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We analyze the entropy production in run-and-tumble models. After presenting the general for-
malism in the framework of the Fokker-Planck equations in one space dimension, we derive some
known exact results in simple physical situations (free run-and-tumble particles and harmonic con-
finement). We then extend the calculation to the case of anisotropic motion (different speeds and
tumbling rates for right and left oriented particles), obtaining exact expressions of the entropy pro-
duction rate. We conclude by discussing the general case of heterogeneous run-and-tumble motion
described by space-dependent parameters and extending the analysis to the case of d-dimensional
motions.

I. INTRODUCTION

Active matter is a recently established research field in
statistical physics [1]. It includes systems made of (typ-
ically) many particles endowed with self-propulsion, the
most prominent examples coming from biology, e.g. mi-
croswimmers or motile cells at the micro-scale [2] or birds
and pedestrians at the macro-scale [3], but encompasses
also motile artificial particles at all scales [4]. Motility -
which is a conversion of energy from some fuel/reservoir
into motion of each particle, is a fascinating ingredient for
theoretical physics, as it implies a source of time-reversal
symmetry breaking in the bulk of the systems [5–8], dif-
ferent from the usual forcing coming from the boundaries
which occurs in older examples of out-of-equilibrium sys-
tems such as fluids under the action of externally im-
posed gradients (e.g. heat flow, convection, turbulence,
etc.) [9, 10].

The interest of statistical physics for those systems is
both at the level of a single active particle and at the level
of large populations of active particles, since in both cases
the lack of thermodynamic equilibrium triggers the ap-
pearance of unexpected phenomena [11–13]. A single self-
propelling particle hides a complex arrangement of sev-
eral internal degrees of freedom such as molecular motors
actuating flagella, as in bacteria or sperms: it, therefore,
may require non-trivial stochastic modeling, in contrast
with passive Brownian particles [14]. A population of
motile particles may exhibit collective behaviors that are
not allowed when the motility ingredient is removed, typ-
ical examples being the polarisation transition of aligning
active particles [15] and the motility-induced phase sep-
aration for purely repulsive active particles [16, 17].

One of the questions concerning the non-equilibrium
statistical physics of the single active particle is how
to characterize the dissipation occurring because of the
time-reversal symmetry breaking induced by the self-
propulsion mechanism [18]. A relevant approach to this
problem is given by stochastic thermodynamics, which
equips the theory of stochastic processes with a meso-
scopic (fluctuating) definition of work, heat, and entropy
production, including a fluctuating version of the sec-

ond principle of thermodynamics [19–21]. The applica-
tion of stochastic thermodynamics to single active par-
ticles has been developed in the recent years, starting
from models with continuous noise [22–26] such as Ac-
tive Ornstein-Uhlenbeck Particles (AOUP) and Active
Brownian Particles (ABP), and only more recently it has
been addressed also for time-discontinuous models such
as Run-and-Tumble particles (RT) [27–29]. Such a model
is considered a better description of certain biophysical
systems, for instance, the E. coli bacteria which has a
re-orientation dynamics dominated by sudden changes
rather than rotational diffusion [30, 31]. The less smooth
mathematical structure of the model makes the problem
interesting: for instance, ABP and AOUP have a finite
entropy production even when traslational thermal diffu-
sion - often considered negligible in real applications - is
sent to zero in the model. On the contrary, a RT particle -
under the influence of an external potential - in the limit
of zero temperature becomes strongly time-irreversible,
meaning that the time-reversed of an observable trajec-
tory in general is not observable, corresponding to an in-
finite entropy production [32]. The divergence is healed
when a finite diffusivity D > 0 is considered: typically -
as seen also in this paper - the steady state entropy pro-
duction diverges for D → 0. Morally this corresponds
to the fact that a model for active particles may have a
finite rate for energy dissipation Ẇ even at zero temper-
ature T = 0 and therefore it is not a paradox to find a
divergence for the entropy production rate, expected on
general grounds to be Ẇ/T . A closer look at the prob-
lem, however, suggests that in many cases - particularly
in biology - all energy conversion processes occurring in-
side an active particle are triggered by thermal processes
(e.g. the dynamics of motor proteins is fueled by ATP
molecules but the energy barriers among the protein con-
figurations cannot be overcome at T = 0) and therefore

one could expect Ẇ ∼ T so that one might obtain a fi-
nite entropy production rate in the limit T → 0. This
problem is however not the scope of this paper and the
question will be addressed in future research. The en-
tropy production for run-and-tumble particles confined
to move into a one-dimensional box has been the subject
of [27], following the recipe given in [33]. Here we revisit
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this problem with a more straightforward derivation.

The structure of the paper is the following. In Section
II, we review the minimal ingredients for the definition
of entropy production of Markov processes described by
a Fokker-Planck equation. In Section III, we discuss en-
tropy production for RT particles in 1D, starting with
some known results re-derived more straightforwardly,
i.e. free RT particles and then RT particles in a har-
monic potential. In Section IV, we give the expression for
anisotropic models, i.e. RT particles in 1D with different
tumbling rates and/or different self-propulsion velocities
in the two directions of motion. In Section V, we give
a more general treatment which includes several cases of
practical interest and in Section VI, we extend the calcu-
lation to the d-dimensional case. Section VII is devoted
to conclusions.

II. THEORETICAL SET-UP WITHIN THE
FOKKER-PLANCK EQUATION

Here we briefly recall the theoretical framework for the
computation of the entropy production rate in stochastic
processes governed by Fokker-Planck like equations [20].
Denoting with S(t) the entropy of the system at the time
t, we can decompose the rate of change of the entropy into
two terms, Π and Φ, as

Ṡ =
dS

dt
= Π− Φ , (1)

where Π is the entropy production due to irreversible
processes inside the system and Φ is the entropy flux from
the system to the environment. The entropy production
Π is non-negative while Φ can have either sign.

We consider a generic stochastic process describing a
particle moving in a one-dimensional space. The proba-
bility density function (PDF) P (x, t) to find the particle
at position x at time t obeys the following continuity
equation

∂tP (x, t) = −∂xJ(x, t) (2)

where J(x, t) is the current and ∂t and ∂x denote, re-
spectively, time and space derivative. In the case of the
Fokker-Planck equation, one has the following constitu-
tive relation linking the current to the probability

J(x, t) = [µf(x)−D∂x]P (x, t) , (3)

with D the diffusion constant, f(x) a generic space-
dependent mechanical force acting on the particle and
µ the particle mobility.

The Gibbs entropy S(t) of the distribution P (x, t) is
defined as

S(t) = −
∫

dxP (x, t) logP (x, t) , (4)

and the rate of the entropy change reads

Ṡ(t) = −
∫

dx Ṗ (x, t) [1 + logP (x, t)]

=

∫
dx ∂xJ(x, t) [1 + logP (x, t)]

= −
∫

dx J(x, t)∂x logP (x, t) , (5)

where we have used the continuity equation (2) and in-
tegration by parts assuming vanishing distributions at
boundaries. By using the relation (3), we can write

J(x, t)

DP (x, t)
=

µf(x)

D
− ∂x logP (x, t) (6)

and thus the expression for Ṡ(t) becomes

Ṡ = −
∫

dx
J(x, t)

D

[
µf(x)− J(x, t)

P (x, t)

]
. (7)

We finally obtain the following forms of the entropy rates
defined in (1)

Ṡ(t) = Π(t)− Φ(t) (8)

Π(t) =

∫
dx

J2(x, t)

DP (x, t)
(9)

Φ(t) =
µ

D

∫
dx J(x, t)f(x). (10)

As a functional of J , we immediately realize that Π(t)
is non-negative, being the integrand proportional to J2

with positive coefficients, while Φ can be either negative
or positive. Π is the entropy production rate that can be
also computed through the Kullback-Leibler divergence
between the probability of a path of the system with
respect to the time-reversal one.
In the stationary regime, we can compute the entropy

production rate Π by noting that the rate of entropy
change Ṡ must be zero

Ṡst = 0 = Πst − Φst , (11)

and thus we can compute Π through the expression for
Φ since they equals on stationary trajectories

Πst = Φst . (12)

When the Brownian particle reaches equilibrium, as, for
example, in the presence of a confining potential V (x),
the entropy production rate is zero

Πst =
µ

D

∫
dx f(x) [µf(x)−D∂x]Peq(x) = 0 , (13)

as is immediately clear considering that f(x) = −∂xV (x)
and Peq(x) ∝ e−µV (x)/D. Instead, in the case of a driven
Brownian particle, we have a finite production entropy.
Indeed, in this case, the constant force produces a drift
velocity v = µf , thus resulting in

Πst =
v2

D
, (14)

as obtained from (3), (10) and (12).
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III. RUN-AND-TUMBLE MOTION

We now calculate the entropy production in the case
of run-and-tumble motions in the presence of thermal
noise. We consider a particle that alternates sequences
of run motion and tumble events: it moves at constant
speed v in a given direction until it tumbles at rate α,
randomly choosing the new direction of motion [34, 35]
In the one-dimensional case analyzed here, there are only
two possible directions of motion, let say rigth and left
(in the last Section VI we will generalize the analysis to
higher dimensions). We assume that the particle is also
subject to a thermal noise, described by a diffusion coeffi-
cient D. We will first treat the case of a free particle and
then the motion in a confining harmonic potential. We
derive in a simple way the exact expressions of the en-
tropy production rates, without resorting to the explicit
solutions of the kinetic equations of motion, reproducing
the exact results known in the literature [27–29, 36]. Un-
like the previous section, for the sake of simplicity, here
and in the following we will omit in the reported equa-
tions the explicit dependence on the x and t variables of
the various quantities.

A. Free run-and-tumble particles

We first analyze the case of a free run-and-tumble par-
ticle. We indicate with R(x, t) the probability density
function to find the particle at position x at the time
t moving towards the right, and with L(x, t) the prob-
ability density function for the particle moving towards
the left. The coupled kinetic equations describing the
run-and-tumble motion in the presence of thermal noise
are

∂tR = D∂2
xR− v∂xR+

α

2
(L−R) (15)

∂tL = D∂2
xL+ v∂xL− α

2
(L−R) . (16)

Once we introduce the currents

JR = vR−D∂xR (17)

JL = −vL−D∂xL (18)

JLR =
α

2
(R− L) (19)

we can write the equations of motion as follows

∂tR = −∂xJR − JLR (20)

∂tL = −∂xJL + JLR . (21)

The entropy S is given by the sum of the two entropies

S = SR + SL (22)

SR = −
∫

dxR logR (23)

SL = −
∫

dxL logL . (24)

Once we performed the time derivative

Ṡ = ṠR + ṠL (25)

ṠR = −
∫

dx ∂tR (1 + logR) (26)

ṠL = −
∫

dx ∂tL (1 + logL) . (27)

Once we plug Eqs. (20) we obtain

ṠR =

∫
dx (∂xJR + JLR) (1 + logR) (28)

= −
∫

dx
JR
R

∂xR+

∫
dx JLR (1 + logR) .

and similarly

ṠL =

∫
dx (∂xJL − JLR) (1 + logL) (29)

= −
∫

dx
JL
L

∂xL−
∫

dx JLR (1 + logL) ,

having considered that distributions vanish at infinity.
Using the expressions for JR,L, we can write

∂xR

R
=

1

D

(
v − JR

R

)
(30)

∂xL

L
= − 1

D

(
v +

JL
L

)
so that, upon neglecting boundary terms, we obtain

Ṡ = Π− Φ (31)

Π =
1

D

∫
dx

(
J2
R

R
+

J2
L

L

)
+

α

2

∫
dx (R− L) log

R

L

Φ =
v

D

∫
dx (JR − JL) .

At the steady-state we get Ṡ = 0 so that Πst = Φst and
thus the entropy production rate is given by

Πst =
v

D

∫
dx (JR − JL) . (32)

Once we introduce

P ≡ R+ L , (33)

Q ≡ R− L , (34)

with
∫
dxP (x) = 1, we obtain

JR − JL = vP −D∂xQ , (35)

so that

Πst =
v2

D
. (36)

We note that the above result is the same obtained for a
driven Brownian particle. Indeed, we observe that a free
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run-and-tumble particle with diffusion can be viewed as
a drift-diffusive particle going constantly in the direc-
tion parallel to its own driving force, even if such a force
(proportional to the velocity of the particle) changes di-
rection at random times. The process of tumbling is in-
stantaneous and therefore does not add any contribution
to the entropy production.

B. Run-and-Tumble particles in harmonic potential

We now consider the case of a run-an-tumble particle
in a confining (harmonic) potential

V (x) =
k

2
x2, (37)

where k is the potential stiffness. The Fokker-Planck
equations for R and L are

∂tR = −∂xJR − JLR (38)

∂tL = −∂xJL + JLR , (39)

where

JR = (v + µf −D∂x)R (40)

JL = (−v + µf −D∂x)L (41)

JLR =
α

2
(R− L) (42)

and f(x) = −∂xV (x) = −kx is the force field . Proceed-
ing as before, we can write the entropy rate as

Ṡ = Π− Φ (43)

Π =
1

D

∫
dx

(
J2
R

R
+

J2
L

L

)
+

α

2

∫
dx (R− L) log

R

L

Φ =
v

D

∫
dx (JR − JL)−

µk

D

∫
dxx (JR + JL) .

In the steady state we have Πst = Φst and, considering
that J = JR + JL = 0, we obtain

Πst =
v

D

∫
dx (JR − JL) (44)

By noting that

JR − JL = vP − µkxQ−D∂xQ (45)

where P and Q are defined in (33)-(34), we have (con-
sidering the normalization condition and the vanishing of
the distributions at infinity)

Πst =
v

D
(v + I) (46)

where

I ≡ −µk

∫
dx xQ (47)

From (38), (39) and (42), in the stationary regime we
have

∂x (JR − JL) = −αQ , (48)

and, multiplying by the force and integrating over space,
gives

µk

∫
dxx∂x (JR − JL) = αI . (49)

Integrating by parts we obtain

αI = −µk

∫
dx (JR − JL) = −µk (v + I) (50)

and then

I = − µkv

α+ µk
(51)

Substituting in (46) we finally obtain the expression of
the entropy production rate

Πst =
v2

D

α

α+ µk
(52)

The above expression is in agreement with that reported
in [29] – see eq. (55) – and also in [36], eq. (41), where
it has been obtained using a path integral approach. We
note that for k = 0 we recover the previous expression
(36) valid for a free run-and-tumble particle. It is re-
markable that the above result has been obtained without
resorting to the exact stationary solution of the run-and-
tumble equations, which indeed in this case cannot be
written in closed form [37].

IV. ANISOTROPIC RUN-AND-TUMBLE
MOTION

We extend here the analysis of the previous section
to the case of particles performing anisotropic run-and-
tumble motion, i.e., we consider tumbling rates and
speeds which depend on the orientation of the particle,
αR ̸= αL and vR ̸= vL. These parameters are assumed
to be constant in time and space, which will allow us to
obtain exact results for the entropy production. In the
next section we will relax the spatial homogeneity condi-
tion, allowing the speeds and tumbling rates to depend
explicitly on the variable x. We treat here the case of mo-
tion in the presence of a harmonic potential V (x) = k

2x
2,

the free-case being recovered in the limit of null spring
constant, k = 0. The Fokker-Planck equations for R and
L are

∂tR = −∂xJR − JLR (53)

∂tL = −∂xJL + JLR , (54)
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where

JR = (vR + µf −D∂x)R (55)

JL = (−vL + µf −D∂x)L (56)

JLR =
1

2
(αRR− αLL) (57)

and f(x) = −∂xV (x) = −kx is the force field. The
entropy rate is

Ṡ = Π− Φ (58)

Π =
1

D

∫
dx

(
J2
R

R
+

J2
L

L

)
+

1

2

∫
dx (αRR− αLL) log

R

L

Φ =
1

D

∫
dx (vRJR − vLJL)−

µk

D

∫
dxx (JR + JL) .

In the steady state we have

Πst =
1

D

∫
dx (vRJR − vLJL) . (59)

By using (55) and (56) we have

DΠst = v2R

∫
dxR+ v2L

∫
dxL

+ µkvL

∫
dxxL− µkvR

∫
dxxR (60)

We now observe that the first two integrals in (60) are
given by ∫

dxR =
αL

αR + αL
(61)∫

dxL =
αR

αR + αL
(62)

as obtained considering the normalization condition of
P = R + L and that the integral of JLR (57) must be
zero, as it follows from Fokker-Planck equations in the
stationary regime).

Now we consider the case k > 0. From (53) and (54)
in the stationary regime we have

∂x (vRJR − vLJL) = −vR + vL
2

(αRR− αLL) (63)

and then, multiplying by µkx and integrating over x

µk

∫
dx x∂x (vRJR − vLJL) =

vR + vL
2

(αRI − αLY ) ,

(64)
where

I ≡ −µk

∫
dx xR (65)

Y ≡ −µk

∫
dx xL. (66)

Integrating by parts we obtain

µk

∫
dx (vRJR − vLJL) = −vR + vL

2
(αRI − αLY ) .

(67)
The quantities I and Y are related to each other. Indeed,
in the steady state, the total current is zero and then,
using (55) and (56), we have

0 =

∫
dx(JR+JL) = vR

∫
dxR−vL

∫
dxL+I+Y (68)

Using (61) and (62) we get

I + Y =
vLαR − vRαL

αR + αL
. (69)

Combining equations (67) and (69) – together with (61)
and (62) – we obtain an equation for I, whose solution is

I =
αL

αR + αL

αRvL − αLvR − 2µkvR
2µk + αR + αL

. (70)

Using (69) we obtain for Y

Y =
αR

αR + αL

αRvL − αLvR + 2µkvL
2µk + αR + αL

. (71)

Substituting in (67) and using (59), we finally arrive at
the expression of the entropy production rate for k > 0:

Πst =
(vR + vL)

2

D

αRαL

(2µk + αR + αL)(αR + αL)
. (72)

Defining the average speed v = (vR + vL)/2, the average
tumbling rate α = (αR + αL)/2 and the tumbling rate
semidifference δ = (αR−αL)/2, the EPR takes the simple
form

Πst =
v2

D

α2 − δ2

α(µk + α)
. (73)

For αR = αL, i.e., δ = 0, the EPR reads

Πst =
v2

D

α

µk + α
, δ = 0 , (74)

similar to the expression obtained in the isotropic case
(52) with the average speed v = (vR + vL)/2.

In the free case, the EPR can be computed directly
by putting k = 0 into Eq. (60), that - together with
Eqs. (61)-(62) - leads to

Πst =
1

D

αLv
2
R + αRv

2
L

αR + αL
. (75)

We first note that the limit k → 0 of Eq. (72) is dif-
ferent from (75), i.e. it is singular. This has already
been noticed, in the case vR = vL, in [38]. The reason is
that, in the free anisotropic case, a residual total current
is present even in the steady state (i.e. asymptotically
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FIG. 1. Entropy production rate at stationarity – see (72)
in the text – as a function of the relative tumbling rate α∗ =
αR/αL for different values of the reduced harmonic constant
k∗ = k/αL = 10−3, 0.5, 1, 2, 5. The red line is the maximum
EPR Πmax vs. α∗

max(k
∗). Units are such that v = 1, D = 1,

µ = 1.

in time) and that is an additional source of dissipation.
Such a current vanishes as soon as k > 0, even very small.
Formula (75) gives for αR = αL = α:

Πst =
1

D

v2R + v2L
2

, (76)

a result already obtained in [28] by means of trajectory-
based approach. When vR=vL=v we instead obtain [38]

Πst =
v2

D
, (77)

i.e. the same result for the free isotropic case, remarkably
independent from the tumbling rates.

It is worth noting that, in the general case, for fixed
external potential (k > 0) the EPR reaches its maxi-
mum value v2/D in the symmetric case (δ = 0) and for
large tumbling rate (α → ∞). However, some interesting
behaviors of the EPR are obtained by considering some
parameters fixed. While it is true that, fixing k and α,
the maximum EPR v2(1+µk/α)−1/D is always obtained
for δ = 0, in the case of fixed k and αL one has that the
maximum EPR is reached for α∗ = αR/αL > 1 (see Fig-
ure 1). The same would happen by fixing the value of αR,
with the relative tumbling rate given by α∗ = αL/αR.

V. GENERAL RUN-AND-TUMBLE MOTION

Let us now treat the very general case of anisotropic
and heterogeneous run-and-tumble motion. We consider
the possibility that, not only tumbling rates and speeds
could be different for left and right oriented particles, but
they could also depend on the spatial variable, αR,L(x)
and vR,L(x). Moreover, we consider the presence of a
generic external force f(x), not necessarily originated by
a confining quadratic potential. In this general case the
Fokker-Planck equations for R and L can be written as

(for the sake of simplicity we omit the dependence on
x-variable of the physical parameters)

∂tR = −∂xJR − JLR , (78)

∂tL = −∂xJL + JLR , (79)

where

JR = (vR + µf −D∂x)R , (80)

JL = (−vL + µf −D∂x)L , (81)

JLR =
1

2
(αRR− αLL) . (82)

The entropy rate is

Ṡ = Π− Φ (83)

Π =
1

D

∫
dx

(
J2
R

R
+

J2
L

L

)
+

1

2

∫
dx (αRR− αLL) log

R

L

Φ =
1

D

∫
dx (vRJR − vLJL) +

µ

D

∫
dx f (JR + JL) .

In the steady state we have

Πst =
1

D

∫
dx (vRJR − vLJL) +

µ

D

∫
dx f (JR + JL) .

(84)
In the case of vanishing flows at steady-state JR+JL = 0
(as occurs, for example, in the presence of confining po-
tentials) the above expression is formally identical to the
one obtained in the previous section (59), but now the
parameters vR,L and αR,L are explicitly space-dependent
quantities. In the general case it is not possible to obtain
exact expressions of the EPR and we need to resort to
numerical solution of kinetic equations or numerical sim-
ulations of the trajectories of the run-and-tumble parti-
cles.
We conclude this section by mentioning some particu-
lar case studies, that are interesting for their physical or
biological relevance.
Photokinetic bacteria. Photokinetic bacteria are
characterized by spatially varying speed which de-
pends on local light intensity I [39]. For static non-
homogeneous light fields I(x) we can describe the particle
dynamics through a space dependent speed v(x) [40] (we
assume equal left and right speeds)

v(x) = v(I(x)) . (85)

Chemotaxis. In the presence of nutrient concentration
some motile bacteria modify their tumble rates to ef-
fectively direct their movement toward the food source
[30, 34]. We can describe such a phenomenon by ex-
pressing the tumble rates in terms of the chemotactic
field c(x). In the limit of weak concentration gradient we
can write [34, 41, 42]

αR(x) = α− γv∂xc(x), (86)

αL(x) = α+ γv∂xc(x), (87)
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with γ measuring the strength of particle reaction to
chemical gradients and we have assumed equal speeds
vR = vL = v.
Generic confining potentials. In the previous sec-
tions we have analyzed the case of a force field f(x) =
−∂xV (x) originated by quadratic potentials V (x) ∝ x2.
It would be interesting to consider generic confining po-
tentials [43, 44]

V (x) = a|x|p , p ≥ 1 , (88)

and investigate the dependence on the exponent p. Also
of interest is the case of double-well potentials

V (x) = ax4 − bx2 + cx , (89)

in its symmetric (c = 0) or asymmetric (c ̸= 0) version.
Ratchet potentials. Finally, we mention the study of
ratchet effect [5]. In this case, the active motion takes
place in the presence of a periodic asymmetric potential,
giving rise to unidirectional motion with a stationary flow
of particles, JR+JL ̸= 0. In the case of a piecewise-linear
ratchet potential, the entropy production for particles
with equal tumbling rates and speeds has been analyzed
in [45].

VI. RUN-AND-TUMBLE MOTION IN Rd

So far we have considered the case of one-dimensional
motions. Here we extend the analysis to d-dimensional
run-and-tumble walks. We consider a particle that, in
the free case, moves along straight lines with velocity
v = ve, where v is the speed and e a unit vector in Rd,
and changes its direction of motion e with rate α. We
will first derive the general expression of the EPR con-
sidering generic space- and orientation-dependent speed
and tumbling rate, v(x, e) and α(x, e). Then we will spe-
cialize to the simple case of constant v and α, showing
the exact expression of the EPR in the presence of a har-
monic potential.
By denoting with p(x, t; e) the PDF to find the particle
at position x ∈ Rd at time t with velocity orientation e,
the kinetic equation of the run-and-tumble motion can
be written as [46]

∂tp = −∇ · j+ α(P− 1)p , (90)

where the current j is (we consider the presence of ther-
mal noise and generic force field f(x))

j = (−D∇+ ve+ µf) p , (91)

and we have introduced the projector operator

Pf(x, t; e) =
∫

de

Ωd
f(x, t; e), (92)

with Ωd = 2πd/2/Γ(d/2) the solid angle in d-
dimension. Hereafter we consider normalization condi-
tion

∫
dx de p(x, t; e) = 1. We define the total entropy

S as – generalizing (22)

S(t) =

∫
de s(t; e) , (93)

where the orientation dependent entropy s is

s(t; e) = −
∫

dx p(x, t; e) log p(x, t; e). (94)

By performing a derivation similar to that of the previous
section we arrive at the expression of the entropy rate

Ṡ = Π− Φ , (95)

Π =

∫
dx

∫
de

[
|j|2

Dp
+ α(1− P)p log p

]
,

Φ =
1

D

∫
dx

∫
de (ve+ µf) · j ,

which generalize to dimension d > 1 the expressions pre-
viously obtained (83). In the steady state we have Π = Φ,
and, assuming a null net current

∫
de j = 0, we have that

the EPR reads

Πst =
1

D

∫
dx

∫
de ve · j . (96)

The results obtained so far are valid in the general non-
homogeneous and non-isotropic case, i.e., for generic
v(x, e) and α(x, e). We now specify the calculation to the
case of constant parameters v and α, extending the anal-
ysis of planar motions in [29] to Rd with generic d > 1.
By using (91) we can write the EPR as

Πst =
v2

D

[
1 +

µ

v

∫
dx

∫
de p e · f

]
, (97)

having used the normalization condition and neglecting
boundary terms. Consider below a force field due to a
harmonic potential, i.e., f = −kx. By substituting (91)
in (90) in the stationary regime, multiplying by e · x,
integrating over dx and de and using integration by parts,
we arrive at an equation for the quantity

I ≡
∫

dx

∫
de p e · x , (98)

appearing in the second term of (97), which is

(α− dkµ)I = v − kµ(1 + d)I , (99)

leading to

I =
v

α+ µk
. (100)

Substituting in (97) we finally obtain the expression of
the EPR

Πst =
v2

D

α

α+ µk
, (101)

which is the same as that obtained in the one-dimensional
case (52) and is therefore independent of spatial dimen-
sions.
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VII. CONCLUSIONS

We have computed the average entropy production
rate, in the steady state, for a non-interacting run-and-
tumble particle in several different physical setups. The
general strategy is to start from the kinetic equations and
then compute the entropy flux, identical to the entropy
production in a steady state. The entropy flux - in the
absence of a total net current (e.g. in confined or spa-
tially symmetric situations) - is seen to be proportional
to the difference of left-right currents JL, JR, weighted by
the left-right speeds vL, vR (Eqs. (32), (44), (59) in the
different situations). The left-right currents endow also
a dependence upon the tumbling rates. Such a weighted
difference can be computed, in most of the considered sit-
uations, without computing the single currents but going
directly to compute their weighted difference. This is a
shortcut which allows us to revisit the free and harmoni-
cally confined cases, which already had a solution in the
literature. The power of the method enables us to com-
pute the entropy production rate also in non-symmetric
setups where the tumbling rates and the velocities are
different when particles go to the left or to the right.
A discussion of the more general case where all param-
eters are space-dependent has also been presented, but

explicit results cannot be usually obtained: a few cases
of physical relevance are discussed with some detail. We
have finally extended the calculation to the case of run-
and-tumble motions in a d-dimensional space, showing
the formal expression of the EPR in the general case
of space- and orientation-dependent parameters and re-
porting the exact solution in the case of harmonic po-
tential and constant speed and tumbling rate. Future
research should focus on the entropy production for in-
teracting RT systems exhibiting Motility-Induced Phase
Separation [17], where non-equilibrium density fluctua-
tions have been investigated usually starting from op-
portune coarse-graining descriptions [47–49]. Finally, the
theoretical framework considered here might be tested
against experiments such as the ones recently done on
different biological systems where EPR can be computed
in a model-independent fashion [50, 51].
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[12] É. Fodor and M. C. Marchetti, The statistical physics
of active matter: From self-catalytic colloids to living
cells, Physica A: Statistical Mechanics and its Applica-
tions 504, 106 (2018).

[13] L. Angelani, Optimal escapes in active matter, The Eu-
ropean Physical Journal E 47, 9 (2024).

[14] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt,
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