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ABSTRACT

We present COCOLA (Coherence-Oriented Contrastive
Learning for Audio), a contrastive learning method for mu-
sical audio representations that captures the harmonic and
rhythmic coherence between samples. Our method op-
erates at the level of stems (or their combinations) com-
posing music tracks and allows the objective evaluation
of compositional models for music in the task of accom-
paniment generation. We also introduce a new base-
line for compositional music generation called CompoNet,
based on ControlNet, generalizing the tasks of MSDM, and
quantify it against the latter using COCOLA. We release
all models trained on public datasets containing separate
stems (MUSDB18-HQ, MoisesDB, Slakh2100, and Coco-
Chorales).

1. INTRODUCTION

Recently, there have been significant advances in music
generation in the continuous domain [1–5], thanks to the
impressive development of generative models [6–8]. In ad-
dition to producing high-quality tracks of increasing length
[5], these models offer precise semantic control through
textual conditioning [9, 10]. However, they are limited as
tools for musical composition, since they output a final
mix containing all stems. To overcome this, a new range
of compositional generative models is emerging [11–13],
where (i) the generative tasks are defined at the stem level
and (ii) their usage is iterative/interactive. The most impor-
tant application of these models is accompaniment gener-
ation, where, given multiple conditioning sources (com-
bined or not), the model is asked to output a new set (or
a mixture) of coherent stems. Although previous models
could generate accompaniments [14, 15], they could not
be used iteratively (acting sequentially on the model’s out-
puts) in a composition process.

A significant problem with this line of research is the
lack of an objective metric for quantifying the coherence of
the generated outputs w.r.t. the inputs. For example, [11]
proposes the sub-FAD metric as a multi-stem generaliza-
tion of the FAD [16] protocol proposed in [15]. However,
this metric is not optimal for assessing coherence, as it fo-

∗ Equal contribution.

Output

Input

Generative
Model

COCOLA
Encoder

68%COCOLA
score

Figure 1. Illustration of COCOLA score. COCOLA is a
contrastive model able to estimate the coherence between
instrumental tracks and generated accompaniments.

cuses on global quality instead of the level of harmony and
rhythm shared by constituent stems.

To this end, we propose a novel contrastive model called
COCOLA (Coherence-Oriented Contrastive Learning for
Audio), which can evaluate the coherence between condi-
tioning tracks and generated accompaniments (Figure 1).
The model is trained by maximizing the agreement be-
tween disjoint sub-components of an audio window (sub-
mixtures of stems) and minimizing it on sub-components
belonging to different windows. With the model, we define
a COCOLA score as the similarity between conditioning
tracks and accompaniments in the embedding space.

Additionally, given the scarcity of open-source compo-
sitional music models (to our knowledge, only MSDM is
available publicly [11]), we introduce and release 1 an im-
proved latent diffusion model called CompoNet, based on
ControlNet [17], which generalizes the tasks of previous
compositional models. We benchmark CompoNet against
MSDM with the COCOLA score and FAD [16] on accom-
paniment generation, showcasing better performance.

After discussing related work in Section 2, we introduce
COCOLA and CompoNet in Section 3. We describe the
experimental setup in Section 4 and present the results in
Section 5. We conclude the article in Section 6.

1 https://github.com/gladia-research-group/cocola
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Figure 2. The COCOLA training procedure (single stem case). We first randomly crop windows of size L from a
batch of K tracks (depicted on the left). As a second step, we randomly select two distinct stems in each window. For
example, in the first window we select x1

1 (Guitar) and x1
3 (Drums). Thus, we embed all selected stems with the COCOLA

encoder fθ, obtaining latent representations. For example, we obtain h1
1 and h1

2 from the first window. Finally, we compute
the contrastive loss (Eq. (3)) considering embedings belonging to the same window as positive pairs and combinations of
embeddings between different windows as negative pairs.

2. RELATED WORK

2.1 Contrastive Methods for Audio

Contrastive learning [18, 19] can be formulated both as a
supervised or self-supervised problem.

Supervised contrastive learning methods are typically
cross-modal, requiring labeled information alongside au-
dio data. In early works, the labeled information was in
the form of simple tags, while the loss used to align embed-
dings of audio segments and tags was the triplet loss [20].
Within the same data setting, [21] used the contrastive loss
of SimCLR [22]. With the advent of the transformer ar-
chitecture [23], using complex sentences instead of sim-
ple tags became feasible. MuLaP [24] is the first model
to train a common representation between audio and sen-
tences in the musical domain. In such work, the audio and
text are processed by a joint transformer encoder, convey-
ing information about the two modalities through cross-
attention layers. Although it is not a contrastive model per
se, an audio-text matching loss uses negative examples to
encourage the model to focus on aligned pairs. More re-
cent works [9, 25–27], consider separate textual and audio
encoders, which makes it possible to use the two branches
independently at inference time.

Self-supervised representation learning methods [28–
31] build embedding spaces targeting structural informa-
tion extracted from the audio data itself. In [32], the au-
thors build positive examples for a triplet loss by augment-
ing with Gaussian noise, time and frequency translations,
and sampling with time proximity. They also consider
example mixing. While we compare coherent mixes in

our method (Section 3.1), in [32], positive pairs are not
coherence-related (e.g., mixing siren and dog sounds). As
in the supervised case, following [22], multi-class cross-
entropy losses are employed [33–35]. In COLA [33],
the authors train an embedding model with contrastive
loss using the simple criterion of sampling positive pairs
only from the same audio track (still employing Gaus-
sian noise), outperforming a fully supervised baseline in
a plethora of tasks. [36] pairs mixtures with sources ex-
tracted via source separation.

The proposed COCOLA method shares aspects of both
supervised and self-supervised approaches. Given that
stems are pre-separated, we cannot consider the method
purely self-supervised. At the same time, we process such
data with a uni-modal encoder, as is the case of self-
supervised methods.

2.2 Compositional Waveform Music Generation

Compositional music generation in the waveform domain
(as opposed to symbolic domains such as MIDI or sheet
music [37]) was introduced by [11], proposing the Multi-
Source Diffusion Model (MSDM). Such a model captures
the joint distribution of a fixed set of sources (e.g., Bass,
Drums, Guitar, and Piano) using a (score-based) diffusion
model [6, 7, 38–40]. At inference time, it is possible to
perform unconditional generation of all sources, accompa-
niment generation of a subset given the complement, and
source separation.

Following this initial work, AUDIT [41] proposes a dif-
fusion model conditioned by a T5 Encoder [10], trained
with instructions that allow the addition, removal (drop),



and replacement of sources in an input audio mixture. This
model operates on general audio signals with weak depen-
dencies between the sources (e.g., environmental sounds).
While MSDM is an unconditional generative model that
processes single sources in parallel, AUDIT is a condi-
tional generative model that processes mixtures sequen-
tially.

InstructME [12] introduces AUDIT in the musical set-
ting of MSDM, where sources are highly interdependent.
Besides conditioning on chords, the fundamental differ-
ence lies in how the audio input is provided to the model:
while in AUDIT, the input and output are two channels of
the tensor that the diffusion model processes (the input is
inpainted at inference time, similarly to how accompani-
ment generation is performed in MSDM), in InstructME,
the input is processed by a convolutional network that fol-
lows the structure of the diffusion model U-Net [42] en-
coder. The features processed by the latter are aggregated
with the features of the U-Net encoder (authors do not
specify if they sum or inject the features).

StemGen [13] generates a single accompaniment
source, given an instrument tag and an input audio mix-
ture, via a masked music language model [4].

Another line of research focuses on inference-only
methods for compositional music tasks, given pre-trained
generative models. Based on generative source separation
via Bayesian inference [43–45], Generalized Multi-Source
Diffusion Inference (GMSDI) [46] performs the tasks of
MSDM, requiring models trained only with mixtures and
text, by separating sources while generating them.

Our proposed CompoNet baseline (Section 3.3) is a se-
quential conditional model that, unlike previous models,
can perform all compositional music generation tasks (Fig-
ure 3). Differently than InstructME, the model is condi-
tioned via a ControlNet adapter [17], which enables fine-
tuning of diffusion models pre-trained with a large quantity
of mixtures. Table 1 summarizes a comparison between
CompoNet and current music compositional models.

3. METHOD

3.1 Stem-Level Contrastive Learning

In our setting, we have access to a dataset D =
{x̄k}k=1,...,K̄ containing K̄ musical tracks x̄k, each sep-
arated into a variable number N of individual stems x̄kn,
i.e., x̄k = {x̄kn}n=1,...,N . As a first step, we sample a
batch of K < K̄ tracks {x̄k}k=1,...,K from D, with pos-
sible repetitions. Following, we slice a window xk of size
L for each track x̄k in the batch (all stems in a window
share the same length), such that no window contained in
the same track overlaps for more than a ratio r, obtaining
a new batch {xk}k=1,...,K . Afterward, we select, for each
k, two disjoint non-empty stem subsets Xk

1 , X
k
2 of xk. We

define the sub-mixes mk
1 and mk

2 by summing the stems in
Xk

1 , X
k
2 :

mk
1 =

∑
xk
n∈Xk

1

xkn, mk
2 =

∑
xk
n∈Xk

2

xkn (1)

Identity (ID) Edit: Add (EA)
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Edit: Replace (ER)

Figure 3. Inter-stem compositional generation tasks. Y
andX represent the input and output stem sub-sets, respec-
tively.

When Xk
1 , X

k
2 are singletons, the sub-mixes are simply

two stems in the window (single stem case). We work with
sub-mixes because current compositional music generation
methods [13] operate over them, including our proposed
CompoNet (see Section 3.3). Like in COLA [33], we use a
convolutional audio-only encoder 2 fθ : RL → Rd, map-
ping mk

1 and mk
2 to lower-dimensional embedding vectors

hk1 = fθ(m
k
1) and hk2 = fθ(m

k
2), with d the embedding

dimension.
The COCOLA training procedure maximizes the agree-

ment between pairs hk1 ,h
k
2 of sub-mixes embeddings in the

same window. It decreases it for pairs hk1 ,h
j
2 (j ̸= k) of

sub-mixes embeddings in different windows. As in COLA,
we use a bilinear similarity metric:

sim(hk1 ,h
j
2) = (hk1)

TWhj2 , (2)

where W is a learnable matrix. The loss we optimize is
the multi-class cross entropy:

L = −
K∑
k=1

log
exp(sim(hk1 ,h

k
2))∑K

j=1 exp(sim(hk1 ,h
j
2))

. (3)

We depict the training procedure of COCOLA in Figure 2
for the single stem case.

In the COLA training procedure, the positive pairs are
(fully mixed) windows belonging to the same track. In CO-
COLA, they are sub-mixes belonging to the same window.
As such, we allow for negative pairs belonging to the same
track but in different windows. The r ratio has to be chosen
well to avoid strong overlaps between windows in the same
track. In that case, we could potentially consider (nearly)
coherent sub-mixes as negative pairs.

2 In our notation, we incorporate into fθ any domain transform pre-
ceding or following the convolutional network operations, like the (pre)
mel-filterbank map and the (post) projection head g in COLA.



Model Task Methodology Input Output Coherence
UG AG SS EA ER

MSDM [11] ✓ ✓(MS) ✓(MS) ✗ ✗ Training / Supervised Multi / Source Multi / Source ✓

GMSDI [46] ✓ ✓(MS) ✓(MS) ✗ ✗ Inference / Weakly Supervised Multi / Sub-mix Multi / Sub-mix ✓

StemGen [13] ✓ ✓(1S) ✗ ✗ ✗ Training / Supervised Single / Sub-mix Single / Source ✓

Audit [41] ✓ ✗ ✓(Remove 1S) ✓(1S) ✓(1S) Training / Supervised Single / Sub-mix Single / Sub-mix ✗

InstructME [12] ✓ ✗ ✓(Extract 1S; Remove 1S) ✓(1S) ✓(1S) Training / Supervised Single / Sub-mix Single / Sub-mix ✓

CompoNet ✓ ✓(MS) ✓(MS) ✓(MS) ✓(MS) Training / Supervised / Fine-tuning Single / Sub-mix Single / Sub-mix ✓

Table 1. Compositional audio models comparison. The various tasks are illustrated in Figure 3. 1S vs MS: the task
operates on one vs multiple sources at a time. Multi vs Single on Input / Output: the model accepts multiple vs single
inputs / outputs. Source vs Sub-mix on Input / Output: the model processes single sources or sub-mixes as inputs / outputs.

3.2 COCOLA Score

Equipped with the encoder fθ, we can quantify the co-
herence of the accompaniments generated by a genera-
tive model pϕ(x | y), where y is the conditioning vari-
able (the input) and x is the modeled variable (the output).
The model’s variables can be either a set of stems or sub-
mixes. Given the input y, the model pϕ generates an output
x̃ ∼ pϕ(x | y). We can compute the coherence between y
and x̃ by first embedding the two vectors hy = fθ(y) and
hx̃ = fθ(x̃) (summing the stems beforehand if consider-
ing a set of stems). We define the COCOLA score (CCS)
between x and ỹ as:

CCS(y, x̃) = sim(hy,hx̃) , (4)

the similarity (Eq. (2)) between their embeddings. The
described procedure is depicted in Figure 1.

3.3 CompoNet

In order to showcase the utility of the COCOLA score as a
metric for measuring the coherence of generated accompa-
niments, we propose an improved compositional model for
music called CompoNet and compare it with the MSDM
baseline in Section 5.

CompoNet first pre-trains a latent diffusion model ϵϕ,
based on U-Net architecture [42] conditioned via cross-
attention layers [23], on a large dataset of tuples (m, c)
comprising audio mixtures m and relative textual descrip-
tions c. The mixtures m are mapped to latent vectors
z = EVAE(m) using a pre-trained VAE encoder [47],
while the text descriptions are mapped to a continuous se-
quence s = ETXT(c) using a text encoder (e.g., [10]). Fol-
lowing the DDPM formulation [7], the model is trained to
reverse the forward Gaussian noising process given by:

zt =
√
ᾱtz+

√
1− ᾱtϵ, ϵ ∼ N (0, I) , (5)

where t ∈ [0, T ] is a time index (with T the maximum time
step), ᾱt is defined by integrating a noise schedule [7], and
ϵ is sampled from the standard Gaussian distribution. The
model is trained with denoising score matching [39]:

min
ϕ

Ez,ϵ,s,t

[
∥ϵ− ϵϕ(zt, s, t)∥22

]
, (6)

with zt obtained via Eq. (5).
In a second phase, we fine-tune a ControlNet [17]

adapter Cψ for tackling all compositional musical tasks

(Figure 3) with a single model. The U-Net ϵϕ com-
prises an encoder, bottleneck, decoder structure ϵϕ =
DϕD

◦ BϕB
◦ EϕE

. The ControlNet adapter is defined
as Cψ(zt, s, t,w) = EϕE

(zt + convin(w), s, t), where
convin is a zero-initialized convolutional layer, and w is
a latent (VAE) embedding of an external audio input. The
ControlNet adapter outputs the set of processed features
{Ciψ(zt, s, t,w)}i=1,...,I for each layer of EϕE

, with I the
total number of layers. The full ControlNet conditional ar-
chitecture is defined as ϵϕ,ψ = DϕD

◦ BϕB
◦ EϕE ,ψ with

EϕE ,ψ combining the encoder and ControlNet adapter fea-
tures at each layer iwith zero-initialized convolutional lay-
ers convi:

EiϕE ,ψ
(zt, s, t,w) = EiϕE

(zt, s, t) + convi(Ciψ(zt, s, t,w)) .

While we have described the general ControlNet archi-
tecture, we still have to describe how we train it in Com-
poNet, namely, the roles of the z,w and s variables. It-
erating over a dataset containing tuples (x, t) with multi-
stem tracks x = {xn}n=1,...,N and tag descriptions t =
{tn}n=1,...,N for each stem, we sample from x two arbi-
trary subsets of stems Y,X ⊆ x, with |X| > 0. Y contains
input stems while X contains output stems. The topolog-
ical relationships between such subsets define all possible
compositional tasks, as depicted in Figure 3. While previ-
ous models partially solve some tasks (see Table 1), ours
is the first to solve all of them simultaneously. We pro-
ceed like in Eq. (1) and mix the sources in Y and X , ob-
taining mY and mX , respectively. Afterward, we encode
them in the VAE latent space, defining z = EVAE(mX)
and w = EVAE(mY ). We define the following prompt s:

s = ETXT(tY1 , . . . , tY|Y | ,SEP, tX1 , . . . , tX|X|) , (7)

specifying input and output mixture tags separated by a
special token SEP.

Having specified the required inputs and outputs, we
train ϵϕ,ψ via Eq. (6), optimizing only the ψ weights. The s
prompt instructs the model which task to perform based on
the specified stem tags. The user knows such information
during the composition process in a generative DAW [48].
While we only test CompoNet on accompaniment genera-
tion against MSDM using COCOLA, we want the models
to share similar abilities for a fair comparison.



Test Dataset

Train Dataset MUSDB18-HQ MoisesDB Slakh2100 CocoChorales

MoisesDB [49] 52.56 53.01 51.22 60.32
Slakh2100 [50] 53.06 53.58 53.78 59.35
CocoChorales [51] 70.10 61.48 67.50 99.78
All 90.43 93.06 90.06 99.89

Table 2. Classification accuracy tests (%) with CO-
COLA models using K = 2 sub-mixture test pairs (higher
is better). MUSDB18-HQ is used as a hold-out test dataset.

4. EXPERIMENTAL SETUP

4.1 Datasets

In our experiments, we use four different stem-separated
public datasets for training COCOLA and fine-tuning
CompoNet. The datasets are MUSDB18-HQ [52], Moi-
sesDB [49], Slakh2100 [50] and CocoChorales [51].

MUSDB18-HQ [52] is the uncompressed version (in
WAV format) of the MUSDB18 dataset, initially intro-
duced in [53]. This dataset is a standard for evaluating
music source separation systems. It comprises 150 tracks
– 100 for training and 50 for testing – totaling approxi-
mately 10 hours of professional-quality audio. Each track
is divided into four stems: Bass, Drums, Vocals, and Other,
with “Other” covering any components not classified under
the first three categories.

MoisesDB [49] features 240 music tracks across diverse
genres and artists, accumulating more than 14 hours of mu-
sic. Unlike MUSDB18-HQ, MoisesDB is a genuine multi-
track dataset, offering a two-tier taxonomy of 11 distinct
stems. Each stem in this dataset includes more detailed
type annotations (e.g., Guitar might be labeled as Acous-
tic Guitar or Electric Guitar). Not having pre-computed
splits, we set a custom 0.8 (train) / 0.1 (validation) / 0.1
(test) split.

Slakh2100 [50] is synthesized from the Lakh MIDI
Dataset v0.1 [54] employing high-quality sample-based
virtual instruments. It features 2100 tracks organized into
1500 tracks for training, 375 for validation, and 225 for
testing, together amounting to 145h of audio. The tracks
are annotated into 34 stem categories. While such a dataset
contains an order of magnitude more data than MUSDB18-
HQ and MoisesDB, it does not share the same level of real-
ism as the latter, being the tracks synthesized from MIDI.

CocoChorales [51] is a chorale audio music dataset
created through a synthesis process like Slakh2100. How-
ever, it comprises a substantially vaster collection of
240000 tracks, extending over 1411 hours of audio data.
It is produced by generating symbolic notes via a Co-
conet model, performing their synthesis with MIDI-DDSP
[55]. This dataset is richly annotated, featuring details on
performance attributes and synthesis parameters. Coco-
Chorales includes a diverse range of 13 instruments span-
ning Strings, Brass, Woodwind, and Random ensembles.
In our experiments we use the tiny version, comprising
4000 tracks.
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Figure 4. Cosine vs bilinear similarity during training.
Training is performed with “COCOLA All”. The accuracy
metric is defined in Eq. (8). We adopt the bilinear similar-
ity in Eq. (2), given its improved performance.

4.2 Model Implementation

To implement the COCOLA encoder fθ, we follow [33]
and employ the EfficientNet-B0 [56] convolutional archi-
tecture followed by a linear projection layer, operating on
the mel-filterbank audio representation. The embedding
dimension is 512. With respect to the original baseline, we
add a 0.1 dropout on the EfficientNet layers.

For CompoNet, we employ the AudioLDM2 [57,58] ar-
chitecture. Since the authors pre-train the model on a large
array of datasets [59–66], we skip the pre-training phase
in Section 3.2 and directly fine-tune a ControlNet adapter
based on the AudioLDM 2-Large checkpoint 3 . Dur-
ing fine-tuning, we directly pass the conditioning prompt
in Eq. 7 to the text-embedding mechanism of AudioLDM2
(based on CLAP [9, 27], T5 [10], and GPT2 [67]), condi-
tioning both the U-Net and the ControlNet adapter.

4.3 Training Details

All COCOLA models are trained on an NVIDIA RTX
4070 Super with 12GB of VRAM. Each training batch
contains 32 audio chunks of 5s (16kHz). We set the max-
imum window overlap ratio r = 50% and train with the
Adam optimizer [68] with a 10−3 learning rate. We add
Gaussian noise to positive samples as a data augmentation
method, with σ = 10−3. We tried training with cosine sim-
ilarity [22] but we reported (Figure 4) lower performance,
corroborating [33].

CompoNet models are also fine-tuned on NVIDIA
GPUs (RTX 4080 16GB on MUSDB18-HQ; A10G,
24GB on Slakh2100). The training batches have size
2 (MUSDB18-HQ) and 5 (Slakh2100) and contain win-
dows of 10.24s (16kHz). We train with Adam [68] with a
10−4 learning rate. We do not use the empty prompt for
classifier-free guidance [69] during fine-tuning.

3 https://huggingface.co/cvssp/audioldm2-large

https://huggingface.co/cvssp/audioldm2-large


Method FAD ↓
CLAP

FAD ↓
EnCodec

FAD ↓
VGGish

COCOLA score ↑
All

COCOLA score ↑
CocoChorales

Slakh2100
MSDM [11] 0.23 92.81 2.01 3.31 0.72
CompoNet 0.30 106.23 3.20 13.50 8.32
Random 0.064 51.44 0.16 0.069 1.06
Ground Truth - - - 16.57 14.31

MUSDB18-HQ
MSDM [11] 0.29 148.09 2.36 11.61 3.37
CompoNet 0.37 130.04 2.14 11.94 7.21
Random 0.11 100.25 0.35 4.40 3.47
Ground Truth - - - 16.25 12.45

Table 3. Comparison between MSDM and CompoNet.

5. EXPERIMENTS

We employ four COCOLA encoder models in our experi-
ments : “COCOLA MoisesDB”, “COCOLA Slakh2100”,
“COCOLA CocoChorales” and “COCOLA All”. The
first three are trained on the homonym datasets, while the
last one is trained on all three combined. For the “CO-
COLA CocoChorales” we use all ensables while on “CO-
COLA All” we use only the Random ensamble for a more
balanced partitioning, with respect to the other datasets.
MUSDB18-HQ, being the smallest dataset, is used as a
held-out test dataset for studying generalization.

5.1 Coherent Sub-Mix Classification

We cross-test the performance of all COCOLA models,
performing classification of coherent pairs on the test split
of our datasets. More specifically, given an encoder fθ, we
iterate a test set, collecting at each step a batch of K win-
dows x1, . . . ,xK . Following the steps in Section 3.1 we
compute all similarities sim(hk1 ,h

j
2) for k, j ∈ [K]. We

define the accuracy over a batch as:

1

K

K∑
k=1

1

(
k = argmax

j∈[K]

sim(hk1 ,h
j
2)

)
, (8)

where 1 is the indicator function. We obtain the final ac-
curacy averaging over all batches in the dataset. For our
evaluation we use K = 2 and depict in Table 2 the results
across all combinations of models and test datasets. While
both “COCOLA MoisesDB” and “COCOLA Slakh2100”
perform only slightly better than a random choice, “CO-
COLA CocoChorales” features improved performance. Fi-
nally, combining the three dataset, we obtain an accuracy
of over 90% on all datasets, showcasing generalization
with 90.43% on the held-out MUSDB18-HQ.

5.2 Accompaniment Generation Evaluation

For the accompaniment generation evaluation, we com-
pare the MSDM model [11] with the proposed CompoNet
(Section 3.3). We train CompoNet on MUSDB18-HQ and
Slakh2100 (restricted to Bass, Drums, Guitar and Piano
stems at test time). We also consider a Random baseline,

where, for a given input, we output a random sub-mix from
a different test track. We generate 200 chunks for both
datasets and models, conditioning on random stem subsets
of test tracks and querying a subset of the complemen-
tary. The chunks are ∼6s / 10.24s long on MUSDB18-
HQ / Slakh2100. Given that MSDM tends to generate si-
lence, we sample 12 candidate tracks for each generated
track, selecting the one with the highestL2 norm. We com-
pare the COCOLA score in Eq. (4) with the FAD [16, 70]
metric (interpreted as a sub-FAD [11, 15]) computed with
CLAP [9], EnCodec [71], and VGGish [72] backbones.

We showcase the results in Table 3. With the FAD met-
rics, the model assigns the best score to the Random base-
line. This behavior can be explained by considering that
the Random outputs are real data, and the FAD evaluates
well the perceptual quality. At the same time, it fails to as-
sess the coherence between the tracks, and tends to score
MSDM better. With the “COCOLA All” score, Random
is the lowest, while CompoNet scores best. CompoNet
has the highest value on “COCOLA CocoChorales” which,
however, scores MSDM lower than Random. We remem-
ber that “COCOLA All” achieves a higher accuracy in Ta-
ble 2, resulting in more reliability. On Ground Truth, we
compute upper-bounds of the COCOLA score using real
positive pairs. CompoNet better approaches these bounds.

6. CONCLUSION

In this paper we proposed COCOLA, a contrastive encoder
for recognizing the coherence between musical stems. At
the same time, we have introduced CompoNet, a novel
compositional model for music based on ControlNet that
can solve a wide range of tasks simultaneously. Finally,
we have evaluated CompoNet using COCOLA, proposing
a new way of assessing accompaniment generation.

We plan to improve the quality of COCOLA by train-
ing on additional stem-level datasets [73] or using data ob-
tained by pre-separating [15] larger realistic music datasets
[74]. In future work, we would also like to explore
inference-side methods that can guide the diffusion pro-
cess using COCOLA as a likelihood function, offering an
alternative (or additional) loss for the GMSDI method [46].
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