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Abstract

This paper provides a comprehensive survey
of recent advancements in leveraging machine
learning techniques, particularly Transformer
models, for predicting human mobility patterns
during epidemics. Understanding how people
move during epidemics is essential for mod-
eling the spread of diseases and devising ef-
fective response strategies. Forecasting popu-
lation movement is crucial for informing epi-
demiological models and facilitating effective
response planning in public health emergencies.
Predicting mobility patterns can enable author-
ities to better anticipate the geographical and
temporal spread of diseases, allocate resources
more efficiently, and implement targeted inter-
ventions. We review a range of approaches
utilizing both pretrained language models like
BERT and Large Language Models (LLMs) tai-
lored specifically for mobility prediction tasks.
These models have demonstrated significant
potential in capturing complex spatio-temporal
dependencies and contextual patterns in textual
data.

1 Introduction

Predicting population movements during disease
outbreaks is a complex yet crucial task, with signifi-
cant implications for public health decision-making
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and the formulation of epidemic control strategies.
The recent COVID-19 pandemic has underscored
the importance of understanding human mobility in
predicting and controlling the spread of infectious
diseases. Human mobility data can be combined
with other data sources to help understand mobil-
ity patterns. This provides valuable insights into
how to slow down the rapid spread of the disease.
Additionally, it helps to analyze the correlation be-
tween the number of epidemic-infected cases and
human activities in recreational areas such as parks.
Furthermore, it enables early detection and prompt
isolation of virus infection. Mobility data, derived
from various sources such as call detail records,
global positioning system, social networks, and ex-
pert knowledge of a region (Isaacman et al., 2012;
Ebrahimpour et al., 2020; Sobral et al., 2020).

While traditional epidemiological models heav-
ily rely on mobility data, employing approaches
like clustering techniques, differential equations,
and statistical modeling (Kulkarni et al., 2019; Rah-
man et al., 2021), recent years have witnessed a
paradigm shift towards the use of deep learning
methodologies, specifically Transformer architec-
tures pretrained on large corpora. These advanced
techniques aim to tackle the inherent complexi-
ties involved in modeling human mobility dynam-
ics during epidemics (Ma et al., 2022a; Kobayashi
et al., 2023).

Contribution. In this paper, we provide a com-
prehensive overview of recent research endeavors
aimed at leveraging machine learning techniques,
specifically Transformer models, to enhance the
prediction of human mobility patterns in the con-
text of epidemics. We highlight the contributions
of both pretrained language models and Large Lan-
guage Models (LLMs) tailored explicitly for mo-
bility prediction tasks. Furthermore, we discuss the
challenges and future directions in this emerging
field, emphasizing the potential of these advanced
modeling techniques to inform more accurate and
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actionable epidemiological models.

2 Human Mobility Tasks

A mobility pattern describes the movement of a
considered population over a given observation pe-
riod. Human mobility modeling tasks can be cat-
egorized into two main tasks: generation, which
involves generating realistic mobility data, and pre-
diction, which involves predicting future mobil-
ity patterns at both the individual and collective
levels (Luca et al., 2021). In the context of our
study, a trajectory corresponds to a sequence of
spatio-temporal information related to an individ-
ual’s movement. Depending on the task at hand, tra-
jectories can be aggregated by geographic regions.
Given two regions, a flow represents the frequency
of individuals moving inbound and outbound from
one region (the origin) to another (the destination).
Figure 1 displays, in one hand, the generation task,
which includes subtasks such as flow generation
and trajectory generation, where generative models,
including Transformers and LLMs, play a crucial
role. On the other hand, the prediction task includes
crowd flow prediction and next location prediction,
for which robust forecasting models are required.

Our paper presents a comprehensive overview
of recent advancements in leveraging Transformers
and LLMs for modeling human mobility patterns,
particularly in the context of epidemic control (see
Table 1). This table provides information about the
methods, applications, and datasets utilized in re-
cent studies involving Transformers and LLMs for
modeling human mobility patterns in the context
of epidemic modeling.

3 Transformers in Human Mobility

Transformers are a type of deep learning architec-
ture that consists of two parts: an encoder and a
decoder (Vaswani et al., 2017). They have been
instrumental in the recent breakthroughs we ob-
serve in various machine learning tasks. These
include, but are not limited to, text-to-image gener-
ation, machine translation, and text summarization.
One of the key factors contributing to the success
of Transformers is the attention mechanism. This
mechanism allows the model to prioritize the most
relevant input data for tasks such as predicting the
next word given a context. While its initial applica-
tion was primarily on textual data, it has since been
established that Transformers are effective across
a multitude of applications, including forecasting,

where they have shown superior performance com-
pared to their predecessors (Vaswani et al., 2017;
Trivedi et al., 2021; Osawa et al., 2021; Solatorio,
2023; Xu et al., 2023; Kobayashi et al., 2023; Ted-
jopurnomo et al., 2023; Wang et al., 2023a, 2024b).

Furthermore, Transformers are multimodal,
meaning they can combine data sources of differ-
ent types, such as text, images, graphs, etc. Con-
sequently, their use has seen a significant rise in
recent years, including in the prediction of human
mobility patterns for epidemic modeling (Li et al.,
2021; Devyatkin et al., 2021; Xue et al., 2022a; Cui
et al., 2021; Xue et al., 2021; Mai et al., 2022; Li
et al., 2022; Hong et al., 2022; Shen et al., 2023;
Ren et al., 2023; Botz et al., 2022; Terashima et al.,
2023; Bengio et al., 2020; Xu et al., 2021; Ma
et al., 2022b; Aragão et al., 2023; Violos et al.,
2022; Choya et al., 2023; Mao et al., 2023; Wang
et al., 2023b; Chen et al., 2023). Figure 2 illustrates
the architecture of a Transformer model designed
for mobility prediction. The model receives a se-
quence of location and time data representing a
mobility trajectory as input. This trajectory is en-
coded using the Transformer’s encoder component,
which captures the temporal and spatial dependen-
cies within the sequence. The resulting encod-
ing is then passed to the decoder, which generates
predictions for the next location in the trajectory.
This self-contained framework utilizes the Trans-
former’s attention mechanism to effectively capture
long-range dependencies and spatial-temporal pat-
terns in mobility data, enabling accurate prediction
of future locations.

Initially, Transformer-based models like BERT
showed promise in predicting mobility flows based
on textual and location data (Devlin et al., 2018;
Li et al., 2021; Crivellari et al., 2022). However,
challenges persisted in generalization to new lo-
cations and outbreak scenarios (Devyatkin et al.,
2021). Terashima et al. (2023) introduce LP-BERT
for predicting human mobility trajectories using
the Transformer architecture. LP-BERT enables
parallel predictions, reducing training and predic-
tion times, which can be beneficial for tasks like
epidemic modeling that require quick insights into
population movements.

When discussing epidemic modeling, Botz et al.
(2022) discuss modeling approaches for early warn-
ing, monitoring of pandemics, and decision support
in public health crises. It emphasizes the impor-
tance of population-level computational modeling,



Figure 1: Human mobility modeling tasks taxonomy
by Luca et al. (2021).
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Figure 2: Transformer-based mobility prediction: Encod-
ing mobility trajectories to predict future locations.

including machine learning techniques, in strength-
ening healthcare systems against respiratory infec-
tions. The authors highlight the significance of
predicting outbreak impacts, monitoring disease
spread, and assessing intervention effectiveness.

Moreover, Ma et al. (2022a) discuss the impor-
tance of human trajectory completion in controlling
the spread of COVID-19, present a solution based
on Transformers and evaluate it using an open-
source human mobility dataset. The proposed solu-
tion involves using Transformers and deep learning
models to estimate missing elements in trajectories.

Similarly, Li et al. (2021) present a Transformer-
based model for long-term prediction of seasonal
influenza outbreaks. The proposed model ad-
dresses the limitations of traditional forecasting
methods by leveraging the Transformer’s ability to
capture long-range dependencies, and introduces a
sources selection module based on curve similarity
measurement to incorporate spatial dependencies.

To monitor human movements and comprehend
the emergence of the pandemic, Bengio et al.
(2020) develop advanced deep learning models for
predicting infectiousness for proactive contact trac-
ing during the COVID-19 pandemic, introduce the
concept of proactive contact tracing (PCT) and dis-
cuss the use of deep learning predictors to locally
predict individual infectiousness based on contact
history while respecting privacy constraints. The
study highlights the effectiveness of deep learning-
based PCT methods in reducing disease spread
compared to other tracing methods, suggesting
their potential for deployment in smartphone apps
to balance virus spread and economic costs while
maintaining strong privacy measures.

Recent studies have made significant strides in
leveraging advanced deep learning techniques for
forecasting and modeling various aspects of the
COVID-19 pandemic (Devyatkin et al., 2021; Cui

et al., 2021; Violos et al., 2022; Xu et al., 2021).
These studies utilize recurrent neural networks
and Transformer-like architectures, multi-range
encoder-decoder frameworks, self-attention based
models, and generative adversarial networks to an-
alyze socioeconomic impacts, forecast COVID-19
cases, predict human density in urban areas, and
simulate human mobility trajectories.

Devyatkin et al. (2021) develop deep neural net-
work models for forecasting the socioeconomic
impacts of COVID-19 in Russian regions, particu-
larly focusing on the regional cluster of Moscow
and its neighbors. The models, based on recurrent
and Transformer-like architectures, utilize hetero-
geneous data sources including daily cases, age
demographics, transport availability, and hospital
capacity. The study shows that incorporating de-
mographic and healthcare features improves the
accuracy of economic impact predictions, and data
from neighboring regions enhances predictions of
healthcare and economic impacts. Overall, the re-
search emphasizes the importance of forecasting to
address inter-territorial inequality during the pan-
demic. Cui et al. (2021) propose a multi-range
encoder-decoder framework for COVID-19 predic-
tion, leveraging historical case data, human mo-
bility patterns, and reported cases and deaths to
enhance prediction accuracy. By embedding fea-
tures from multiple expose-infection ranges and
utilizing message passing between time slices, the
model surpasses existing methods in both weekly
and daily prediction tasks. Ablation studies con-
firm the effectiveness of key components, demon-
strating the model’s ability to perform well with or
without mobility data. The framework addresses
challenges posed by incomplete data and unknown
disease factors, offering a promising approach for
precise and timely COVID-19 forecasting.

Violos et al. (2022) present a self-attention based



Paper Year Method Application Datasets
WiFiMod: Transformer-based Indoor

Human Mobility Modeling using Passive
Sensing (Trivedi et al., 2021)

2021
WiFiMod

(Transformer-based
model)

Predicting indoor
human mobility

Enterprise WiFi system
logs

MobTCast: Leveraging Auxiliary
Trajectory Forecasting for Human

Mobility Prediction (Xue et al., 2021)
2021 Transformer Human mobility

prediction

Gowalla,
Foursquare-NYC
(FS-NYC), and

Foursquare-Tokyo
(FS-TKY)

Predicting Human Behavior with
Transformer Considering the Mutual
Relationship between Categories and

Regions (Osawa et al., 2021)
2021 Transformer Predicting human

mobility Not specified

TraceBERT—A Feasibility Study on
Reconstructing Spatial–Temporal Gaps

from Incomplete Motion Trajectories via
BERT Training Process on Discrete
Location Sequences (Crivellari et al.,

2022)

2022 BERT Trajectory
reconstruction

Real-world large-scale
trajectory dataset of

short-term
tourists (CDRs)

Integrating Transformer and GCN for
COVID-19 Forecasting (Li et al., 2022) 2022 Transformer and

GCN
COVID-19
Forecasting

Nytimes Coronavirus
(COVID-19) Data

Large Language Models for Spatial
Trajectory Patterns Mining (Zhang et al.,

2023)
2023 LLMs such as GPT-4

and Claude-2
Anomaly detection

in mobility data
GEOLIFE,

PATTERNS-OF-LIFE

How Do You Go Where? Improving Next
Location Prediction by Learning Travel
Mode Information using Transformers

(Hong et al., 2022)
2022 Transformer Next location

prediction
Green Class (GC) and

Yumuv

GeoFormer: Predicting Human Mobility
using Generative Pre-trained Transformer

(Solatorio, 2023)
2023 GPT-based model Predicting human

mobility
HuMob Challenge 2023

datasets

Modeling and Generating Human
Mobility Trajectories using Transformer

with Day Encoding (Kobayashi et al.,
2023)

2023 Transformer with Day
Encoding

Modeling and
generating human

mobility trajectories
HuMob dataset

CrowdFlowTransformer: Capturing
Spatio-Temporal Dependence for

Forecasting Human Mobility (Choya et al.,
2023)

2023 Transformer Crowd flow
forecasting Not specified

TrafFormer: A Transformer Model for
Predicting Long-term Traffic
(Tedjopurnomo et al., 2023)

2023 Transformer Long-term traffic
prediction METR-LA, PEMS-BAY

Where Would I Go Next? Large Language
Models as Human Mobility Predictors

(Wang et al., 2023a)
2023 LMM Human mobility

prediction GEOLIFE, FSQ-NYC

User Re-identification via Human
Mobility Trajectories with Siamese
Transformer Networks (Wang et al.,

2023a)
2023 Siamese Transformer

network User re-identification Gowalla, Brightkite, and
Foursquare (NYC, TKY)

Exploring Large Language Models for
Human Mobility Prediction under Public

Events (Liang et al., 2023)
2023 LLM

Human mobility
prediction under

public events

Publicly available event
information and taxi trip

data
Learning Daily Human Mobility with a
Transformer-Based Model (Wang and

Osaragi, 2024)
2024 Transformer Modelling human

mobility Tokyo Metropolitan Area

Health-LLM: Large Language Models for
Health Prediction via Wearable Sensor

Data (Kim et al., 2024)
2024 LLM Epidemic control

PMData, LifeSnaps,
GLOBEM, AW_FB,

MITBIH, and MIMIC-III
Beyond Imitation: Generating Human

Mobility from Context-aware Reasoning
with Large Language Models (Shao et al.,

2024)
2024 LLM Mobility generation Tencent and Mobile

Dataset

Large Language Models as Urban
Residents: An LLM Agent Framework for
Personal Mobility Generation (Wang et al.,

2024a)
2024 LLM Personal mobility

generation Not specified

MobilityGPT: Enhanced Human Mobility
Modeling with a GPT model (Haydari

et al., 2024)
2024 GPT Mobility modeling Real-world datasets

COLA: Cross-city Mobility Transformer
for Human Trajectory Simulation (Wang

et al., 2024b)
2024 Transformer Human trajectory

simulation
GeoLife, Yahoo, New

York, Singapore

Table 1: Literature review of Transformers and LLMs for modeling human mobility patterns to epidemic control

encoder-decoder model for predicting human den-
sity in urban areas, incorporating deep learning
methods and geospatial feature preprocessing. This

research enhanced human mobility prediction in
epidemic modeling by providing insights into popu-
lation movement patterns, aiding in the analysis of



disease transmission dynamics, and supporting the
implementation of strategic interventions to mit-
igate the spread of epidemics. Xu et al. (2021)
propose DeltaGAN, a generative model for syn-
thesizing continuous-time human mobility trajecto-
ries. DeltaGAN captures realistic mobility dynam-
ics without discretizing visitation times, enabling
more accurate trajectory generation and analysis.
Its utility is demonstrated in studying the spread-
ing of COVID-19, showing small divergence in
population distribution compared to real data.

Spatio-temporal epidemic forecasting models
have been developed to predict epidemic trans-
mission dynamics by integrating domain knowl-
edge with neural networks (Mao et al., 2023; Ma
et al., 2022b). Mao et al. (2023) introduce a spatio-
temporal epidemic forecasting model called MP-
STAN, which integrates domain knowledge with
neural networks to accurately predict epidemic
transmission. This study emphasizes the impor-
tance of selecting appropriate domain knowledge
for forecasting and proposes a dynamic graph
structure to capture evolving interactions between
patches over time. Ma et al. (2022b) introduce
an approach, Hierarchical Spatio-Temporal Graph
Neural Networks (HiSTGNN), for pandemic fore-
casting using large-scale mobility data. HiST-
GNN incorporates a two-level neural architecture
and a Transformer-based model to capture spa-
tial and temporal information hierarchically. The
model outperforms existing baselines in predicting
COVID-19 case counts, demonstrating its superior
predictive power. The research highlights the im-
portance of leveraging mobility data for pandemic
forecasting and addresses the limitations of existing
Graph Neural Networks in capturing community
structures within mobility graphs.

Additionally, models like CF-Transformer and
MSP-STTN have been proposed to capture spatio-
temporal dependencies for crowd flow forecast-
ing, contributing to human mobility prediction
in epidemic modeling (Choya et al., 2023; Xie
et al., 2022). More specifically, Choya et al.
(2023) introduced the CrowdFlowTransformer (CF-
Transformer) model, which combines Transformer
with graph convolution to capture spatio-temporal
dependencies for crowd flow forecasting, and aims
to improve forecasting accuracy by considering
both temporal and spatial aspects of crowd flow
data for applications like human mobility predic-
tion in epidemic. Xie et al. (2022) proposed the

MSP-STTN model for short- and long-term crowd
flow prediction, focusing on grid-based crowd data
analysis. MSP-STTN contributes to human mobil-
ity prediction in epidemic modeling by providing
insights into long-term crowd flow patterns, aid-
ing in urban planning and traffic management. Its
applications extend to various grid-based predic-
tion problems beyond crowd flow analysis, such as
weather forecasting and air pollution prediction.

These advancements underscore the critical role
of machine learning in enhancing our understand-
ing of disease dynamics and informing public
health interventions during epidemics.

4 Large Language Models in Human
Mobility

Recently, there has been a surge in the development
of Large Language Models (LLMs) tailored specif-
ically for high-fidelity human mobility simulation
and forecasting (Xue et al., 2022b; Liang et al.,
2023; Wang et al., 2023c; Zhang et al., 2023; Tang
et al., 2024; Shao et al., 2024; Kim et al., 2024;
Wang et al., 2024b; Haydari et al., 2024). These
models, trained on massive corpora of mobility data
paired with auxiliary information, demonstrate the
capability to generate plausible mobility trajecto-
ries for entire populations under various policy and
disease conditions. Despite these advancements,
challenges persist regarding ensuring adequate cov-
erage, transparency, and safety for real-world epi-
demiological applications.

Exploring further, Xue et al. (2022b) propose a
pipeline that leverages language foundation models
for human mobility forecasting by transforming
numerical temporal sequences into sentences for
prediction tasks. By integrating language models
with mobility prompts, the study provides empiri-
cal evidence of the effectiveness of this approach in
discovering sequential patterns, which can be valu-
able for predicting human mobility in epidemic
modeling scenarios and potential disease spread.
Similarly, Liang et al. (2023) explore LLMs’ ap-
plication for predicting human mobility patterns
during public events (LLM-MPE). Addressing the
challenge of incorporating textual data from online
event descriptions into mobility prediction models,
LLM-MPE transforms raw event descriptions into
a standardized format and segments historical mo-
bility data to make demand predictions considering
both regular and event-related components. This
approach can indirectly inform epidemic modeling



by providing insights on travel patterns and poten-
tial disease spread dynamics during events, thereby
aiding the development of more accurate epidemic
models.

In another stride, Wang et al. (2023c) introduce
LLM-Mob, a framework utilizing LLMs for human
mobility prediction, capturing both long-term and
short-term dependencies and employing context-
inclusive prompts. LLM-Mob contributes to epi-
demic modeling by providing interpretable predic-
tions, underscoring the potential of LLMs in ad-
vancing human mobility prediction techniques to
address epidemic spread.

Tang et al. (2024) present an approach that in-
tegrates LLMs with spatial optimization for urban
travel itinerary planning. Focusing on the Online
Urban Itinerary Planning (OUIP) problem, this
study demonstrates the effectiveness of the pro-
posed system through offline and online experi-
ments. The methodology involves using LLMs like
GPT-3.5 and GPT-4 for itinerary generation, along
with spatial optimization techniques and rule-based
metrics for evaluation. This approach can con-
tribute to human mobility prediction in epidemic
modeling by efficiently generating personalized
and coherent itineraries based on natural language
requests, which can help understand and predict
human movement patterns in urban contexts during
epidemics. Furthermore, by leveraging LLMs for
itinerary generation and spatial optimization, the
system can adapt to diverse user needs and provide
tailored travel plans, valuable in modeling and pre-
dicting human mobility changes during epidemics
for better public health planning and management.

More recently, Shao et al. (2024) proposed an
approach called MobiGeaR for generating human
mobility data using LLMs and a mechanistic grav-
ity model. MobiGeaR involves leveraging LLM
reasoning and a divide-and-coordinate mechanism
to generate mobility patterns effectively. The pro-
posed approach significantly reduces the token cost
per trajectory and boosts the accuracy of mobil-
ity prediction models through data augmentation.
The MobiGeaR approach can contribute to human
mobility prediction in epidemic modeling by gener-
ating high-quality data to augment sparse datasets,
enabling mining and modeling of motion patterns
for predicting future trajectories based on histori-
cal data. The approach can improve the predictive
performance crucial for epidemic control and other
applications requiring accurate mobility by provid-

ing better enhancements in downstream mobility
prediction tasks, particularly in intention-type pre-
diction.

5 Challenges and Limitations

Despite their promising performance, Transform-
ers and LLMs face several challenges when ap-
plied to human mobility prediction tasks in epi-
demic modeling. One major challenge is the
availability and quality of relevant data sources,
which can be subject to biases or errors that af-
fect model performance (Kulkarni et al., 2019).
Additionally, the applicability of these advanced
models extends beyond well-resourced regions to
low- and middle-income countries (LMICs) and
resource-constrained settings with underdeveloped
electronic health records (Tshimula et al., 2023). In
these contexts, leveraging machine learning tech-
niques for human mobility prediction can signifi-
cantly enhance the understanding and management
of epidemics by providing valuable insights into
population movements even with limited data avail-
ability and infrastructure.

Mastering the speed of mobility and the number
of movements within a given environment during
an epidemic context can consequently help in for-
mulating appropriate public health strategies. Tak-
ing the example of a screening activity for sleeping
sickness in a village where the endemic level is
known, and where the main activity of the inhab-
itants is farming, with mobility defined between
the place of residence and the fields during dawn
and dusk hours, the failure to consider this type of
mobility by healthcare professionals could result in
a large number of absences and non-respondents to
these activities, even though these individuals had
been planned and accounted for.

On the other hand, considering an industrial-
ized country context, where means of transporta-
tion include airplanes, subways, high-speed trains,
and where large surfaces and amusement parks are
present, the speed and number of movements would
also be high; in such an environment, the spread
rate of an epidemic would be directly proportional
to mobility. It is therefore important to master the
mobility data of such a population and to use it in
a public health context to contain the epidemic.

Implementing artificial intelligence (AI) models
in LMICs poses significant challenges, primarily
due to the potential non-reproducibility of their
initial performance upon integration with local



datasets and the absence of regulatory frameworks
(Wang et al., 2023d). Addressing this challenge is
critical to ensuring the effectiveness and reliability
of Transformers or LLMs used for human mobil-
ity modeling in LMICs, ultimately enhancing epi-
demiological surveillance and the health outcomes
of local populations. While fine-tuning these AI
models is a recommended approach for specific
applications (Yang et al., 2023; Li et al., 2019), it
is essential, particularly in the context of LMICs,
to plan cross-validation of these models with lo-
cal datasets to improve and reproduce the model’s
original performance.

Moreover, ethical considerations may arise when
using these models for surveillance purposes or
making decisions about public health interventions
based on predictions from these models. Therefore,
ensuring responsible deployment of these technolo-
gies, particularly in underserved regions, is crucial
for achieving equitable and effective epidemic con-
trol strategies.

6 Conclusion

This emerging area shows promise for improving
epidemiological modeling through advanced mo-
bility prediction. Continued progress in integrating
multimodal data streams and expert knowledge can
significantly bolster public health decision-making
by providing more realistic models of human move-
ment dynamics during crises. However, further
work is essential to overcome existing limitations
and ensure responsible deployment of LLMs.

The successful implementation of Transformers
or LLMs models in LMICs necessitates careful con-
sideration of the model’s suitability for the local
context and adjustments to the training and valida-
tion datasets. The scope of implementing these AI
models in LMICs lies in developing more contextu-
ally appropriate models, integrating local datasets,
and fostering collaboration to improve performance
and reproducibility.

Future research endeavors should prioritize en-
hancing model generalizability across diverse ge-
ographical and socio-economic contexts. More-
over, efforts should be directed towards adapting
these advanced modeling techniques to resource-
constrained settings, particularly in LMICs, where
access to data and computational resources may
be limited. This includes exploring innovative ap-
proaches for collecting and processing human mo-
bility data in LMICs, as well as adapting LLMs to

accommodate varying sociocultural contexts.
Addressing these challenges will be crucial for

ensuring the widespread applicability and impact
of machine learning-based approaches in epidemic
modeling and public health decision-making world-
wide. This will contribute to more equitable and
effective epidemic response strategies on a global
scale.
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