,
depolarizing perturbations (e.g. in the super-Haldane model
– equivalent to setting the vanishing onsite potential), which
directly encode the local configuration x(r j), we write,

Ph
β
(r j,k⊥) =− e f

Ω0

occ

∑
n

∫ x(r j)

0
∂x′κ,α w̄h

n(k⊥) dx′κ,α . (B4)

It should be noted that, with Ph
β
(r j,k⊥) introduced as a change

in the gauge-invariant sum of the HWCCs over occupied band
indices (or equivalently, change of the Berry phase), the SHPs
are definitionally gauge-invariant objects. Furthermore, we
know that physically, on adding up electric dipole moments
associated with local polarizations, one obtains the total po-
larization Ptot,

Ptot =
1

Ntot

Ntot

∑
j

P(r j), (B5)

which is also consistent with the additivity of phonon dis-
placements in the integral limits x(r). Ntot is the total num-
ber of subcells contained in a supercell (Ntot = NxNy, for two
spatial dimensions). By an analogous argument, we have

Ph
β
(k⊥) =

1
Ntot

Ntot

∑
j

Ph
β
(r j,k⊥). (B6)

which, on summing over k⊥ as detailed in the main text, pro-
vides an adequate decomposition of the chosen total polar-
ization component into contributions associated with distinct
unit subcells. Here, it should be noted that all polarizations,
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FIG. 4. (a) HWCC in the reference configuration (x(r j) = 0) under
the consistently choosen gauge (fixing k0). (b) Flow of the HWCC
subject to the sliding (x(r j) ̸= 0), which allows to reconstruct the
local polarization in a subcell of a given configuration.

in this work considered under periodic boundary conditions,
are defined modulo a quantum of polarization respecting the
superlattice vector R. In the context of local polarizations
within crystal supercells, such modular character, intrinsically
due to the gauge ambiguity, was in fact discussed in detail
in Ref. [22]. Next, we remark on the relations between the
hybrid polarizations (or equivalently HWCCs), the polariza-
tion currents jP = Ṗ, and Berry phases φn(k⊥) defined in the
main text, which further justify the proposed construction of
the local polarization definition utilizing SHPs. Within an
independent-particle picture, the time-dependent polarization
current can generally be decomposed in a two-dimensional
system into individual contributions as [43],

jP(t) = f
occ

∑
n

∫ d2k
(2π)2 jnk(t), (B7)

where f is the occupation factor in the valence bands
( f = 2 for spin-degenerate systems in zero-temperature limit).
In terms of the individual contributions under an adiabatic
current-inducing perturbation, we obtain to first order

jnk(t) =−e⟨un,k| v̂ |un,k⟩

− ieh̄ ∑
m ̸=n

[ ⟨u̇mk|un,k⟩⟨un,k| v̂ |um,k⟩
Emk −Enk

− c.c.
]
, (B8)

where v̂ = 1
h̄ ∇kH(k) is the velocity operator, and H(k) is the

Bloch Hamiltonian. On further recognizing that for n ̸= m,
⟨un,k|∇kum,k⟩=

⟨un,k|∇kH|um,k⟩
Enk−Emk

, one obtains,

jnk(t) =−e⟨un,k| v̂ |un,k⟩− ie
[
⟨u̇nk|∇kun,k⟩− c.c.

]
. (B9)

Furthermore, on substituting to ∆P ≡
∫

jP dt, which was intro-
duced in the main text, the Eq. (B8) results in

∆Pβ =−e f
∫ 1

0
dλ

occ

∑
n

∫ d2k
(2π)2 i

[
⟨∂λ un,k|∂kβ

un,k⟩− c.c.
]
,

(B10)
consistently with the seminal formula of Ref. [40]. Here, the
variables were changed from t to λ , with λ parametrizing the
time-dependent adiabatic switching of the perturbation which
induces the polarization. We quote the general result from

Ref. [43]: w̄h
n,β (k⊥) =

1
2π

φn(k⊥), which we combine with
Eq. (6), φn(kγ) ≡ i

∮
k⊥=kγ

⟨unk|∂kβ
unk⟩dkβ , and a choice of

the adiabatic perturbations λ ≡ {xκ,α}, equivalent to the local
displacements x(r j). Upon direct insertion of these identities,
we finally obtain Eq. (5),

∆Pβ =− e f
Ω0

occ

∑
n

∮
C

∫ x(r j)

0
∂x′κ,α w̄h

n,β (k⊥)dx′κ,α dk⊥. (B11)

This concludes the derivation, which we include to expose the
correspondences between polarization currents, Berry phases,
and HWCCs that were used to define the hybrid polarizations.
Manifestly, we note that the Eq. (5), which directly captures
the local polarization in the supercells with Chern bands, can
be partitioned into the semilocal hybrid polarizations, as was
explicitly presented in the Eq. (4) of the main text.

Appendix C: Conventional Chern markers

Importantly, a superlattice potential (or even more generi-
cally, a random potential disorder, which defines a supercell of
infinite size) changes/removes the periodicity of the system.
In the case of the systems realizing crystalline superlattices,
the topological invariants may become computationally costly
to evaluate, or in the latter case, may be no longer possible
to deduce as k-integrals over a well-defined BZ. Therefore,
under the settings of such kinds: local, real-space indicators
(markers) for bulk topology are in demand.

For the Chern topology central to this work, the Chern
markers satisfying these conditions can be defined [37, 76, 77]
under both periodic and open boundary conditions. To achieve
this goal, we follow the derivation by Bianco and Resta [37],
that starts by recognizing that

C =− 1
π
Im

Nocc

∑
n=1

∞

∑
m=Nocc+1

∫
BZ

d2k ⟨∂kx un,k|um,k⟩⟨um,k|∂kyun,k⟩ ,

(C1)
where Nocc denotes the number of occupied bands, and on
substituting the identity for n ̸= m, with |ψn,k⟩= eik·r |un,k⟩,

⟨un,k|∇kum,k⟩=−i⟨ψn,k|r̂|ψm,k⟩ , (C2)

the expression for the Chern number can be rearranged into

C =− A
4π3 Im

Nocc

∑
n=1

∞

∑
m=Nocc+1

∫
BZ

d2kd2k′

×⟨ψn,k|x̂|ψm,k′⟩⟨ψm,k′ |ŷ|ψn,k⟩ . (C3)

Here, A represents the unit cell area of the system, and the
vanishing of the matrix elements for k′ ̸= k is exploited. On
defining the projectors onto occupied and unoccupied states
(P̂+ Q̂ = 1), which can be written as:

P̂ =
A

(2π)2

Nocc

∑
n=1

∫
BZ

d2k |ψn,k⟩⟨ψn,k| , (C4)
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Q̂ =
A

(2π)2

∞

∑
m=Nocc+1

∫
BZ

d2k′ |ψm,k′⟩⟨ψm,k′ | , (C5)

one finally arrives at the Chern marker formula, after having
inserted the resolution of the identity in the localized orbital
basis (1 = ∑ j,a |r j,a⟩⟨r j,a|),

C(r j)=−4π

A
Im ∑

a∈cell
⟨r j,a|P̂x̂Q̂ŷ|r j,a⟩≡−4π

A
ImTrcell{P̂x̂Q̂ŷ}.

(C6)
In particular, under the periodic boundary conditions,
C = 1

N ∑ j C(r j), which in a continuum limit can be written
as C = 1

Atot

∫
d2r C(r j) with Atot =

∫
d2r. Numerically, one

can average Chern markers over multiple unit cells, obtaining
local Chern numbers (LCN), which should converge to the
Chern numbers on inclusion of a sufficient number of cells.
We adapt an implementation of the projectors used for eval-
uating the markers, consistently with Ref. [78]. It should be
noted that while definition Eq. (C6) appears to be ill-behaved
in systems under periodic boundary conditions, which we
consider in this work, it can be manifestly recasted in a well-
defined way [77],

C(r j) =−4π

A
Im ∑

a∈cell
⟨r j,a|P̂[x̂, P̂][ŷ, P̂]|r j,a⟩ , (C7)

where it is recognized that the commutators [x̂, P̂] and [ŷ, P̂]
are well-behaved. Ultimately, for the evaluation included in
Fig. 2(e), we apply the Chern markers under open boundary
conditions, with the superpotential applied to a bulk subsys-
tem of size 51×51 subcells, within a slab of size 71×71. The
boundary of the 71× 71 system hosts values of the marker,
which cancel the bulk contributions after a complete summa-
tion over the entire system, consistently with the general ex-
pectation of the method [37].

Appendix D: Effective models for twisted Haldanium bilayer

We here elaborate on the models for twisted Haldanium
bilayer realizing topological bands. First, we introduce an
effective tight-binding (TB) model, which is based on the
configuration space approximation picture [21]. Finally, we
conclude by introducing a continuum Bistritzer-MacDonald
(BM) model for the low-energy physics of the model.

1. Tight binding model

The local polarization in moiré bilayers can be obtained
from a simple TB model, as shown in Ref. [79]. However, the
simplicity comes at the cost of the configuration space approx-
imation. In case of moiré hBN bilayers, effectively, one can
model insulator with 4 bands (|uvt ,k⟩ , |uvb,k⟩ , |uct ,k⟩ , |ucb,k⟩),
i.e. valence and conduction bands of two uncoupled layers.
Following the Ref. [79], the monolayer gap can be approx-
imated as ∆Ek = Ect ,k −Evt ,k ≈ Ecb,k −Evb,k, and the inter-
layer tunnelling can be treated perturbatively, to second order,

hybridizing bands as

|ũvt/b,k⟩ ≈
(

1− 1
2

∣∣∣ tvt/bcb/t ,k

∆Ek

∣∣∣2) |uvt/b,k⟩−
tvt/bcb/t ,k

∆Ek
|ucb/t ,k⟩ ,

(D1)

|ũct/b,k⟩ ≈
(

1− 1
2

∣∣∣ tvb/t ct/b,k

∆Ek

∣∣∣2) |uct/b,k⟩+
t∗vb/t ct/b,k

∆Ek
|ucb/t ,k⟩ .

(D2)
Here, tvt/bcb/t ,k are matrix elements providing inter-gap inter-
layer coupling and the convention for the interlayer coupling
(that satisfies the above perturbation relations) is tvt/bcb/t ,k =

⟨ucb/t ,k|H |uvt/b,k⟩. Due to the Fermi occupation of states, the
effects of tc/vt/bc/vt/b,k are negligible at second order. Cru-
cially, tvt/bcb/t ,k varies between configurations described by
different sliding vectors x and can be computed from a TB
Hamiltonian Hmoiré,TB:

Hmoiré,TB =


m̃k tk tAt Ab,k tAt Bb,k
t∗k −m̃k tBt Ab,k tBt Bb,k

t∗At Ab,k t∗Bt Ab,k m̃k tk
t∗At Bb,k t∗Bt Bb,k t∗k −m̃k

 , (D3)

where the off-diagonal 2 × 2 blocks define the orbital and
stacking-dependent tunnelling T (k,x). In particular, T (k,x)
corresponds to the top-right 2 × 2 block, while the bottom-
left block constitutes T †(k,x). Here, we label atoms in top
and bottom layers as (At ,Bt ,Ab,Bb) (which defines the basis
of the Bloch states of the two atomic species), and contrary
to Ref. [79], we consider a combined Semenoff m and Hal-
dane mass t2 in the form of m̃k = m− 2∑i t2 sin(k ·bi), with
bi the vectors corresponding to the second-neighbour hop-
pings. On the other hand, the in-plane nearest-neighbour hop-
pings read tk = ⟨uA|H |uB⟩ = t1 ∑

3
i=1 eik·∆Ri , where ∆Ri label

nearest-neighbour displacements (from the A to B species ac-
cording to the convention used for tk). Out-of-plane displace-
ments are given by ∆RAbAt = ∆RBbBt = x, ∆RAbBt ,i = x+∆Ri,
∆RBbAt ,i = x−∆Ri. Note that here, x can be chosen to lie
in the Wigner-Seitz unit cell of a B atom. On the same or-
der of approximation as the intra-layer nearest-neighbour cou-
pling series truncation, it is sufficient to consider coupling
with atoms connected by the aforementioned out-of-plane dis-
placements; since only these atoms can lie inside the Wigner-
Seitz unit cell for any x. From solving the monolayer prob-
lem first, one obtains unperturbed bands |uc/vt/b,k⟩ in terms of
|uAt/b⟩ and |uBt/b⟩ (the periodic parts of the A and B atomic
monolayer Bloch states),

|uct/b,k⟩= cAk |uAt/b⟩+ cBk |uBt/b⟩ , (D4)

|uvt/b,k⟩= (c∗Bk) |uAt/b⟩− cAk |uBt/b⟩ , (D5)

where from a single-layer problem unperturbed by tunnelling,
one obtains the corresponding coefficients:

cAk =
m̃k +

√
m̃2

k + |tk|2√(
m̃k +

√
m̃2

k + |tk|2
)2

+ |tk|2
, (D6)
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cBk =
t∗k√(

m̃k +
√

m̃2
k + |tk|2

)2
+ |tk|2

. (D7)

Furthermore, these yield tvt/bcb/t ,k(x)= ⟨wcb/t |H |wvt/b⟩, where
|wcb/t ⟩ is the Wannier function obtained from |ucb/t ⟩,

tvt cb,k(x) = eik·x
[
cAkc∗Bk(tAbAt (x)− tBbBt (x))

+(c∗Bk)
2

3

∑
i=1

(
tBbAt ,i(x)e

−ik·∆Ri
)
− c2

Ak

3

∑
i=1

(
tAbBt ,i(x)e

ik·∆Ri
)]

,

(D8)

tvt cb,k(x) = eik·x
[
cAkc∗Bk(tAbAt (x)− tBbBt (x))

+(c∗Bk)
2

3

∑
i=1

(
tBbAt ,i(x)e

−ik·∆Ri
)
− c2

Ak

3

∑
i=1

(
tAbBt ,i(x)e

ik·∆Ri
)]

,

(D9)

tvbct ,k(x) = e−ik·x
[
cAkc∗Bk(t

∗
AbAt (x)− t∗BbBt (x))

+(c∗Bk)
2

3

∑
i=1

(
t∗AbBt ,i(x)e

−ik·∆Ri
)
− c2

Ak

3

∑
i=1

(
t∗BbAt ,i(x)e

ik·∆Ri
)]

.

(D10)

Here, tAbBt ,i(x) = ⟨φAb |H |φBt ⟩ and Ab and Bt are separated by
∆RAbBt ,i (as earlier, |φAb/t ⟩ is the Wannier function for |uBb/t ⟩).
Writing in the explicit dependence of tAbBt ,i(x) on x,

tAbBt ,i(x)=

{
t0
AbBt ,ie

−|∆RAbBt ,i(x)|/λAB if |∆RAbBt ,i(x)|< |∆Ri|,
0 otherwise,

(D11)
with λAB a layer-separation dependent regularization of the
hopping amplitudes, reflecting the overlaps of the orbitals be-
tween which the hopping occurs. The stacking-dependent in-
terlayer hoppings for the other three orbital flavour combina-
tions were regularized analogously. To obtain the results in
Fig. 3, the values chosen for the various tight-binding param-
eters are as follows: m = 2.25, t1 = 2.4, t0

AbBt ,i = t0
BbAt ,i = 1.28,

t0
AbAt ,i = 0.8, t0

BbBt ,i = 0.6, λAB = λBA = 1.32, λAA = 1.36, and
λBB = 1.27, providing a faithful representation of the twisted
hBN bilayer [79], subject to an addition of the second neigh-
bor hoppings, which experience staggered magnetic fluxes.

With the evaluated interlayer coupling constants, the per-
turbed bands |ũv/ct/b,k⟩ can be found within the perturbation
theory, as described earlier. Finally, to deduce the in-plane
polarization, the Berry connection can be furthermore
obtained. Namely, the resulting Berry connection in the
calculated bands reads

Acc/vv(k) =−i⟨ũc/vt/b,k|∇kũc/vt/b,k⟩ , (D12)

which can be further integrated over k-space to obtain the
Berry phase and polarization, consistently with the main text,

FIG. 5. The in-plane local polarization ∆P||(r) at different stackings x
as a function of t2. The chosen stackings x ≡ x(r) = {1/6,1/2,3/4}
correspond to the fractional coordinates along the s direction, with
s = 0 and s = 1 corresponding to the AA bilayer stacking, see Fig. 3
for further reference. We emphasize that the model breaks down in
the proximity of the critical points (|t2| ≈ 0.4), where the gap be-
comes too small for the second order perturbation theory to yield
reliable values of the local electric polarization.

Eqs. (5), (6). Crucially, our model goes beyond the configura-
tion space tight-binding adaptation of Ref. [79]. In our effec-
tive model, the hoppings, which are stacking-dependent, are
regularized by both out-of-plane and in-plane distances. This
modification more accurately reflects an overlap of the cor-
responding basis orbitals, which electrons experience on hop-
ping. For completeness, we accordingly include a plot (Fig. 5)
of the in-plane local polarization ∆P||(r) as a function of t2,
which was realized and computed within the model described
above. We show ∆P||(r) for different stackings x, that were
defined along the direction s; see also Fig. 3 for reference. We
note that close to t2 = 0.43 corresponding to the metallic crit-
ical point, the local polarization is ill-defined and diverges, as
the perturbative model considered here breaks down for small
gaps ∆Ek. On the contrary, Fig. 3(c) and Fig. 3(d) where ob-
tained on both sides away from the critical point, where the
gap is well-preserved.

2. Continuum model

Last, we elaborate on the continuum model for topologi-
cal fermions, which captures the low-energy physics, includ-
ing the electric polarization, in the twisted Haldanium bilayer.
Following the continuum formulation of the local polarization
introduced in our previous work Ref. [22], we start by recog-
nizing that, if the two layers are twisted, with θ denoting the
angle of the twist, this change can be described with a defor-
mation field given by

Dt(r) =−Db(r) =
θ

2
ẑ× r. (D13)
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Here, each layer experiences a deformation field Dl , and
l = t,b is the layer index. As a result of a small deformation
in each individual layer, the ψ electron field, introduced in the
main text, is correspondingly modified as [53],

ψl(r) = (1−∇ ·Dl(r))1/2
ψl(x(r))e−iK·Dl(r) , (D14)

in addition to the consistent transformation of the integration
measure. Here, K is the momentum at the Dirac point, corre-
sponding to an individual valley. The continuum Hamiltonian
of the decoupled topological bilayers can be obtained as [53],

HBL = ∑
l=t,b

∫
ψ

†
l

[(
m+b

(
∂rβ

+
∂Dl,γ

∂ rβ

∂rγ

)2
)

τ3

− iv
(

τ
β +

∂Dl,β

∂ rγ

τ
γ

)
∂rβ

+ v(K ·∂rβ
Dl)τ

β

]
ψl d2r, (D15)

where Einstein summation convention is implied and τγ are
the Pauli matrices. Here, we kept terms only linear in the de-
formation field and introduced v as the Fermi velocity of the
Dirac fermions, which were further gapped by the trivial and
topological masses m and b. In particular, in the context of the
Haldane model, we recognize that b = 3

√
3t2 for each valley.

Having defined a continuum theory for an uncoupled Halda-
nium bilayer, we further introduce an interlayer coupling un-
der a twisted stacking. In that case, an additional interlayer

tunnelling term described by

Htun =
∫

ψ
†
t T (Dt −Db)ψb d2r + h.c., (D16)

needs to be included, where T (Dt −Db) = ∑G TGeiG·(Dt−Db),
G are the reciprocal lattice vectors of the monolayer, and TG
are the tunnelling amplitudes, which depend on the layer sep-
aration. Hence, ultimately we arrive at the final expression,
introduced in the main text, on combining two terms,

Hmoiré = HBL +Htun. (D17)

The complete continuum Hamiltonian Hmoiré, yields the
moiré bands |un

D,G(k)⟩ as eigenfunctions, which within the
parametrization by the deformation field D = (Dt ,Dl), fully
encode the local polarization. In particular, the local polariza-
tion is heavily-dependent on the stacking-induced deforma-
tion field D, influencing the Berry phases in the topological
bands obtained from the bilayer Hamiltonian. Namely,

P(D(r)) =
−2ie f
(2π)2

occ

∑
n

∫ D(r)

0

∮
mBZ

⟨∂Dun
D,G(k)|∂kun

D,G(k)⟩dD,

(D18)

which is expected to change correspondingly across the topo-
logical phase transitions controlled by the mass parameters m
and b, where b combined with the Laplacian act effectively as
the further second-neighbor hopping t2.
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