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Abstract—A growing trend in compiler design is to enable
modular extensions to intermediate representations (IRs). Multi-
Level Intermediate Representation (MLIR) is a new effort to
enable faster compiler development by providing an extensible
framework for downstream developers to define custom IRs with
MLIR dialects. Sets of MLIR dialects define new IRs that are
tailored for specific domains. The diversity and rapid evolution of
these IRs make it impractical to pre-define custom test generator
logic for every available dialect.

We design a new approach called SYNTHFUZZ that automati-
cally infers and applies custom mutations from existing tests. The
key essence of SYNTHFUZZ is that inferred custom mutations
are parameterized and context-dependent such that they can be
concretized differently depending on the target context. By doing
this, we obviate the need to manually write custom mutations for
newly introduced MLIR dialects. Further, SYNTHFUZZ increases
the chance of finding effective edit locations and reduces the
chance of inserting invalid edit content by performing k-ancestor-
prefix and [-sibling-postfix matching.

We compare SYNTHFUZZ to three baselines:
Grammarinator—a grammar-based fuzzer without custom
mutators, MLIRSmith—a custom test generator for MLIR, and
NeuRI—a custom test generator with support for parameterized
generation. We conduct this comprehensive comparison on
4 different MLIR projects where each project defines a new
set of MLIR dialects that would take months of effort to
manually write custom input generation and mutation logic.
QOur evaluation shows that SYNTHFUZZ on average improves
input diversity by 1.51x, which increases branch coverage by
1.16 X. Further, we show that our context dependent custom
mutation increases the proportion of valid tests by up to
1.11x, indicating that SYNTHFUZZ correctly concretizes its
parameterized mutations with respect to the target context.
Parameterization of the mutations reduces the fraction of tests
violating general MLIR constraints by 0.57x, increasing the
time spent fuzzing dialect-specific code.

Index Terms—MLIR, grammar-based fuzzing, code patterns,
program transformation

I. INTRODUCTION

A common compiler design consists of three compo-
nents—a frontend, an optimizer, and a backend [1] where the
frontend translates source code to an intermediate represen-
tation (IR), the optimizer performs optimizations on the IR,
and the backend translates the IR into instructions specific
to the target architecture. The LLVM project lowered the
barrier to entry by providing a common LLVM intermediate
representation with different architecture backends.
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There is a growing trend to advance modular compiler
design through extensible infrastructure for intermediate rep-
resentations (IR). Multi-Level Intermediate Representation
(MLIR) is one such effort. It aims to create a unified infras-
tructure for manipulating an extensible IR format, enabling
reusable compiler components. Unlike LLVM, which defines
a single common intermediate representation (IR), MLIR
enables developers to extend the underlying IR through the
concept of MLIR dialects. Each MLIR dialect essentially de-
fines a new IR consisting of a unique set of operations, types,
and attributes with domain-specific semantics. For example,
the IR for machine learning is modeled as computation graphs,
while the IR for LLVM is modeled as a sequence of program
instructions.

Take the Circuit IR Compilers and Tools (CIRCT) [2]
project as an example. It leverages the MLIR framework to
build a compiler for heterogeneous compilation by defining 26
new dialects with 145 new operations. For example, CIRCT
uses a generic hardware abstraction by defining the hw and
comb custom dialects with operations to represent abstract
hardware modules and combinational logic. Listing [1| shows a
snippet of MLIR representing a hardware module containg a
custom MLIR operation called comb.add which represents
combinational addition.

The fast evolution of the underlying IR presents challenges
for developing custom test generators. Google reported in
2020 that over 60 dialects have been defined internally in
MLIR [3]]. In the four years since the MLIR project’s initial
public release, 29 downstream projects like CIRCT have each
contributed one or more custom dialects [2], [4]. General-
purpose fuzzers such as AFL++ [5] fail to effectively gen-
erate or mutate MLIR due to its highly structured form.
For instance, syntactically correct MLIR must have proper
nesting of operations, the correct number of operands and
outputs for each operation, valid type annotations, and valid
attribute names and values. Grammar-based fuzzers, such
as Grammarinator, use a context-free grammar to constrain
input generation, but such grammars cannot encode context-
specific constraints [6]. Custom generator-based fuzzers in
the vein of CSmith [7], NNSmith [8]], and MLIRSmith [9]
manually encode constraints in terms of imperative code. Such
constraints require significant effort to write and struggle to



1"hw.module" () ({ // Hardware module definition

2"°bb0(%al: i2): 2-bit integer input

3 // Defines a new constant with value -2, bitwidth 2:

4 %cl = "hw.constant" () {value = -2 : i2} : () -> 12

s // Adds the constants %0 and %1, outputting %2:

6 %0l = "comb.add" (%al, %cl) <{twoState}> : (12, 12) -> i2
7 "hw.output" (%01l) (i2) -> () // Output of module is %2:
8}) // extra boilerplate omitted

Listing 1. This MLIR code snippet uses a new hardware dialect comb for
combinational logic in the CIRCT project.

adapt to the fast continual introduction of new dialects.

We observe that the fast-evolving compiler infrastructure
of IRs requires a test input generator that can encode or
learn constraints automatically. To this end, we propose a new
approach called SYNTHFUZZ, drawing inspiration from tech-
niques for automated patch synthesis [10], [11], [12]]. These
techniques synthesize code edits from examples, learning the
code contexts in which the transformations are appropriate and
concretizing the code edits to the matching code contexts.

Like generator-based fuzzers, SYNTHFUZZ is capable of
preserving context-sensitive constraints such as the cardinality
of operation arguments and return values, the def-use rela-
tionships of values, and the consistency of type annotations.
The key novelty is that SYNTHFUZZ can do so without the
significant manual effort required to write custom generators
by hand. SYNTHFUZZ accomplishes this by synthesizing
parameterized mutations from seed test cases.

Colored pairs in Listing [T represent the def-use relationships
and type consistency that needs to be satisfied. A parame-
terized mutation derived from Listing [I| would encode the
knowledge that the operation comb.add is nested within
the hw.module denoted as ancestor ki, is preceded by one
hw.constant operation denoted as l/;, and followed by
one hw.output operation denoted as ry. This knowledge
enables SYNTHFUZZ to select an appropriate context to apply
the mutation by matching the k-ancestors and [-siblings (and
r-siblings) of the comb.add operation. The parameterized
mutation also encodes the knowledge that comb.add takes
two arguments $al and %cl, and returns one value %01 all
of which have the same type i2. SYNTHFUZZ parameterizes
these arguments and types and then re-concretizes them based
on the target context to which the mutation is applied.

We compare the effectiveness of SYNTHFUZZ against
Grammarinator, MLIRSmith, and NeuRI. Grammarinator was
chosen as a representative grammar-based fuzzer. MLIR-
smith was chosen as a representative generator-based fuzzer.
NeuRI was chosen as a custom test generator with limited
parameterization—i.e. it parameterizes the tensor shapes and
operation numerical attributes. We evaluate SYNTHFUZZ on
four MLIR-based compiler projects: LLVM, ONNX-MLIR,
Triton, and CIRCT. These are chosen as representative MLIR
projects that define 42, 2, 4, and 26 custom dialects respec-
tively. For all dialects except the 13 targeted by MLIRSmith
and the 1 onnx dialect that can be targetted by NeuRI,
no custom test generators exist. Writing test generators for
these custom dialects is time-consuming. As an example,
MLIRSmith’s implementation totals 11,434 lines of code with

447 lines of code per dialect on average [13].

We assess SYNTHFUZZ’s fault detection potential by mea-
suring code coverage and input diversity. We measure input
diversity in terms of MLIR dialect pair coverage. Dialect
pair coverage [9] is defined as the number of unique pairs
of operations/dialects that have a data dependency or con-
trol dependency. Averaged across over four MLIR compiler
projects, SYNTHFUZZ outperforms Grammarinator, MLIR-
Smith and NeuRI in terms of branch coverage by 1.22x,
29.78x and 17.47x respectively. In terms of dialect pair
coverage, SYNTHFUZZ outperforms Grammarinator, MLIR-
Smith and NeuRI on average by 1.75x, 4.60x, and 5.56x.
Compared to MLIRSmith and NeuRI, SYNTHFUZZ is capable
of covering 60 new custom dialects defined by the four MLIR
projects. SYNTHFUZZ discovers a previously undiscovered
bug in CIRCT.

In summary, this paper makes the following contributions:

1) We design a novel compiler fuzzing technique that obvi-
ates the need for defining custom mutations apriori, which
is impractical when the target IR is highly extensible and
constantly evolving.

2) Our method automatically synthesizes and applies multi-
edit, dependence-aware, custom mutations on the fly.
The key enabler is the construction of parameterized
mutations from test examples, and the concretization
of the mutations after establishing the context through
ancestor path or prefix(postfix) matching.

3) We show that our method achieves 1.16x greater code
coverage and 1.51x greater dialect coverage within the
same time budget compared to existing baseline fuzzers.

The remainder of this paper is organized as follows. Sec-
tion [II| introduces MLIR and a motivating example. Section
presents the design and implementation of SYNTHFUZZ.
Section provides the design of our experiments and their
results. Section [V| discusses possible threats to validity. Sec-
tion [VI] presents related work. Finally, we draw the conclusions
of our work in Section

II. BACKGROUND
A. MLIR: Multi-Level Intermediate Representation

Multi-Level Intermediate Representation (MLIR) is a mod-
ular compiler framework that differs from traditional ap-
proaches by enabling developers to extend the intermediate
representation. Rather than defining a single monolithic IR
with a fixed set of types and instructions like LLVM’s IR,
MLIR is extensible by design. Compiler developers may define
new MLIR dialects consisting of custom operations and types
tailored to the domain, language, or architecture the compiler
targets. MLIR dialects can be progressively lowered, forming
a modular compilation pipeline, in contrast with traditional
compiler infrastructure that offers limited extensibility. How-
ever, this presents a challenge for test generation, since custom
operations introduce semantic constraints that are operation-
specific, such as the def-use relationships and type consistency
illustrated by colored pairs in Listing



1"hw.module" () ({

2"bb0 (%arg0: i2):

3 %cl = "hw.constant" () {value = -2 : i2} : () -> i2
4 %0l = "comb.add" (%arg0, %cl) (i2, i2) -> i2

5 "hw.output" (%ol) 12) -> ()

61})

Listing 2. A donor program P, from which a mutation for inserting the
comb . add operation is synthesized from.

1"hw.module" () ({

2"bb0 ($arg0: i4, %argl: 'hw.array<2xi2>):

3 %0 = "hw.bitcast" (%argl) ('hw.array<2xi2>) -> i4
4 %1 = "comb.sub" (%arg0, %0) (i4, 1i4) -> i4

5 "hw.output" (%1) (14) -> ()

6})

Listing 3. A recipient program P, to which the mutation for inserting the
comb . add operation from Listing 2 should be applied to.

1 "hw.module" () ({
> "bb0 ($arg0: i4,
%0 = "hw.bitcast" (%argl)

2 %argl: 'hw.array<2xi2>):

3 ('hw.array<2xi2>) -> i4
4 St—=—leombsub{Sargd—%$0r——4—34H—>—34

5 %ol = "comb.add" ($arg0, %cl) (12, i2) -> i2
6 "hw.output" (%1) (14) -> ()
7})

Listing 4. A test case created by Grammarinator[6]’s recombine operation. It
deletes line4 and adds line 5. This test case is invalid as it violates the def-use
relation and the type consistency.

1"hw.module" () ({

2"bb0 (%arg0: i4, %argl: !hw.array<2xi2>):

3 %0 = "hw.bitcast" (%argl) ('hw.array<2xi2>) -> i4
4 g 7 47— i

5 %1 = "comb.add" (%arg0, $%0) (i4, i4) —> i4

6 "hw.output" (%1)
7})

(i4) —> (O

Listing 5. A test case created by SYNTHFUZZ’s context-dependent,
parameterized mutation. This mutation replaces an operation comb . sub with
comb . add. The test case is valid as SYNTHFUZZ matched a corresponding
context before concretizing its mutation to the target context.

Take the Circuit IR Compilers and Tools (CIRCT) [2] as an
example. CIRCT is a unified framework built on MLIR that
enables optimized hardware design across different backends
catering to the needs of heterogeneous compilation. It defines
26 new dialects with 145 new operations, including the comb
and hw dialects that define low-level hardware operations. An
example of the comb add operation is shown on line 4 of
Listing 3] The full name of this operation is comb . add where
comb is a dialect name and add is the operation name. As
shown in the snippet, the operation takes two operands $arg0
and %cl and returns a single value $o1l. Its type signature
indicates that the operation takes an input operands of type
12 (2-bit integers) and produce an output of type i2.

B. Motivating Example

Existing mutation strategies such as recombining test frag-
ments frequently fail to generate test cases capable of exercis-
ing deeper compiler logic. This failure is caused by the large
proportion of invalid test cases generated, which violate early
checks made by the compiler. For example, a) the definition
of identifiers needs to exist before they are used (def-use),
b) the types of variables need to remain consistent through
the test case (type consistency), and c) the number and type
of arguments that match what is required by an operation

(signature consistency). To address the limitation of existing
fuzzers, we present an approach that synthesizes parameterized
mutations, aiming to implicitly capture these constraints.

Consider the following seed test cases: a “donor” program
Py in Listing [2] that contains the comb . add operation to be
inserted in the “recipient” program P, in Listing[3] We demon-
strate how grammar-based generation and recombination are
unlikely to produce a valid program shown in Listing [3}

A grammar-based mutator following a general MLIR gram-
mar is unlikely to produce Listing [5| because the grammar
does not include operation semantics defined by MLIR di-
alects. For any given operation, the generic MLIR grammar
only specifies that the syntax of an operation must have a
name (e.g. comb.sub), 0 or more return values, arguments
and attributes, and a type signature. Therefore, a grammar-
based fuzzer generating a comb.add operation would be
unaware of the signature of the operation as defined by the
comb dialect. Specifically, without a grammar for the dialect,
the fuzzer would be unaware of the associations between
variables and their types, e.g. $arg0, $0 has the type i4,
and operation-specific signature such as comb.add having
exactly two input values and one return value.

Another common grammar-based mutation strategy is to
recombine the fragments of existing tests with other test cases.
To illustrate, comb . sub at line 4 of the recipient program P,
in Listing [3] is replaced with comb.add from line 4 of the
donor program Py in Listing 2] producing the mutated test
in Listing E} However, after the replacement, the values and
types of the comb . add operation are inconsistent with its new
surrounding context. The resulting test will be rejected early
by the compiler as it violates the def-use constraint, since the
value $c1 was not defined before it was used. Inferring such
semantic constraints (often Turing-complete) is challenging as
discussed in previous works [14] [15] [16].

Listing [ highlights the changes required to adapt the
code using comb.add from program P to the context of
program P,. To satisfy the def-use constraint, the values
referenced as arguments to an operation (e.g. $0 on line 5)
must be previously defined (e.g. $0 on line 3). To satisfy type
consistency, the initially assigned types, such as 14, for %0
on line 3 must remain consistent in its subsequent references,
such as its use as an argument and the resulting return type
on line 5.

To generate test cases that satisfy these constraints, one
can write custom generators or refine new grammars to en-
code these constraints. However, this requires hand-coding
the constraints of each operation defined in a dialect, and
the cost is exacerbated for rapidly evolving projects—those
that use MLIR—because the specialized grammar or custom
generators will need to be updated as new dialect operations
are added, modified, or removed.

In this paper, we propose to automatically synthesize custom
mutators. Existing test cases of MLIR dialects demonstrate
how the dialect-specific operations should be invoked. Our key
insight is that these test cases implicitly encode the various
constraints of MLIR dialects, e.g., def-use, operations’ type
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Fig. 1. A flowchart of SYNTHFUZZ’s fuzzing loop

signature, and therefore, matching the code context would
lead to a higher chance of successfully generating valid test
cases. For example, the donor test case in Listing [2| and the
recipient test case in Listing |3| exhibit a structural similarity.
SYNTHFUZZ is able to identify such similarity and synthesize
a parameterized mutation that captures the context of the
operation comb.add in the donor test case. Applying the
mutation, SYNTHFUZZ produces a valid test case as shown in
Listing [5] which respects the dialect-specific constraints, and
hence is able to exercise deeper logic in the MLIR compiler.

III. APPROACH

Figure |1| describes SYNTHFUZZ’s fuzzing loop. Each itera-
tion synthesizes a custom mutation from a donor test case and
transplants it onto a recipient test case. In the SYNTH step
(Section[[II-A), SYNTHFUZZ selects a donor test case and a re-
cipient test case. From the donor test case, SYNTHFUZZ infers
a parameterized mutation with a parameterized context. In the
LOCATE step (Section [[II-B), as the mutations are context-
dependent, SYNTHFUZZ matches the parametrerized context
against the recipient test case to identify a suitable location for
the mutation. The MATCH step (Section then creates a
variable binding of parameters to concrete program fragments
from the matching context. Finally, INSTANTIATE (Section
III-D) concretizes the mutation and transplants it into the
recipient test case.

A. SYNTH: Synthesizing a parameterized mutation.

Parameterized mutations are synthesized from seed test case
which we will refer to as donor test cases. Given a donor test
case like Listing [ SYNTHFUZZ parses the test case using a
generic MLIR grammar to produce a donor parse tree. From
the donor parse tree, SYNTHFUZZ constructs custom mutator
comprising of an parameterized mutation and a parameterized
context as shown in Figure [2|

The parameterized mutation is a parameterized partial parse-
tree that contains the content to be inserted by SYNTHFUZZ
when mutating a test case. The parameterized context is
similarly a partial parse tree that captures the conditions in
which parameterized mutation may be instantiated.

SYNTH uniformly randomly selects a sub-tree in the
donor’s parse tree as the parameterized mutation to be trans-
planted. The parameterized context and parameterized muta-

1"hw.module" () ({

2"bb0 (%arg0: i2):

3 %e¢l = "hw.constant" () {value = -2 : i2} : () -> i2
4 ’%ol = "comb.add" (%arg0, %cl) (12, i2) -> i2

5 "hw.output" (%01) (i2) -> ()

61})

Listing 6. In this donor test case P;, the boxed area represents the source
of a grafted, parameterized mutation. The rest unboxed area represents the
potential source of a corresponding, parametrized context.

Parameterized Context "hw.module" {...}

[‘bbo(%argo: i2) ][%c1="hn.constant"() E ()—>12] [ "hw . output” (%01) : (12) ->() ]
v
12 [%ec1 i‘ %01 [i2)
v
[4] (5] % Bl e
v

I%ol:”comb.add"(%argo, scl): (12, i2)->i2 ]

v ¥

%01 (sargo) [sc1)

i [A] % iz (i2] [12]
¥

Fig. 2. This diagram illustrates how SYNTH decomposes the donor test
case Py shown in Listing [f] into a parameterized context and parameterized
mutation. For example, concrete symbols such $arg0, $cl, i2, and %ol
are now paramterized as placeholders such as A, B, C, and D respectively.

Parameterized Mutation

tion are extracted by bisecting the donor parse tree along at the
selected sub-tree’s root node as shown in Figure 2] The param-
eterized context encodes information such as the operations
before and after the parameterized mutation, their ordering,
the nesting of operations, and the potential locations of param-
eters. For example, as shown in Figure [2| the parameterized
context encodes the information that comb . add is preceded
by a block label bb0 and the operation hw.constant, and
succeeded by a hw.output operation. It also encodes the
nesting information that bb0, hw.constant, comb.add,
and hw.output are nested within hw.module.

Since the donor’s mutation may contain identifiers and types
that are not defined in recipient programs, a naive transplan-
tation will likely produce an invalid input that violates def-
use and type consistency constraints. SYNTH uses a heuristic
that common sub-strings in the input can be indicators of
context-dependent constraints such as def-use and type con-
sistency. SYNTH parameterizes the context and mutation by
introducing a parameter for each common sub-string between
the context and the mutation. In Figure [2] SYNTH creates 4
parameters: A, B, C, and D with an initial binding of $arg0,
$cl, 12, and %ol as illustrated with matching colors in
Figure [J] Later, each parameter can be concretized with a
suitable sub-string from the context of the recipient.

B. LOCATE: Selecting mutation location depending on the
target context

SYNTHFUZZ looks for locations where the parametrerized
context matches the recipient input to increase the likelihood
of satisfying the constraints. Three factors are considered:



the number of matching ancestor nodes k, left-sibling nodes
l, and right-sibling nodes r. Matching %k ancestors with the
parameterized context ensures that the mutation is made in a
similar level of nesting. This prevents situations such as im-
properly nested functions, or operations being inserted outside
of functions. Matching [ left-siblings and r right-siblings with
the parameterized context ensures that if an mutation pattern
is of an operation, then the operation will likely be inserted in
a location where the required number of operand values (left)
is available, and the results of the parameterized mutation will
be used accordingly (right).

Algorithm 1 LOCATE: Finding a valid mutate location by

matching k-ancestors and [(r) siblings.

Input:
e context < the parametrized context
o recipient < the recipient parse tree

Output:

o mutateLocation <— a parse-tree node in the recipient

test case that represents a valid mutate location

. for candidate < walk(recipient) do

—_

2: isMatch < true

3: > The following loop jointly assigns getNext and m
4 for (getNext,m) € { (getParent, k),

5 (getLeft, 1),

6: (getRight, r)}

7: do

8: pNode < context

9: cNode < candidate

10: for ¢ € [0,m) do

11: if pName(pNode) # pName(cNode) then
12: isMatch «+ false

13: break

14: pNode + getNext(pNode)

15: c¢Node + getNext(cNode)

16: if isMatch then

17: ‘ yield candidate

Algorithm [I] describes how the mutate location is selected.
The values k, [, and r are global hyper-parameters that are set
by the user. In our evaluation, we set k,[,r = 4.

On line 1, the walk function returns each node of the
recipient parse tree in breadth-first order. Each node considered
a candidate mutate location.

On line 4 of the algorithm, getNext and m are jointly
assigned so that when getNext < getParent then m + k and
when getNext < getLeft then m < [. The getParent(n),
getLeft(n), and getRight(n) functions on line 3 take a parse
tree node n and return the parent node of n, the node that
precedes n at the same depth, or the node that succeeds n at
the same depth respectively. In Listing [/| calling getParent,
getLeft, and getRight on Location A returns the enclosing

1
2
3
4
5
6
7

8
9

block node (representing lines 2-7), the prior operation node
(representing line 2), and the next operation node (representing
line 5) respectively.

On line 11 of the algorithm, the pName(n) function re-
turns the name of the production rule that corresponds with
the parse-tree node n. For example, calling pName on the
hw.bitcast operation of Listing [/| returns the rule name
“operation”.

Listings [/| and Figure [3| show an example of the k-ancestor,
[-sibling, and r-sibling matching process. LOCATE compares
the parameterized context to each candidate location in the
recipient test case. Location A is a valid location since it has an
operation as a left and right sibling (lines 3 and 5 respectively),
and is nested within a block (line 2) and within a operation
(line 1). Location B is invalid because it is at the end of the
block and thus has no right-siblings. Location C is invalid
because it has no right-siblings and its ancestor node is an
operation, whereas the parameterized context requires the first
ancestor to be a block.

Apart from replacing existing parse-tree nodes, SYNTH-
Fuzz is also able to transplant content by inserting them in
locations corresponding to quantifiers in production rules of
the grammar. Such quantifiers indicate that a varying length
collection of terms can be generated. SYNTHFUZZ locates
parse-tree nodes that correspond to production rule and inserts
a new node corresponding to the quantified term. SYNTHFUZZ
can then apply the same k-ancestor, [(r)-sibling matching
logic described earlier to decide if the newly inserted node is
a suitable mutation location. This grants SYNTHFUZZ greater
flexibility, increasing the diversity of inputs generated.

"hw.module" () ({

“bb0 (%arg0: 14, Sargl: 'hw.array<2xi2>):
%0 = "hw.bitcast" ($argl) ('hw.array<2xi2>)
Location A
"hw.output" (%$1)
Location B

}

Location C

)

-> i4

(i4) -> ()

Listing 7. A set of potential insertion locations are marked as A, B, and C
in the recipient test case.

~

Parameterized Context Recipient Parse Tree

Line 1 - {operation| "hw.module" () ({

Line 2

1=1: operation Line 3

Edit Pattern Root Line 4

[r=1: operation‘ Line 5

Line 6

Line 8

L-Location C x

J

Fig. 3. Tllustration of k-ancestor and I(r)-sibling context matching. Location
B is invalid due to not matching the postfix context with » = 1. Location C
is invalid due to not matching the k-ancestor path context as the parent node
is an operation, not a block with k = 2.
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Fig. 4. An illustration of the MATCH step. When the recipient test case in Listing [§] is matched with the parameterized context shown in this figure, the
parameters A, B, C, and D are bound to the concrete values $arg0, $0, $14, and %1 respectively.

C. MATCH.: Matching and extracting parameters

Once an mutate location is selected in the LOCATE step,
MATCH performs a joint breadth-first traversal of the param-
eterized context tree and the parse-tree of the recipient test
case to compute parameter assignments. The traversal starts
at the mutate location of the recipient tree and the root of the

parameterized mutation within the parameterized context. An RQ1:

annotated example of this traversal is illustrated in Figure

A node pair is considered a match if the parse tree node RQ2:

name is the same between the parametrerized context and

recipient parse tree. This allows parse tree nodes of different RQ3:

concrete operations to match. For example, node pair 2.2 in
Figure 4| is considered a match even though the operation
names (hw.constant and hw.bitcast), types (12 and
i4), and values (%c1 and %0) differ.

When a parameter node is encountered during the traversal
of the parametrerized context, SYNTHFUZZ assigns it to the
corresponding sub-tree in the traversal of the parse tree of the
recipient input. In Figure [4] the parameters A, B, C, and D
from the parametrerized context are assigned to the matching
nodes for $arg0, %0, 14, and %1 in the recipient parse
tree. When there are duplicate assignments as in parameter
C, MATCH will uniformly randomly select one of the as-
signments to use.

D. INSTANTIATE: Concretize the mutation

1"hw.module" () ({

2"bb0 (%arg0: i4, %0 = "hw.bitcast" (%argl) ('hw.array<2xi2>)
-> i4
3 %1 = "comb.add" (%arg0, %0) (i4, i4) > i4

4 "hw.output" (%1)
51

(i4) —> ()

RQ4:

For example, a mutation may lead to test cases that redefine
the same variable twice or use an undefined variable. Such test
cases are invalid in any MLIR program, regardless of dialect.

IV. EVALUATION

In our study, we examine the following research questions:

How effective is SYNTHFUZZ in terms of increasing code
coverage?

What is the diversity of test cases generated by SYNTH-
Fuzz in terms of dialect pair coverage?

Does context-based positioning of mutation locations
improve the likelihood of a valid mutation?

Does parameterization of the mutation content improve
the likelihood of a valid mutation?

A. Experiment Design

TABLE I
BENCHMARK PROGRAMS

Subject Description # of Seed # of
Program Test Cases Dialects
mlir-opt Includes the core and 1,692 42
(P1) contributed MLIR dialects

part of the LLVM project.
onnx-mlir- An MLIR-based ONNX 1,885 2
opt (P2) compiler.
triton-opt An MLIR-based compiler 29 4
(P3) for the Triton language.
circt-opt An MLIR-based compiler 377 26
(P4) for electronic design

automation (EDA).

Listing 8. The recipient test case where the parametrerized mutation is
inserted and concretized. The parametrerized mutation is boxed on line 4.
By instantiating the pattern in this new context, the following substitutions
are made: A<%arg0, B«%0, C<%14, and D«%1.

In the INSTANTIATE step, SYNTHFUZZ adapts the pa-
rameterized mutation to the recipient test case by substituting
in the parameter assignments extracted during the MATCH
step.

Listing [8| shows how the parametrerized mutation is instan-
tiated. Here, parameters A, B, C, and D corresponding the
return value, two operands, and the types are assigned the
values $arg0, $0, $i4, and %1 respectively.

SYNTHFUZZ also checks that the mutated input conforms to
generic MLIR constraints before passing them to the compiler.

It is costly to hand-write custom test generators for MLIR-opt and CIRCT
projects due to the large number of MLIR dialects they define. MLIRSmith
supports only 13 dialects currently.

In our evaluation of SYNTHFUZzZ, we select four active
projects that use the MLIR compiler infrastructure, shown
in Table Il Each project provides a utility executable named
<project>-opt which is used to independently invoke and
test one or more compiler passes. To fuzz each project, we
invoke the <project>-opt executable with a pipeline of P
randomly selected compiler passes on each test case generated
by a fuzzer. In practice, we set P = 5 since most unit test
cases written by developers only invoke one to three compiler
passes at a time.
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Fig. 5. Branch coverage for each subject program. SYNTHFUZZ outperforms a grammar-based fuzzer by up to 1.51x and improves coverage by up to 1.47x

compared to existing seed tests.

For ONNX-MLIR, LLVM, and CIRCT, we select compiler
passes based on the dialects present, identified by the operator
names in the test case. For example, if a test case contains
the arith.maxsi operation, then our test driver will select
a compiler pass that operates on the arith dialect such
as the arith—-to-11vm pass which lowers certain arith
operations to the 11vm dialect. As Triton’s compiler passes
do not follow this naming scheme and this heuristic cannot be
used, we select compiler passes randomly from all available
passes.

1) Locating Seed Test Cases: We build a corpus of seed test
cases for each subject program by locating and splitting ”.mlir”
files in each subject program’s respective project repositories
for a total of 1,692, 1,885, 26, and 377 seed test cases
respectively. Then we convert each test case into its generic
MLIR syntax form to remove syntactic sugar and enable it to
be parsed using a single generic MLIR grammar for all subject
programs.

2) Evaluation Measures: To evaluate and compare the fault
detection potential of SYNTHFUZZ, we use the following
measures:

« Branch coverage is computed as the number of covered
branches as reported by LLVM’s SanitizerCoverage code
coverage instrumentation.

« Dialect coverage is a measure of the input diversity
used in the evaluation of prior work, MLIRSmith [9].
This notion can be further divided into control dependent
dialect coverage and data dependent dialect coverage.
The idea is to use multiple dialects in tandem, and
to ensure that distinct dialects are used together in a
meaningful manner by being connected through data or
control dependencies.

— Control dialect coverage is computed by counting the
number of unique dialect pairs whose operations are
linked by a control dependency. For example, Listing 9]
contains two control dependent dialect pairs, (comb,
sv) and (hw, sv),since hw.constant (line 2) and
comb.icmp (line 3) are nested within sv.if (line
1) forming a control dependence.

Data dialect coverage is computed by counting the

number of unique dialect pairs whose operations are

linked by a data dependency. For example, Listing 9]

contains one data dependent dialect pair, (scf, hw)

since comb.icmp (line 3) takes the output $18 of

hw.constant (line 2), thus forming a data depen-
dence.

1 "sv.if" (%18 = "hw.constant" () 10 :
i32
{7/ ...

{value = i32} @ () —>

2},

Listing 9. In this example, hw.constant (line 3) and comb.icmp (line
4) have a control dependence on sv.if (line 2), forming two dependent
dialect pairs (comb, sv) and (hw, sv). comb.icmp (line 4) also has a data
dependence on hw.constant (line 3) forming a data dependent dialect pair
(scf, hw).

3) Baselines: We evaluate SYNTHFUZZ against Grammar-
inator [6], MLIRSmith [9], and NeuRI [17]. Grammarinator
represents a baseline grammar-based fuzzer, while MLIRSmith
and NeuRI represent the state of the art custom generators for
MLIR and deep learning models.

Grammarinator converts ANTLR4 grammar definitions into
generation models that can be used to generate, mutate, and
recombine test cases following the grammar. In our experi-
ments, we provide both SYNTHFUZZ and Grammarinator with
the same seed corpus for a fair comparison.

MLIRSmith is a custom generator-based fuzzer that targets
MLIR’s core dialects. MLIRSmith was chosen for comparison
as it specializes in generating valid random MLIR programs,
but requires users to implement custom generators for each
new dialect. As of March 2024, MLIRSmith supports 13 out
of 42 available core dialects [13]. NeuRI is a DL model-level
fuzzer that generates computation graphs based on DL-model
specific, API-level constraints. NeuRI supports parameteriza-
tion only in the form of tensor shape constraints and shape
propagation rules for machine learning models. While NeuRI
does not directly target MLIR, the onnx-mlir tool can be
used to lower the models generated by NeuRI to the core
MLIR dialects for P1 (mlir-opt) or to the onnx dialect for P2
(onnx-mlir-opt).

We also compare SYNTHFUZZ against running existing test
cases (i.e., the seeds for SYNTHFUZZ and Grammarinator).
By measuring the branch and dialect coverage of the seed test
cases alone, we separate the contributions of the increased
coverage afforded by the fuzzers’ mutation capability from
the innate capability of the seed corpus they draw from.

4) Experimental Environment: All experiments are per-
formed on an AMD Ryzen 2950X 16-Core Processor with
32 GB of RAM running on Ubuntu 22.04.



TABLE II
DIALECT COVERAGE FOR EACH SUBJECT PROGRAM.

Subject P1 (mlir-opt) P2 (onnx-mlir-opt) P3 (triton-opt) P4 (circt-opt)

dialects control data | dialects control data | dialects control data | dialects control data
SynthFuzz \ 27 129 100 \ 9 23 24 \ 7 15 4 \ 20 86 40
Seed tests as is 28 68 56 9 17 11 7 12 4 23 57 40
Grammarinator 27 63 49 8 15 8 7 12 4 17 43 27
MLIRSmith 13 62 65 4 6 3 3 3 1 6 15 10
NeuRI 7 17 12 6 9 10 3 3 2 6 14 10

Seed test cases refers to each subject’s respective test suite. SYNTHFUZZ achieves greater dialect coverage compared to baseline fuzzers.

B. Branch Coverage

Figure [5] shows the branch coverage of SYNTHFUZZ and
the baseline fuzzers on the four subject programs. Averag-
ing across all subject programs, SYNTHFUZZ outperforms
Grammarinator, MLIRSmith, and NeurRI by 1.22x, 29.78 %,
17.47 xrespectively.

On P1 (mlir-opt) SYNTHFUZZ outperforms Grammarinator,
MLIRSmith, and NeuRI by 1.51x, 1.99%, and 9.06 x respec-
tively. On P4 (mlir-opt) SYNTHFUZZ outperforms Grammari-
nator, MLIRSmith, and NeuRI by 1.21x, 43.25x, and 34.50x
respectively.

On P2 (onnx-mlir-opt), SYNTHFUZZ is similar to NeuRlI,
with less than 1% difference in coverage. This demonstrates
that SYNTHFUZZ can match the performance of a domain-
specific fuzzer, NeuRlI, by bootstrapping parameterized muta-
tions from existing test cases without hand-coding any custom
generator logic. NeuRI implements custom test generator logic
for ONNX models (computation graphs for DL models).

On P3 (triton-opt), Grammarinator outperforms SYNTH-
Fuzz in terms of branch coverage by 1.04x. P3 only provides
36 test cases in its repository that SYNTHFUZZ and Grammar-
inator could use as seeds. Since SYNTHFUZZ relies upon seed
test cases to synthesize its custom mutations, the low number
of seeds constrained SYNTHFUZZ’s ability to generate diverse
test cases.

An example bug found. SYNTHFUZzZZ discovered a
new bug in CIRCT (Issue #6799), which has been con-
firmed and fixed by the developers. This bug occurs when
the ——convert-1lhd-to-1lvm pass is invoked on an
1lhd.proc operation with a block without a terminator
operation, such as 11hd.wait or 11hd.halt. The CIRCT
compiler incorrectly assumes that the 11hd.proc operation
always contains a terminator, and crashes due to the violation
of this dialect-specific requirement. The CIRCT verifier should
have detected this absence of a terminator and rejected the
11hd.proc operation.

module {llhd.proc Qempty () -> () { }}

Listing 10. CIRCT crashes on this minimized input due to not checking for a
terminator within 11hd.proc. Reported on Mar 7, 2024, the bug was fixed
immediately on Mar 8.

SYNTHFUZZ demonstrates up to 1.51x improvement
on branch coverage over most baseline fuzzers without
requiring any hand-coding of custom generator logic.

C. Dialect Diversity

Table |lI| summarizes the performance of SYNTHFUZZ as
compared to Grammarinator, MLIRSmith and NeuRI in terms
of dialect control/data pair coverage (described in Section
[[V-A2). SynthFuzz outperforms Grammarinator, MLIRSmith
and NeuRI by 1.70x and 4.16x and 5.32x in terms of control
dependent dialect pairs and 1.88x, 4.38x, 4.18x in terms of
data dependent dialect pairs.

To validate whether SYNTHFUZZ discovers new dialect
pairs not covered by the seed corpus, we also measure the
dialect pair coverage of the seed corpus as a baseline. For
each subject and fuzzer combination, we report the number
of unique dialects and the number of unique control and data
dialect pairs. Across all subjects, SYNTHFUZZ covers 99 new
control-dependent and 57 new data-dependent dialect pairs that
did not already exist in the seed corpus.

1"func.func" () <{function_type =
sym_name "main"}> ({

(i1, i32, 1i32) -> 132,

2"bb0 (%arg0: il, %argl: i32, %arg2: 1i32):

3 %0 = "arith.addi" (%argl, %arg2) <{overflowFlags =
#arith.overflow<none>}> : (132, 132) -> 132

4 %1 = "arith.shli" (%0, %argl) <{overflowFlags =
#arith.overflow<none>}> : (i32, 1i32) -> i32

5 %6 = "comb.icmp" (%1, %1) <predicate = 1 : i64> : (i32,
i32) —> il

6 %2 = "arith.subi" (%1, %0) <{overflowFlags =
#arith.overflow<none>}> : (i32, 1i32) -> 132

7 %3 = "arith.select" (%arg0, %3, %0) (i1, i32, 1i32) -> 132

g "func.return" (%4) (132) —>

9}) 0 > 0

0

Listing 11. A test case generated by SYNTHFUZZ that was not generated
by any baselines. SYNTHFUZZ inserts the underlined line 5 and substitutes
in the operand %1 and type 132, satisfying the required def-use and type
consistency constraints. This test case achieves a new dialect pair coverage,
(comb, arith) by introducing the comb.icmp operator.

Listing [TT] shows an example test case that can be generated
by SYNTHFUZZ, but cannot be generated by the baselines. The
comp dialect is not supported by MLIRSmith. MLIRSmith
currently implements test generator logic for 13 dialects only,
as it takes 447 lines of code on average to support each
dialect. Grammarinator’s naive recombination fails to satisfy
def-use and type consistency constraints by inserting line
5as%6 = "comb.icmp" (%5, %4) <predicate 0

164> (12, 12) —-> 11 , which references an un-



defined variable %5 and uses an incorrect type i2 for vari-
able %4. This is because Grammarinator’s recombination is
context-unaware and is not concretized to fit the target inser-
tion context.

While Grammarinator takes the same set of seed tests as
SYNTHFUZZ, it achieves lower dialect diversity than SYN-
THFUZZ or the seed tests alone, because Grammarinator
alternates between generation, mutation, and recombination
modes. Approximately, one third of its time is spent on the
pure generation mode that does not use seed test cases.

SYNTHFUZZ achieves greater dialect diversity, com-
pared to other baseline fuzzers: average 1.50x improve-
ment in terms of control-dependent dialect pairs and
average 1.43x in data-dependent dialect pairs.

D. IRQ3:| Context-based Positioning of Mutation

SYNTHFUZZ selects an appropriate insertion location to
inject a parameterized mutation by matching the mutation’s pa-
rameterized context against the target context of the recipient
test case. To test the individual effect of the context matching
requirement for a parameterized mutation, we vary k from
0, 2, and 4 when matching a k-ancestor path. Similarly, we
vary [ from 0, 2 and 4, when matching a [-sibling prefix [,
and we vary r from 0, 2, and 4 when matching a r-sibling
postfix. Each trial consists of 10,000 test cases generated by
SYNTHFUZZ for P1 (mlir-opt).

As shown in Table setting each parameter k, [, and r to
4 improves the number of valid test cases by 1.11x, 1.07x,
and 1.03x respectively. This indicates that using more context
information increases the chance of finding an appropriate
location for injecting a grafted mutation, thus increasing the
portion of valid test cases. A test case is considered valid, if
feeding the generated input to the target program returns zero,
indicating a success.

Setting k£ = 4 decreases dialect pair coverage by 10%. This
may indicate that a very restrictive requirement for matching
context by increasing k can negatively affect the input diversity
of generated tests. Additional experiments with k greater than
4 had minimal effect on the number of valid tests, as most
seed tests have an operation nesting depth less than 4.

Increasing ancestor-path, prefix, and postfix require-
ments for context positioning improves the proportion
of valid test cases.

E. Effect of Parameterization

SYNTHFUZZ has capability to parameterize and concretize
a variable name, an argument’s type, and an operation’s
attribute (e.g. "hw.constant" () {value = -2 i2}
has a value attribute —2 with the type 12) to fit the target
context where a grafted mutation is inserted into. The goal
of parameterization is to preserve context-sensitive constraints
such as the def-use constraint (i.e., a value must be defined
before use) and the type-constraint (i.e., the type annotation
of a value must be consistent throughout its scope).

TABLE III
AVERAGE BRANCH COVERAGE, DIALECT PAIR COVERAGE, AND VALID
TEST CASES.

Parameter \ Branch Cov.  Dialect Pair Cov.  Valid Test Cases

k=0 24,764 100 677
k=2 24,765 100 698
k=4 24,987 90 749
=0 25,055 94 684
=2 24,749 97 710
=4 24,713 98 729
r=0 24,657 97 706
r=2 24,901 95 687
r=4 24,958 98 731

Increasing k, [, and 7 to 4 increases the number of valid test cases by
1.11x, 1.07x, and 1.03x

TABLE IV
VALIDITY OF TEST CASES GENERATED BY SYNTHFUZZ.

Violation Type W/ Param.  W/O Param.

Invalid  Dialect Specific ~ Count 4,259 2,450
Percent 38.1% 23.7%

General MLIR Count 1,777 3,120

Percent 15.9% 30.2%

Invalid Options Count 4,356 4,052

Percent 39.0% 39.2%

Valid Valid Count 772 702
Percent 6.9% 6.8%

Parameterization reduces General MLIR violations from 30.2% to 15.9%.

We create a downgraded version of SYNTHFUZZ by turning
off its parameterization and concretization capability denoted
as W/O Param in Tablem We generate 10,000 test cases with
each version and categorize the test cases based on the error
message returned by the target program.

Parameterization increases the proportion of valid test cases
by 0.01% only. However, when we further inspect the under-
lying reasons for invalid test cases, we find that SYNTHFUZZ
increases the chance of adhering to the general MLIR con-
straints.

With parameterization, 772 tests are valid with the return
value zero indicating success, when the tests are fed to the
target program. We then categorize the remaining 9228 invalid
test cases into three categories based on the type of violation
reported by the target program.

« Dialect Specific: 4,259 test cases generated with
parameterization are rejected by the target pro-
gram with a dialect-specific error message such as:
tosa.logical_or op result #0 must be tensor of 1-
bit signless integer values, tosa.floor op requires a
single operand, etc.

o General MLIR: 1,777 test cases generated with pa-
rameterization are rejected by the target program with
a general MLIR error message such as: an undefined
symbol, use of undeclared SSA, redefinition of SSA
value, etc.




« Invalid Options: 4,356 test cases generated with param-
eterization are rejected with an error message, “no such
option exists.” This occurs due to the test driver’s random
pass selection which may pair an option with a pass that
does not accept said option.

With parameterization enabled, SYNTHFUZZ generates
1,343 fewer test cases that violate general MLIR constraints
out of 10,000 tests. The proportion of Invalid Options category
is approximately the same with and without parameterization.
However, the proportion of General MLIR invalidity increases
from 15.9% to 30.2% when disabling parameterization. This
is due to the fact that without parameterization, the content of
parameterized mutation is not concretized to fit the recipient
context. Thus it is more likely to violate general MLIR
constraints such as def-use and type consistency.

Listing shows an example of a test case generated by
SYNTHFUZZ which nests the comb . i cmp operation within a
func. func operation. SYNTHFUZZ parameterizes the input
arguments and their types, thus passing the general MLIR
constraints such as def-use and type consistency.

SYNTHFUZZ reduces the proportion of general MLIR
constraint violating tests from 30.2% to 15.9% by
parameterizing the injected mutation’s content.

V. THREATS TO VALIDITY

1) Limited Fuzzing Time: In our experiments on code and
dialect coverage, we limit the fuzzing budget to 4 hours for
each fuzzer. While unlikely, continuing the fuzzing campaign
for longer may reveal different trends than our evaluation
showed.

2) Choice of Subject Programs: The results of our eval-
uation is influenced by our choice of subject programs. To
minimize bias, we selected four MLIR projects to represent
a wide variety domains among 40 possible public MLIR
projects. P1 (the LLVM/MLIR project) was chosen as it con-
tains the original core MLIR dialects that MLIRSmith defines
its custom generators for. P2 is a deep-learning compiler for
ONNX models that NeuRI can directly fuzz. P3 is a compiler
for the Triton language. P4 (CIRCT) is a novel application of
MLIR to the domain of hardware design and synthesis.

VI. RELATED WORK

Grammar-based fuzzing. Grammar-based fuzzers, e.g. Gram-
marinator (6], Nautilus [[14)], LangFuzz [18], are guided by a
grammar. PolyGlot [19] transforms the high-level languages
into a general IR with the BNF grammar given by the users
and uses constraint mutators to preserve the grammar. Our
experiments found that 97% of Grammarinator’s generated
inputs fail to satisfy semantic constraints, e.g., type consis-
tency, or more complex relationships over shapes and types.
SYNTHFUZZ, instead, automatically encodes these semantic
constraints from examples.

Custom generator- and mutation-based fuzzers. Generator-
based fuzzers [20], [21]] require generators, written by human

developers in an imperative language, to produce valid inputs.
CSmith [7] generates random C programs for fuzzing C
compilers. Related to our target subject of MLIR, MLIR-
Smith [9]] generates random MLIR programs. Unlike grammar-
based fuzzers, they can encode constraints that are difficult
to express in grammar. Despite the additional human effort
required, MLIRSmith underperforms SYNTHFUZZ as it is
unable to satisfy the constraints of invoking each operator of
a new dialect. SYNTHFUZZ does not require the definition
of domain-specific custom mutators to successfully invoke
operators from novel dialects.

Several studies have proposed fuzzers targeted at specific
domains. Apart from fuzzing MLIR dialects, BigFuzz [22] was
proposed for Apache Spark programs, Qdiff [23] for quantum
programs, HeteroFuzz [24] for heterogeneous applications.
GrayC [235]] designed custom mutators for fuzzing C programs.
NNSmith [8] designed a generator for computation graphs to
fuzz deep learning compilers. To effectively generate inputs,
these fuzzers employ custom mutators. These mutators are
hand-crafted and manually implemented for each domain. The
amount of work needed to develop a fuzzer for each domain
highlights the need for approaches capable of automatically
synthesizing custom mutators.

The approaches above do not allow for mutations that
are parameterized. The closest work to SYNTHFUZZ is
NeuRI [17], which infers constraints over tensor shapes to
generate deep learning (DL) models for fuzzing DL compilers.
However, because it is specific to DL compilers and limited
in the types of constraints inferred, NeuRI did not achieve a
high coverage in our experiments.

Learning constraints. Other techniques check that inputs
satisfy constraints during fuzzing. Dewey et al. [26] uses
Constraint Logic Programming to specify constraints test
generation. ISLA [16] allows semantic constraints to be ap-
plied during grammar-based fuzzing. These techniques require
significant human effort, requiring human-written constraints
by hand [26] or templates [[16].

Learning code patterns and transformations. Code pattern
inference techniques have been adopted in studies for code
search [27], mining rules for detecting bugs [28], and code
quality [29]. Other techniques synthesize patches, or the
transformation of one program to a subsequent version of the
program. These techniques [10], [30[, [12], [31], [11], [32],
[33] learn to transform programs from examples. They identify
parameterized patches given examples of the transformation,
using the observation that code elements reoccurring across
multiple patches are usually essential. SYNTHFUZZ draws
inspiration from these techniques by learning parameterized
mutations from examples. While these techniques aim to
mutate a buggy program into a single, correct program, SYN-
THFUZZ aims to generate a diversity of mutants for fuzzing.

VII. CONCLUSION

We present SYNTHFUZZ, a novel approach to compiler
fuzzing that address the challenges in testing extensible com-
pilers. SYNTHFUZZ is able to synthesize custom mutations



for new MLIR dialects. In contrast, domain-specific fuzzers
require months of development, which is impractical given the
rapid evolution of target languages and representations. SYN-
THFUZZ synthesizes custom parameterized, context-dependent
mutations from the test cases of each dialect compiler, ex-
ploiting the observation that the dialect-specific constraints are
implicitly encoded in these tests. SYNTHFUZZ can cover 60
dialects that cannot be covered by existing fuzzers, and out-
performs existing grammar-based and domain-specific fuzzers
in terms of branch coverage by 1.16x and dialect coverage
by 1.51x.

A replication package has been made available at https://
figshare.com/s/b96eada64f6c6alecel2,
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