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A Constructive Real Projective Plane

Mark Mandelkern

Abstract. The classical theory of plane projective geometry is examined constructively,

using both synthetic and analytic methods. The topics include Desargues’s Theorem,

harmonic conjugates, projectivities, involutions, conics, Pascal’s Theorem, poles and

polars. The axioms used for the synthetic treatment are constructive versions of the

traditional axioms. The analytic construction is used to verify the consistency of the

axioms; it is based on the usual model in three-dimensional Euclidean space, using only

constructive properties of the real numbers. The methods of strict constructivism, fol-

lowing principles put forward by Errett Bishop, reveal the hidden constructive content

of a portion of classical geometry. A number of open problems remain for future studies.
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Introduction

In various forms, the constructivist program goes back to Leopold Kronecker (1823-1891),
Henri Poincaré (1854-1912), L. E. J. Brouwer (1881-1966) [Bro08], and many others. The
most significant recent work, using the strictest methods, is due to Errett Bishop (1928-
1983). A large portion of analysis has been constructivized by Bishop in Foundations of
Constructive Analysis [B67]; this treatise also serves as a guide for constructive work in
other fields. Expositions of constructivist ideas and methods may be found in [B67, BB85];
see also [Sto70, R82, M85].

The initial phase of this program involves the rebuilding of classical theories, using only
constructive methods; the entire body of classical mathematics is viewed as a wellspring of
theories waiting to be constructivized.

Every theorem proved with [nonconstructive] methods presents a challenge:
to find a constructive version, and to give it a constructive proof.

- Errett Bishop [B67, p. x]

The present work is based on the classical theory of the real projective plane. The classical
theory is highly nonconstructive; it relies heavily, at nearly every turn, on the Law of Excluded
Middle. For example, it is classically assumed that a given point is either on a given line,
or not on the line —although no finite routine is available for making such a determination;
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a constructive development must utilize only the finite routines that are specified in the
axioms.

Background; classical. Guides to the classical theory that have proven useful include
works by O. Veblen, J. W. Young, H. S. M. Coxeter, E. Artin, and G. Pickert [VY10, Cox55,
Art57, Pic75]. For a concise historical review, with thorough references, see Cremona’s
preface [Cre73, pp. v-xii]. An entertaining history of the subject will be found in Lehmer’s
last chapter [Leh17, pp. 122-143].

Background; constructive. A. Heyting [H28, D90] has developed a portion of the theory,
based on axioms for projective space. A plane being thus embedded in a higher dimension,
this permits a proof of Desargues’s Theorem, and aids the verification of the properties of
harmonic conjugates. D. van Dalen [D96] has studied alternative axioms involving the basic
relations.

Here we proceed in a different direction; we utilize axioms only for a plane. Since there
exist non-Desarguesian projective planes,1 this means that Desargues’s Theorem must be
taken as an axiom; it will be used to establish the converse and the essential properties
of harmonic conjugates. The theory is developed further, as far as conic sections, Pascal’s
Theorem, and the theory of polarity. We make full use of duality in establishing some of the
fundamental results.

Adhering closely to the methods of strict constructivism, as introduced by Errett Bishop
[B67], we eschew additional assumptions, such as those of formal-logic-based intuitionism or
recursive function theory. For a full account of the distinctions between these various types
of constructivism, see [BR87].

Background; other work in constructive geometry. For the constructive extension of
an affine plane to a projective plane, see [H59, D63, M13a, M14]. For the constructive
coördinatization of a plane, see [M07].

The constructive geometry of M. Beeson [Bee10] uses Markov’s Principle,2 which is ac-
cepted in recursive function theory, but not in the Bishop-type strict constructivism that is
followed in the present paper. M. Lombard and R. Vesley [LomVes98] construct axioms for
classical and intuitionistic plane geometry, using recursive function theory.

The work of J. von Plato [Pla95, Pla98, Pla10], proceeding within formal logic, is related
to type theory, computer implementation, and combinatorial analysis. For constructive plane
hyperbolic geometry, also within formal logic, see V. Pambuccian [Pam01]. The Bishop-type
constructive mathematics of the present paper works from a position well-nigh opposite that
of formal logic; for further comments on this distinction, see [B65, B67, B73, B75].

Synthetic and analytic approaches. We determine the constructive possibilities of syn-
thetic methods, using no axioms of order, in constructing a real projective plane P. The
analytic model P2(R), constructed in Euclidean space R

3, is used to prove the consistency
of the axiom system.

Axioms. In choosing axioms for the projective plane P, we claim to adopt no new ax-
ioms, using only constructive versions of the usual classical axioms. These axioms are all
constructively valid on the plane P

2(R), taking note of Bishop’s thesis, “All mathematics
should have numerical meaning” [B67, p. ix]. No axioms of order are involved here; the

1See, for example, [Wei07].
2Markov’s Principle and other nonconstructive principles will be discussed in section 12.
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constructive investigation of ordered projective planes must be left for future studies.3

Bishop-type constructivism. We follow the constructivist principles put forward by Errett
Bishop in 1967. This variety of constructivism does not form a separate branch of mathemat-
ics, nor is it a branch of logic; it is intended as an enhanced approach for all of mathematics.
For the distinctive characteristics of Bishop-type constructivism, as opposed to intuitionism
or recursive function theory, see [BR87].

Logical setting. This work uses informal intuitionistic logic; it does not operate within a
formal logical system. For the origins of modern constructivism, and the disengagement of
mathematics from formal logic, see Bishop’s “Constructivist Manifesto” [B67, BB85; Chapter
1]. Concerning the source of misunderstandings in the mathematical community as to the
methods and philosophy of constructivism, see [B65].

We use intuitionistic logic only so far as to eschew use of the Law of Excluded Middle
and its corollaries. Intuitionism, in the stronger sense of Brouwer, introduces additional
principles which are classically false. In the opposite direction, recursive function theory
limits consideration to a restricted class of objects.4 Constructive mathematics as proposed
by Bishop leads down neither of these extreme pathways. No special logical assumptions are
made. Avoiding the Law of Excluded Middle, constructive mathematics is a generalization of
classical mathematics, just as group theory, a generalization of abelian group theory, avoids
the commutative law. Every result and proof obtained constructively is also classically valid.

Results. A fair portion of classical projective geometry is found to have a solid construc-
tive content, provided that appropriate axioms, definitions and methods are used.

It is necessary to avoid the classically ubiquitous method of treating separately elements
that are, or are not, distinct or separated from other elements; constructively, elements
typically arise lacking such information. Thus, harmonic conjugates must be given a single
definition for all points on a line, without distinguishing between the base points and other
points; projectivities must be shown to exist for any two given ranges, not knowing whether
they are identical or distinct; the polar of a point with respect to a conic must be defined
uniformly for any point on the plane, without treating points on the conic as special cases.
These requirements often reduce the role of the quadrangle in definitions.

Basing the theory only on axioms for a plane, with no axioms of space, means that De-
sargues’s Theorem must be taken as an axiom; the converse is proved as a consequence. The
necessity of ensuring that triangles claimed to be perspective have the required distinctness is
paid due attention. Similar situations arise in proving the validity of the harmonic conjugate
construction, and the other main concepts.

Once the basic definitions and properties are established constructively, the theory pro-
ceeds rather smoothly, revisiting results obtained over the centuries — now with constructive
methods.

3For a survey of classical axiomatic ordered geometry, see [Pam11]. For a constructive theory of ordered
affine geometry, see [Pla98].

4For more information concerning these alternative approaches to constructivism, see [BR87].
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Part I

Synthetic constructions

From a set of constructively phrased axioms, we derive the basic properties of a real projective
plane, including harmonic conjugates, projectivities, conics, Pascal’s Theorem, poles, and
polars.

1 Constructive methods

One characteristic feature of the constructivist program is meticulous use of the connective
“or”. To prove “A or B” constructively, it is required that either we prove A, or we prove B;
it is not sufficient to prove the contrapositive ¬(¬A and ¬B). For an illustration of this in
geometry, the Brouwerian counterexample given below will show that the statement “Either
the point P lies on the line l, or P lies outside l” is constructively invalid.

Constructively invalid statements. To determine the specific nonconstructivities in a
classical theory, and thereby to indicate feasible directions for a constructive development,
Brouwerian counterexamples are used. The projective plane being not yet constructed here,
we give an informal example on the real metric plane, where P lies on l means that the
distance from the point P to the line l is 0, while P lies outside l means that the distance is
positive.

Example 1.1. If, on the plane R
2, we have a proof of the statement

Given any point P and any line l, either P lies on l, or P lies outside l,

then we have a method that will either prove the Goldbach Conjecture, or construct a coun-
terexample.

Proof. Using a simple finite routine, construct a sequence {an}n≥2 such that an = 0 if 2n
is the sum of two primes, and an = 1 if it is not. Now apply the statement in question to
the point P = (0,Σan/n

2), with the x-axis as the line l. If P ∈ l, then we have proved the
Goldbach Conjecture, while if P /∈ l, then we have constructed a counterexample.

For this reason, such statements are said to be constructively invalid. If the Goldbach
question is someday settled, then other famous problems may still be “solved” in this way.
These examples demonstrate that use of the Law of Excluded Middle inhibits mathematics
from attaining its full significance. More information concerning Brouwerian counterexam-
ples will be found below in Section 12.

Many other ordinary geometric statements, especially those involving a disjunction, are
also constructively invalid, admitting easily devised Brouwerian counterexamples similar to
Example 1.1. The consequence of this Brouwerian analysis is the need for explicit construc-
tive details, in axioms, theorems, and proofs, which from a classical perspective may seem
superfluous.

Constructive logic. Following Bishop, we use no system of formal logic. Aside from the
need to avoid use of the Law of Excluded Middle, and to use the connective “or” only when
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warranted, no special rules are required. The constructive logic used here is usually called
informal intuitionistic logic; for more on this subject, see [BV06, Section 1.3].

Certain concepts, such as x = 0, for a real number x, are relatively weak, compared to
stronger concepts, such as x 6= 0. The relation x 6= 0 requires the construction of an integer n
such that 1/n < |x|; it then follows that x = 0 is equivalent to ¬(x 6= 0), while the statement
“¬(x = 0) implies x 6= 0” is constructively invalid.

In geometry, point outside a line, P /∈ l, is the stronger concept, while point on a line,
P ∈ l, is the weaker.5 On the constructive real metric plane R

2, the geometric and numeric
concepts are directly related; P /∈ l if and only d(P, l) > 0 [M07, Theorem 10.1]. Thus, while
the statement “If ¬(P /∈ l), then P ∈ l” will be taken as an axiom, reflecting the constructive
properties of the real numbers, the statement “If ¬(P ∈ l), then P /∈ l” is constructively
invalid.

Further details concerning the constructive properties of the real numbers, and construc-
tively invalid statements, will be found below in Section 12.

2 Axioms

We adopt the usual definitions and axioms for a projective plane, adding the several required
to obtain constructive results. The additional axioms are constructively phrased versions of
elementary facts that are immediate in classical geometry, when the Law of Excluded Middle
is used. For a constructive study, these additional facts must be stated explicitly in the
axioms, and must be verified whenever one constructs the finite routines for a model.

The model P
2(R) in Part II will establish the consistency of the axiom system; the

question of independence of the individual axioms is left as an open problem. The properties
of the model have served to drive the axiom choices for the synthetic theory, taking note of
Bishop’s thesis, “All mathematics should have numerical meaning” [B67, p. ix].

Definition 2.1. Let S be a set with an equality relation =. An inequality relation 6= on
S is called an tight apartness relation6 if, for any x, y, z in S , the following conditions are
satisfied.

(i) ¬(x 6= x).
(ii) If x 6= y, then y 6= x.
(iii) If x 6= y, then either z 6= x or z 6= y.
(iv) If ¬(x 6= y), then x = y.

Property (iii) is known as cotransitivity, and (iv) as tightness. The implication “¬(x = y)
implies x 6= y” is nearly always constructively invalid, the inequality being the stronger of
the two conditions.7 For an example with real numbers, x 6= 0 means that there exists an
integer n such that 1/n < |x|, while x = 0 means only that it is contradictory that such an
integer exists.8

5For the stronger concept used as the single primitive notion for intuitionistic projective geometry, see
[D96].

6Early work on apartness relations is due to Heyting; see [H66].
7For a comprehensive treatment of constructive inequality relations, see [BR, Section 1.2].
8For more details concerning the constructive properties of the real numbers, see [B67, BB85, BV06].
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Definition 2.2. A projective plane P consists of a family P of points, and a family L of
lines, satisfying the following conditions, and axioms to be specified.
• Equality relations, written =, are given for both families P and L .
• Inequality relations, written 6=, with the properties of tight apartness relations, as specified
in Definition 2.1, are given for both families P and L . When P 6= Q, or l 6= m, we say that
the points P and Q, or the lines l and m, are distinct.
• An incidence relation ∈, between the families P and L , is given; when P ∈ l, we say that
the point P lies on the line l, and that the line l passes through the point P .

Definition 2.3. Outside relation. For any point P ∈ P and any line l ∈ L , we say that P
lies outside the line l, and that l avoids the point P , written P /∈ l, if P 6= Q for all points
Q that lie on l.

A constructive definition of distinct lines is at times based on the incidence and outside
relations. Here, the relation of distinct lines is internal, referring only to the family L . This
is the natural approach for the model P2(R) of Part II, and is an instance where the model
influences a choice for the synthetic theory. The method here is adapted to the situation
where the families P and L are independent, as in the model, rather than the situation
often seen where lines are sets of points. With the relations of distinct points and distinct
lines established internally to the families P and L , Axiom C5 will then relate the concepts
to the incidence and outside relations.

Constructive Axiom Group C. These axioms form the basis for the synthetic theory.
The duality of this axiom group will be shown in Theorem 2.10.

In addition, Axiom F (Fano) will be adopted at the end of this section, and will be shown
to be self-dual in Theorem 2.15; Axiom D (Desargues) will be adopted in Section 3, where
its dual (the converse) will be proved; Axiom E (Extension), to be adopted in Section 5,
is self-dual; Axiom T (the crucial component of the Fundamental Theorem), to be adopted
in Section 6, is also self-dual, as is Axiom P, to be adopted in Section 11 in connection
with poles and polars with respect to a conic. The duality of Definition 2.3, for the outside
relation, will be established in Theorem 2.11.

Thus the duality of the complete set of axioms will be established.

Axiom C1. There exist a point P ∈ P, and a line l ∈ L , such that P /∈ l.

Axiom C2. For any distinct points P and Q, there exists a unique line, denoted PQ, called
the join, or connecting line, of the points, passing through both points.

Axiom C3. For any distinct lines l and m, there exists a unique point, denoted l ·m, called
the meet, or point of intersection, of the lines, lying on both lines.

Axiom C4. There exist at least three distinct points lying on any given line.

Axiom C5. For any lines l and m, if there exists a point P ∈ l such that P /∈ m, then l 6= m.
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Axiom C6. For any point P and any line l, if ¬(P /∈ l), then P ∈ l.

Axiom C7. If l and m are distinct lines, and P is a point such that P 6= l ·m, then either
P /∈ l or P /∈ m.

Notes for Axiom Group C.
1. Axioms C1 thru C4 are the usual classical axioms for incidence and extension. The

remaining three axioms are statements that follow immediately when lines are considered
as sets of points, and the Law of Excluded Middle is used; classically, they need no explicit
mention. In this sense, no new axioms are needed for a constructive theory.

2. Axioms C2 and C3 apply only to distinct points and lines. The need for this restriction
will follow from Example 14.1, where it is shown that in the model P

2(R), claiming the
existence of a line through two arbitrary points, or a point lying on two arbitrary lines,
would be constructively invalid.

3. Axiom C6 would be immediate in a classical setting, when P ∈ l is used in the sense
of set-membership, where P /∈ l means ¬(P ∈ l), and when, applying the Law of Excluded
Middle, double negation results in an affirmative statement.

For the constructive treatment here, the situation is quite different. The outside relation,
P /∈ l, is given a strong affirmative meaning in Definition 2.3, involving both the inequality
relation for points, and the incidence relation which connects the two families. Just as
tightness, defined by condition (iv) in Definition 2.1, must be assumed in Definition 2.2 for
both points and lines, the analogous condition C6, relating the two given families, must be
taken as an axiom.

For the metric real plane, with incidence relations as noted in connection with Example
1.1, the condition of Axiom C6 follows from the following constructive property of the real
numbers: For any real number α, if ¬(α 6= 0), then α = 0.9 For the projective model P2(R),
which motivates the axiom system, Axiom C6 is verified in Corollary 13.4, using this same
constructive property of the reals.

The definitions and axioms of projective geometry may be given a wide variety of different
arrangements. For example, in [D96] the relation P /∈ l is taken as a primitive notion, and
the condition of Axiom C6 becomes the definition of the incidence relation P ∈ l.

4. Axiom C7 is a strongly worded constructive form of the statement that distinct lines
have a unique common point. Related to this axiom are Heyting’s Axiom VI [H28], and van
Dalen’s Lemma 3(f), obtained using his axiom Ax5 [D96]. Paraphrased to fit the present
context, these statements ensure that If l and m are distinct lines, and P is a point such
that P 6= l ·m and P ∈ l, then P /∈ m. This is a weaker version of Axiom C7; the stronger
version will be needed here. It is an open problem to determine whether the two versions
are equivalent or constructively distinct, or whether the weaker version would be sufficient.
Generally, a condition using the “or” connective is found to be constructively stronger than
other versions.

5. An affine form of Axiom C7 is used as Axiom L1 in [M07].
6. Axiom C7 is the only axiom asserting a disjunction. Example 1.1 concerned the

constructive invalidity of certain principles found in classical treatments, especially those as-

9This property is listed as property (i) in Section 12, where more details are given.
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serting a disjunction. In Axiom C7, we have two hypotheses, each being a strong distinctness
condition. The verification of this axiom for the model P2(R), in Theorem 14.2, will require
both these strong hypotheses, other axioms, and other constructive properties of P2(R).

7. Axiom C7 may rightly claim a preëminent standing in the axiom system; it will be
indispensable for nearly all the constructive proofs.

Proposition 2.4. Let P,Q,R be distinct points. Then P /∈ QR if and only if PQ 6= PR.

Proof. First let P /∈ QR. From Axiom C5 we have PR 6= QR. Since Q 6= R = PR · QR, it
follows from Axiom C7 that Q /∈ PR; thus PQ 6= PR. Conversely, if PQ 6= PR, then from
P 6= Q = PQ ·QR it follows that P /∈ QR.

Proposition 2.5. If the lines l and m are distinct, then there exists a point P ∈ l such that
P /∈ m.

Proof. Set Q = l · m, using Axiom C3, and select a point P ∈ l such that P 6= Q, using
Axiom C4. It follows from Axiom C7 that either P /∈ l or P /∈ m. The first case is ruled out
by Axiom C6; thus P /∈ m.

Definition 2.6.
• A set S of points is collinear if P ∈ QR whenever P,Q,R ∈ S with Q 6= R.
• A set S of points is noncollinear if there exist distinct points P,Q,R ∈ S such that
P /∈ QR.
• A set T of lines is concurrent if l ·m ∈ n whenever l, m, n ∈ T with l 6= m.
• A set T of lines is nonconcurrent if there exist distinct lines l, m, n ∈ T such that l ·m /∈ n.
• The range of points on a line l is the set l = {P ∈ P : P ∈ l}.
• The pencil of lines through a point Q is the set Q∗ = {m ∈ L : Q ∈ m}.

Example 2.7. A stronger, classically equivalent, alternative definition for collinear set is the
condition There exists a line that passes through each point of the set. The equivalence of the
two conditions is constructively invalid for the model P2(R). The Brouwerian counterexample
given in Example 14.1 will apply; we give a simplified version here, in brief form. Consider
two points on the plane R

2, the origin, and a point close to or at the origin. The set formed
by these has at most two points, and is collinear according to our definition, yet it is not
possible, constructively, to predict what line might contain both points.10

Another distinction between the alternative definitions concerns the statement If ¬(S is
noncollinear), then S is collinear. This statement follows easily from our definition, while
under the alternative definition it is seen to be constructively invalid, using the example
above.

Proposition 2.8. If S is a noncollinear set of points, then for any line l in the plane, there
exists a point in S that lies outside l.

Proof. Choose distinct points P,Q,R ∈ S as in Definition 2.6, with P /∈ QR. It follows
from Proposition 2.4 that PQ 6= PR. By cotransitivity for lines, either l 6= PQ or l 6= PR.
It suffices to consider the first case; set Y = l · PQ. Now, either Y 6= P or Y 6= Q. In the
first subcase, we have P 6= l · PQ, so it follows from Axiom C7 that P /∈ l. Similarly, in the
second subcase we find that Q /∈ l.

10For more on the constructive eccentricities of such sets, see [M13b, Example 2.5].
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Proposition 2.9. If a set S of three distinct points is noncollinear, then P /∈ QR, where
P,Q,R are the points of S taken in any order.

Proof. Given that P /∈ QR, we have PR 6= QR and Q 6= R = PR ·QR; thus by Axiom C7
it follows that Q /∈ PR. By symmetry, we also have R /∈ PQ.

Given any statement, the dual statement is obtained by interchanging the words “point”
and “line”.

Theorem 2.10. . The definition of the projective plane P is self-dual, and the dual of each
axiom in Axiom Group C holds on P.

Proof. Definition 2.2, and Axioms C1, C2/C3, C6 are clearly self-dual.
For the dual of Axiom C4, select a point Q and a line m, with Q /∈ m, using Axiom

C1. Using Axiom C4 select three distinct points R1, R2, R3 on m. Using Definition 2.3, we
have Q 6= Ri for each i; set li = QRi. Since Q /∈ m, it follows that li 6= m for each i. Since
R1 6= R2 = m · l2, it follows from Axiom C7 that R1 /∈ l2, so l1 6= l2. By symmetry, the
three lines li are distinct. This is the desired result for the selected point Q, based on the
existence of the line m that avoids Q. Now, given an arbitrary point P , using cotransitivity
we may assume that P 6= R1. Since P 6= R1 = m · l1, it follows that either P /∈ m or P /∈ l1.
In either case, using the same method as for Q and m, we may construct three distinct lines
through P .

The dual of Axiom C5 states that “Points P and Q are distinct, P 6= Q, if and only if
there exists a line l such that P ∈ l and Q /∈ l, or vice-versa”. First, consider points P and
Q with P 6= Q, and use Axiom C4(dual) to construct distinct lines l and m through P . Now
we have Q 6= P = l ·m, so by Axiom C7 we may assume that Q /∈ l. Thus we have a line
l through P that avoids Q. Conversely, if for some line l we have Q /∈ l and P ∈ l, then
Q 6= P by Definition 2.3.

The dual of Axiom C7 states that “If Q and R are distinct points, and n is a line such
that n 6= QR, then either Q /∈ n or R /∈ n”. To prove this, set S = QR · n, and use
cotransitivity to obtain either S 6= Q or S 6= R. In the first case, since Q 6= S = QR · n, it
follows from Axiom C7 that Q /∈ n. Similarly, in the second case we find that R /∈ n. Thus
Axiom C7 is self-dual.

Theorem 2.11. Let P be any point, and l any line. Then P /∈ l if and only if l 6= m for all
lines m that pass through P .

Proof. Let P /∈ l and let m be any line through P . Using Axiom C4(dual) and cotransitivity
for lines, select a line n passing through P and distinct from m, and select any point Q ∈ l.
Then Q 6= P = m · n, so by Axiom C7 it follows that either Q /∈ m, or Q /∈ n. In the first
case, l 6= m. In the second case, l 6= n; set R = l · n. Since R ∈ l, we have P 6= R; thus
R 6= P = m · n, so R /∈ m, and again l 6= m. Thus the dual condition is satisfied.

Now let P and l satisfy the dual condition, and let Q be any point on l. Select a point
R on l, distinct from Q. Either P 6= Q or P 6= R. In the second case, set m = PR; by
hypothesis, l 6= m. Since Q 6= R = l ·m, it follows that Q /∈ m. From Axiom C5(dual), we
have P 6= Q. Hence P /∈ l.

9



Corollary 2.12. The primary relation adopted in Definition 2.3, point outside a line, is
self-dual in the context of Axiom Group C.

From this corollary, and Theorem 2.10, we obtain the duality principle:

Theorem 2.13. On the projective plane P, the dual of any result is immediately valid, with
no further proof required.

Definition 2.14. A quadrangle is an ordered set PQRS of four distinct points, the vertices,
such that each subset of three points is noncollinear. The sides are the six lines joining the
vertices. The three diagonal points are D1 = PQ · RS, D2 = PR ·QS, and D3 = PS · QR.
A quadrilateral, with four sides and six vertices, is the dual configuration.

Note for Definition 2.14. Since R /∈ PQ, we have PQ 6= RS; by symmetry, all six sides are
distinct, and the definition of the diagonal points is valid. By cotransitivity, either D2 6= P
or D2 6= R. It suffices to consider the first case; thus D2 6= PQ · PR, so by Axiom C7 we
have D2 /∈ PQ, and D2 6= D1. By symmetry, all three diagonal points are distinct.

It will be convenient to exclude certain finite planes, such as the seven-point “Fano plane”
[Fan92], an illustration of which may be found at [VY10, p. 45] or [Wei07, p. 1294]. Thus
we adopt the following:

Axiom F. Fano’s Axiom. The diagonal points of any quadrangle are noncollinear.

Proposition 2.15. Axiom F is self-dual; the diagonal lines of any quadrilateral are non-
concurrent.

Proof. Given a quadrilateral pqrs, denote four of the six vertices as P = p · q, Q = q · r,
R = r·s, S = s·p. The diagonal lines of pqrs are then d1 = (p·q)(r·s) = PR, d2 = (p·r)(q ·s),
and d3 = (p · s)(q · r) = QS.

To show that PQRS is a quadrangle, we note that since the lines p, q, r are nonconcurrent,
we have P = p · q /∈ r = QR, so the points P,Q,R are noncollinear, and similarly for the
other three triads.

The diagonal points of the quadrangle PQRS are D1 = PQ ·RS = q ·s, D2 = PR ·QS =
d1·d3, andD3 = PS ·QR = p·r; it follows that d2 = D1D3. By Axiom F, we have D2 /∈ D1D3;
thus d1 · d3 /∈ d2, and the diagonal lines d1, d2, d3 of the quadrilateral are nonconcurrent.

3 Desargues’s Theorem

We adopt Desargues’s Theorem as Axiom D, and then use it to prove the converse, which is
its dual.11

Definition 3.1.
• A triangle is an ordered triad PQR of distinct, noncollinear points. The three points are
the vertices; the lines PQ,PR,QR are the sides.

11Desargues’s Theorem and the converse are both derived in [H28, §§5-6], using axioms for projective
space; here we use only axioms for a plane.
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• Triangles PQR and P ′Q′R′ are distinct if corresponding vertices are distinct, and corre-
sponding sides are distinct.
• Distinct triangles are said to be perspective from the center O if the three lines joining
corresponding vertices are concurrent at O, and O lies outside each of the six sides.
• Distinct triangles are said to be perspective from the axis l if the three points of intersection
of corresponding sides are collinear on l, and l avoids each of the six vertices.

Axiom D. If two triangles are perspective from a center, then they are also perspective
from an axis.

Theorem 3.2. If two triangles are perspective from an axis, then they are also perspective
from a center.

Proof. We are given distinct triangles PQR, P ′Q′R′, with points A = QR · Q′R′, B =
PR · P ′R′, C = PQ · P ′Q′ collinear on a line l, with V /∈ l for all six vertices V .

Since Q /∈ l, we have A 6= Q = PQ·QR; it follows from Axiom C7 that A /∈ PQ, and thus
A 6= C. By symmetry, all three points A,B,C are distinct, the points A,Q,Q′ are distinct,
and the points B,P, P ′ are distinct. Since Q 6= A = QR · Q′R′, we have Q /∈ Q′R′ = AQ′;
thus the points A,Q,Q′ are noncollinear, and similarly for B,P, P ′. Since P /∈ l = AB, it
follows that AB 6= BP . Since A 6= B = AB ·BP , we have A /∈ BP , so AQ 6= BP ; similarly,
AQ′ 6= BP ′. Since Q′ 6= C = PQ · P ′Q′, it follows that Q′ /∈ PQ; thus QQ′ 6= PQ, and
similarly PP ′ 6= PQ. Since P 6= Q = PQ · QQ′, we have P /∈ QQ′; thus PP ′ 6= QQ′. Set
O = PP ′ ·QQ′.

The above shows that the auxiliary triangles AQQ′, BPP ′ are distinct. The lines AB,
PQ, P ′Q′, joining corresponding vertices, are concurrent at C. Since C 6= A = l · AQ, it
follows that C /∈ AQ; similarly, C /∈ AQ′. Since P /∈ QQ′, it follows that CQ = CP 6= QQ′,
and from C 6= Q = CQ · QQ′ we have C /∈ QQ′. Thus C lies outside each side of triangle
AQQ′, and similarly for triangle BPP ′.

Thus the auxiliary triangles AQQ′, BPP ′ are perspective from the center C; it follows
from Axiom D that these triangles are perspective from the axis (AQ·BP )(AQ′·BP ′) = RR′.
Thus O ∈ RR′, and the axis RR′ avoids all six vertices of the auxiliary triangles. This shows
that the lines PP ′, QQ′, RR′ are concurrent at O. Since P /∈ RR′, we have P 6= O. Since
O 6= P = PP ′ · PQ, it follows that O /∈ PQ. Similarly, O lies outside each side of the
triangles PQR, P ′Q′R′. Hence the original triangles are perspective from the center O.

4 Harmonic conjugates

Harmonic conjugates are often defined using quadrangles or triangles. We must use a less
problematic definition; it must apply to every point on the line, including the base points,
and any point for which it is not known, constructively, whether or not it coincides with a
base point. The simplicity of the definition will facilitate the verification that the joins and
intersections used are constructively meaningful, and that the result is independent of the
selection of construction elements.
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Definition 4.1. Let A and B be distinct points. For any point C on the line AB, select a
line l through C, distinct from AB, and select a point R lying outside each of the lines AB
and l. Set P = BR · l, Q = AR · l, and S = AP · BQ. Pending verifications in Proposition
4.3 and Theorem 4.7, the point D = AB · RS will be called the harmonic conjugate of C
with respect to the points A,B; we write D = h(A,B;C). The points A,B,C,D are said to
form a harmonic set, written h(A,B;C,D).

Lemma 4.2. In Definition 4.1:
(a) P 6= A, Q 6= B, P 6= Q.
(b) P /∈ AR, Q /∈ BR, A /∈ BR, B /∈ AR.
(c) AR 6= BR, AP 6= AR, AP 6= BR, BQ 6= BR, BQ 6= AR.

Proof. Since A 6= B = AB · BR, it follows from Axiom C7 that A /∈ BR; thus A 6= P ,
AP 6= BR, and AR 6= BR. By symmetry, B /∈ AR, B 6= Q, and BQ 6= AR. Since
P 6= R = AR · BR, we have P /∈ AR, so P 6= Q, and AP 6= AR. Similarly, Q /∈ BR and
BQ 6= BR.

Proposition 4.3. The construction of a harmonic conjugate, in Definition 4.1, involves
valid joins and intersections.

Proof. Using Lemma 4.2, we need only show that AP 6= BQ, and that R 6= S. By cotran-
sitivity, we may assume that C 6= B. Since C 6= B = AB · BR, it follows from Axiom C7
that C /∈ BR, so C 6= P . Since P 6= C = AB · l, it follows that P /∈ AB; thus AB 6= AP .
Since B 6= A = AB · AP , we have B /∈ AP ; thus AP 6= BQ. This shows that the definition
of S is valid. From R 6= B = BQ · BR, it follows that R /∈ BQ; hence R 6= S. This shows
that the definition of D is valid.

The next result is one of the four lemmas required for the proof of Theorem 4.7, which will
validate the harmonic conjugate construction, showing that it is independent of the choice of
construction elements. This lemma involves the special situation in which the original point
is one of the base points.

Lemma 4.4. Let A 6= B. Then h(A,B;A) = A and h(A,B;B) = B, for any selection of
construction elements l, R in Definition 4.1.

Proof. When C = A, then Q = AR · l = CR · l = C = A, so S = AP · BQ = AP ·BA = A,
and thus D = AB ·RS = AB · RA = A. Similarly when C = B.

Lemma 4.5. In Definition 4.1:
(a) If C 6= A, then Q /∈ AB, Q 6= S, S 6= A, and D 6= A.
(b) If C 6= B, then P /∈ AB, P 6= S, S 6= B, and D 6= B.

Proof. It will suffice to consider (a), since (b) will follow by symmetry. Since C 6= A =
AB · AR, it follows from Axiom C7 that C /∈ AR; thus C 6= Q. Since Q 6= C = AB · l,
we have Q /∈ AB, so Q 6= A. Since A 6= Q = BQ · AR, it follows that A /∈ BQ; thus
A 6= S. Since S 6= A = AP · AR, we have S /∈ AR, so S 6= Q, and AR 6= RS. Since
A 6= R = AR · RS, it follows that A /∈ RS, and thus A 6= D.
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The next lemma shows that for a point distinct from both base points, the traditional
quadrangle will appear; for a complete statement regarding this configuration, see Corollary
4.8.

Lemma 4.6. In Definition 4.1 for the construction of a harmonic conjugate, let C 6= A and
C 6= B. Then the four points P,Q,R, S are distinct and lie outside the line AB, and each
subset of three points is noncollinear. Furthermore, h(A,B;C) 6= C.

Proof. Using Lemma 4.5, we see that P,Q,R lie outside AB. By the same lemma, we also
have S 6= B = AB ·BQ, so it follows from Axiom C7 that S /∈ AB. Thus the four points lie
outside AB.

In Definition 4.1, we have P 6= R, Q 6= R. From Lemma 4.2, we have P 6= Q. From
Proposition 4.3, we have R 6= S. From Lemma 4.5, we have P 6= S, Q 6= S. Thus the four
points are distinct.

For the triads, we use the results of Lemmas 4.2 and 4.5. Since S 6= A = AP · AR, it
follows that S /∈ AR, so AR 6= RS. Since Q 6= R = AR · RS, it follows that Q /∈ RS; thus
the points Q,R, S are noncollinear, and similarly for P,R, S. Since P 6= B = BQ · BR, we
have P /∈ BQ = QS; thus the points P,Q, S are noncollinear. Since P /∈ AR = QR, the
points P,Q,R are noncollinear. Thus each triad is noncollinear.

Since two diagonal points of the quadrangle PQRS are A = PS ·QR and B = PR ·QS,
Axiom F, Fano’s Axiom, asserts that the third diagonal point T lies outside AB. Thus
C 6= T = PQ · RS; it follows that C /∈ RS, and hence C 6= D.

The next theorem will validate the harmonic conjugate construction.12

Theorem 4.7. The construction of the harmonic conjugate of an arbitrary point C on a
line AB, with respect to the points A,B, using Definition 4.1, results in a point D that is
independent of the selections of the line l and the point R used in the construction.

Proof. Let l′, R′ be alternative selections, and let D′ be the point resulting when the alter-
natives are used in the construction.

(1) Suppose that D′ 6= D, and suppose further that C 6= A, C 6= B, l′ 6= l, and R′ 6= R.
We will contradict these five assumptions sequentially, in reverse. This process ends in a
negation of the first assumption; thus the required conclusion, D′ = D, will follow from the
tightness property of the inequality relation for points, specified in Definition 2.1(iv).

(2) Using only the first four assumptions in (1), we note here a few basic facts. By Lemma
4.6, the points P,Q,R, S are distinct and lie outside the line AB, and each subset of three
points is noncollinear. Similarly for the points P ′, Q′, R′, S ′.

Since D 6= D′ = AB · R′S ′, it follows from Axiom C7 that D /∈ R′S ′; thus RS 6= R′S ′.
From P 6= C = l · l′ it follows that P /∈ l′. Thus P 6= P ′, and similarly, Q 6= Q′. Since P 6= Q,
we have PQ = l; similarly, P ′Q′ = l′. Thus PQ 6= P ′Q′. From Q′ 6= C = l · l′ it follows
that Q′ /∈ l = PQ, and thus QQ′ 6= PQ. Since P 6= Q = QQ′ · PQ, we have P /∈ QQ′, so
PP ′ 6= QQ′. Thus we may define O = PP ′ ·QQ′.

12A harmonic conjugate construction based on quadrangles is validated in [H28, §7], using axioms for
projective space; the construction applies only to points distinct from the base points. Here we use only
axioms for a plane, and consider all points on the base line.
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(3) Since R′ 6= R = AR · BR, it follows that either R′ /∈ AR or R′ /∈ BR. By symmetry,
it suffices to consider the second case. Since PR = BR, it follows that PR 6= P ′R′.

(4) Suppose further, in addition to the assumptions in (1), that R′ /∈ AR, PS 6= P ′S ′,
QS 6= Q′S ′, O /∈ RS, O /∈ R′S ′, and S 6= S ′.

(5) Consider the triangles PQR, P ′Q′R′. From (2) and the fifth assumption in (1), the
corresponding vertices of the triangles are distinct, and PQ 6= P ′Q′. Since R′ /∈ AR by (4),
it follows that QR = AR 6= AR′ = Q′R′. Also, PR 6= P ′R′ by (3). Thus the triangles are
distinct. Since QR · Q′R′ = A, PR · P ′R′ = B, PQ · P ′Q′ = C, and the six vertices lie
outside the line AB, these triangles are perspective from the axis AB. By the converse to
Desargues’s Theorem, established above as Theorem 3.2, the triangles are perspective from
the center PP ′ ·QQ′ = O.

Thus O ∈ RR′, and O lies outside each of the six sides of the triangles PQR, P ′Q′R′.
(6) The triangles PQS, P ′Q′S ′ are distinct, using the assumptions in (4), with PS ·

P ′S ′ = A, QS · Q′S ′ = B, PQ · P ′Q′ = C, and vertices outside the line AB. Thus these
triangles are perspective from the axis AB; it follows that they are perspective from the
center PP ′ ·QQ′ = O.

Thus O ∈ SS ′, and O lies outside each of the six sides of the triangles PQS, P ′Q′S ′.
(7) Now consider the triangles PRS, P ′R′S ′. By (1, 2, 4), the corresponding vertices

are distinct. From (2) we have RS 6= R′S ′, from (3) we have PR 6= P ′R′, and in (4) we
assumed that PS 6= P ′S ′. Thus the triangles are distinct. From (5) we have O /∈ PR, from
(6) we have O /∈ PS, and from (4) we have O /∈ RS. Similarly, O lies outside each side of
the second triangle. By (5) and (6), the triangles are perspective from the center O; thus by
Desargues’s Theorem, adopted above as Axiom D, they are also perspective from the axis
(PS · P ′S ′)(PR · P ′R′) = AB. Thus the point E := RS · R′S ′ lies on AB. It follows that
D = E, and also D′ = E. This contradiction of the first assumption in (1) negates the last
assumption in (4).

Thus S = S ′.
(8) It follows that BS = BS ′; i.e., QS = Q′S ′. This contradiction of the third assumption

in (4) negates the fifth; thus O ∈ R′S ′.
Similarly, we obtain PS = P ′S ′, a contradiction of the second assumption in (4), negating

the fourth; thus O ∈ RS. The condition QS = Q′S ′ negates the third assumption in (4);
hence QS = Q′S ′, and thus S ∈ QQ′. The second assumption in (4) is negated similarly;
thus PS = P ′S ′, and S ∈ PP ′.

(9) From (8), it is easily seen (in two ways) that S = O. In step (5), the arguments
depend only on (1) and the first assumption in (4), not yet negated; thus we may use here
the conclusion that O ∈ RR′. It follows that RS = R′S ′, a contradiction of (2), negating
the first assumption in (4).

Thus R′ ∈ AR, and AR = AR′.
(10) From (8, 9), we have QS · AR = Q′S ′ · AR′, i.e., Q = Q′, contradicting (2), and

negating the last assumption in (1). Thus R′ = R. Combining this with (7), we have
RS = R′S ′. This contradiction of (2) negates the fourth assumption in (1). Thus l′ = l.

(11) By (10), it is evident that D′ = D, contradicting the first assumption in (1), and
negating the third; thus C = B. By Lemma 4.4, it follows that D = B, and also D′ = B;
this contradicts the first assumption in (1), and negates the second. Thus C = A; using the
same lemma, this again results in a contradiction, negating the first assumption in (1).
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Hence D′ = D, and this validates the harmonic conjugate construction.

Corollary 4.8. Let A,B,C,D be collinear points, with C distinct from both points A and B.
Then D = h(A,B;C) if and only if there exists a quadrangle PQRS, with vertices outside
the line AB, such that A = PS ·QR, B = QS · PR, C ∈ PQ, and D ∈ RS.

Lemma 4.9. Let A 6= B, and let C and D be any points on the line AB.
(a) If h(A,B;C,D), then h(B,A;C,D).
(b) If D = h(A,B;C), then C = h(A,B;D).

Proof. (a) This follows from the symmetry of the construction in Definition 4.1.
(b) By cotransitivity and (a), it suffices to consider the case in which C 6= A. Using

the notation of Definition 4.1 for the construction of D, from Lemma 4.5 we have Q /∈ AB,
Q 6= S, S 6= A, and D 6= A. Define ld = RS and Rd = Q. Then D ∈ ld, ld 6= AB, and
Rd /∈ AB. Since D 6= A = AB · AR, it follows from Axiom C7 that D /∈ AR, and thus
AR 6= RS. Since Q 6= R = AR · RS, we have Q /∈ RS; i.e., Rd /∈ ld. Thus the elements ld,
Rd may be used to construct h(A,B;D).

Now P d = BRd · ld = BQ · RS = S, and Qd = ARd · ld = AQ · RS = AR · RS = R.
Thus Sd = AP d · BQd = AS · BR = AP · BR = P . It follows that RdSd = QP = l and
h(A,B;D) = AB · RdSd = AB · l = C.

Theorem 4.10. Let A and B be distinct points in a range l, and let υ be the mapping of
harmonic conjugacy with respect to the base points A,B; i.e., set Xυ = h(A,B;X), for all
points X in l. Then υ is a bijection of the range l onto itself, of order 2.

Proof. Lemma 4.9(b) shows that υ is onto l, and of order 2. Now let C1, C2 ∈ AB, with
C1 6= C2. To show that the harmonic conjugates D1 = h(A,B;C1) and D2 = h(A,B;C2)
are distinct, we note first that by cotransitivity either C1 6= A or C1 6= B, and similarly for
C2. By symmetry, only two of the four cases need be considered.

Case 1; C1 6= A and C2 6= A. Select a point R with R /∈ AB, and select a point Q ∈ AR
with Q 6= A and Q 6= R. Since Q 6= A = AB · AR, it follows from Axiom C7 that Q /∈ AB;
thus Q 6= C1 and Q 6= C2. Set l1 = C1Q and l2 = C2Q; thus l1 6= AB and l2 6= AB.
Since A 6= C1 = AB · l1, it follows that A /∈ l1, so AR 6= l1; similarly, AR 6= l2. Since
C1 6= C2 = AB · l2, we have C1 /∈ l2, so l1 6= l2. Since R 6= Q = AR · l1, it follows that
R /∈ l1; similarly, R /∈ l2. Thus l1, R and l2, R may be used in Definition 4.1 to construct the
harmonic conjugates D1 and D2.

Clearly, Q1 = Q2 = Q. Since P1 6= Q = l1 · l2, it follows that P1 /∈ l2, and thus P1 6= P2.
Since P2 6= P1 = AP1 · BR, we have P2 /∈ AP1, so AP1 6= AP2. Since S1 6= A = AP1 · AP2,
it follows that S1 /∈ AP2, and thus S1 6= S2. Since R 6= Q = AR · BQ, we have R /∈ BQ,
so BQ 6= RS2. Since S1 6= S2 = BQ · RS2, it follows that S1 /∈ RS2, and thus RS1 6= RS2.
Since D1 6= R = RS1 · RS2, we have D1 /∈ RS2, and hence, finally, D1 6= D2.

Case 2; C1 6= A and C2 6= B. By Lemma 4.5 it follows that D1 6= A. From cotransitivity
it follows that either D2 6= D1 or D2 6= A, so we may assume that D2 6= A. From Lemmas
4.5 and 4.9(b), we have C2 6= A, and now Case 1 applies.
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5 Projectivities

We use the Poncelet [Pon22] definition of projectivity. Theorem 5.3 will show that every
Poncelet projectivity is a von Staudt [Sta47] projectivity.

Definition 5.1.
• The projection ρ : l → m, of a range l of points onto a range m, from the center T , where
the point T lies outside both lines l and m, is the bijection defined by Xρ = TX ·m, for all
points X in the range l. We write ρ = ρ(T ; l, m).
• The projection ρ : P ∗ → Q∗, of a pencil P ∗ of lines onto a pencil Q∗, by the axis n, where
the line n avoids both points P and Q, is the bijection defined by lρ = (n · l)Q, for all lines
l in the pencil P ∗. We write ρ = ρ(n;P,Q).
• The section of a pencil P ∗, by a line m that avoids the point P , is the bijection ρ : P ∗ → m
defined by lρ = l ·m, for all lines l in the pencil P ∗. The dual and inverse ρ−1 : m → P ∗,
defined by X → PX, for all points X in the range m, is also called a section.
• Any projection or section is said to be a perspectivity.

Definition 5.2.
• A projectivity is a finite product of perspectivities. These mappings are often called
Poncelet projectivities.
• When, for example, a projectivity π maps the points A,B,C into the points D,E, F , in
the order written, we write ABC〈π〉DEF .
• We write π 6= ι, where ι is the identity, when, for example, there exists a point A in the
range such that Aπ 6= A.

Theorem 5.3. A projectivity preserves harmonic conjugates. Thus every Poncelet projec-
tivity is a von Staudt projectivity.

Proof. It will suffice to prove that a harmonic set of points in a range r projects onto a
harmonic set of lines in a pencil P ∗, where P /∈ r. Given points A,B,C,D on r, with
D = h(A,B;C), and a = PA, b = PB, c = PC, d = PD, it is required to show that
d = h(a, b; c). Since A 6= B, it follows from Proposition 2.4 that a 6= b. By cotransitivity, it
suffices to consider the case in which C 6= A.

Suppose that h(a, b; c) 6= d, and suppose further that C 6= B. Thus c 6= b. Setting l = c,
we have l 6= AB. Select a point R ∈ b so that R 6= B and R 6= P . Since R 6= B = AB · b,
it follows from Axiom C7 that R /∈ AB. Since R 6= P = b · c, we have R /∈ l. Thus the
elements l, R may be used in Definition 4.1 to construct the harmonic conjugate h(A,B;C);
it follows that D = AB · RS, where S = AP · BQ, P = BR · l, and Q = AR · l.

To construct the harmonic conjugate h(a, b; c), we first set L = Q; then L ∈ c. By Lemma
4.2, L 6= P , and by Lemma 4.5, L /∈ r. Thus we may use the elements L, r to construct
the line h(a, b; c) using Definition 4.1(dual). It follows that h(a, b; c) = (a · b)(r · s), where
s = (a ·p)(b · q), p = (b · r)L, and q = (a · r)L. Now s = (AP ·BQ)(BP ·AQ) = SR, and thus
h(a, b; c) = P (AB · RS) = PD = d, contradicting the first assumption above, and negating
the second; hence C = B.

It follows that c = b. By Lemma 4.4 we have D = B, so d = b. By the dual of the same
lemma, h(a, b; c) = b; thus h(a, b; c) = d, contradicting the first assumption above. Hence
h(a, b; c) = d.
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The existence of projectivities between ranges will be established in Theorem 5.6 for
the general situation where it is not known, constructively, whether or not the two ranges
coincide, or, if distinct, whether the common point coincides with one of the points specified
to be mapped. We first consider two lemmas concerning special situations in which some of
this information is available.

Lemma 5.4. Let l and m be distinct lines, with common point A. If Q,R are distinct points
on l, and Q′, R′ are distinct points on m, with all four points distinct from A, then there
exists a projection ρ : l → m such that AQR〈ρ〉AQ′R′.

Proof. Since Q′ 6= A = l ·m, it follows from Axiom C7 that Q′ /∈ l, so Q′ 6= Q, and QQ′ 6= l;
similarly, RR′ 6= l. Since R 6= Q = QQ′ · l, it follows that R /∈ QQ′, so RR′ 6= QQ′. Set
S = QQ′ ·RR′; then R 6= S. Now S 6= R = RR′ · l, so S /∈ l, and by symmetry, S /∈ m. Thus
we may define ρ = ρ(S; l, m); it is clear that AQR〈ρ〉AQ′R′.

Lemma 5.5. Let l and m be distinct lines, with common point O. If P,Q,R are distinct
points on l, and P ′, Q′, R′ are distinct points on m, with all six points distinct from O, then
there exists a projectivity π : l → m such that PQR〈π〉P ′Q′R′.

Proof. Since Q 6= O = l ·m, it follows that Q /∈ m; thus Q 6= P ′, and similarly for all six
points. Set n = P ′Q; thus l · n = Q. Since Q 6= R = RR′ · l, it follows from Axiom C7 that
Q /∈ RR′, so RR′ 6= n. Thus we may define R0 = RR′ · n. Then Q 6= R0, and by symmetry,
P ′ 6= R0. By Lemma 5.4, there exists a projection ρ1 : l → n such that PQR〈ρ1〉P

′QR0.
Also, n · m = P ′, so by the same lemma there exists a projection ρ2 : n → m such that
P ′QR0〈ρ2〉P

′Q′R′. Setting π = ρ2ρ1, we obtain PQR〈π〉P ′Q′R′.

For a constructive proof of Theorem 5.6, and also for Lemma 8.6, which will be needed
for Pascal’s Theorem, we require more points on a line than has been assumed in Axiom
C4. Thus we adopt an additional axiom here. The determination of the exact number of
required points remains an open problem.

Axiom E. Extension. There exist at least six distinct points lying on any given line.

The dual statement is easily verified.

Theorem 5.6. Given any three distinct points P,Q,R in a range l, and any three distinct
points P ′, Q′, R′ in a range m, there exists a projectivity π : l → m such that PQR〈π〉P ′Q′R′.
Similar projectivities exist for other pairs of ranges or pencils.

Proof. Select a point O1 ∈ l, distinct from the three given points in the range l, and a
line l′ through O1, distinct from l. Select a point O2 ∈ m, distinct from the three given
points in m, and a line m′ through O2, distinct from both m and l′. Set O3 = l′ · m′,
select distinct points P1, Q1, R1 ∈ l′ distinct from both O1 and O3, and select distinct points
P2, Q2, R2 ∈ m′ distinct from both O2 and O3. Now Lemma 5.5 constructs projectivities
such that PQR → P1Q1R1 → P2Q2R2 → P ′Q′R′.

Classically, at most three perspectivities are needed for Theorem 5.6. The constructive
proof here uses three applications of Lemma 5.5, each of which requires two projections, for a
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total of six. The determination of the minimum number of perspectivities for a constructive
proof is an open problem.

Definition 5.7. A projectivity π, between two ranges or two pencils, is said to be nonper-
spective if xπ 6= x for every element x in the domain.

The following lemma will be needed for Corollary 6.3, and at several places in the study
of conics, which will be constructed using nonperspective projectivities.

Lemma 5.8. Let l and m be distinct lines with common point O, let A,B,C be distinct
points on l, let A′, B′, C ′ be distinct points on m, with all six points distinct from O, and
define

R = AA′ · BB′, S = BB′ · CC ′, n = A′C,

ρ1 = ρ(R; l, n), ρ2 = ρ(S;n,m), π = ρ2ρ1.

Then ABC〈π〉A′B′C ′, and the following conditions are equivalent:
(a) The projectivity π : l → m is nonperspective.
(b) Oπ 6= O.
(c) The lines AA′, BB′, CC ′ are nonconcurrent.
(d) R 6= S.

Proof. Except for a change in notation, π is the projectivity constructed in Lemma 5.5;
thus the definitions are valid, and ABC〈π〉A′B′C ′. That (a) implies (b) requires no proof.
The equivalence of (c) and (d) is the dual of Proposition 2.4. Setting O1 = Oρ1 , we have
Oπ = Oρ2

1 = SO1 ·m.
(b) implies (a). Given that Oπ 6= O, consider any point X in the range l. By cotransi-

tivity, either Xπ 6= O or Xπ 6= Oπ. In the first case, Xπ 6= l ·m; by Axiom C7 it follows that
Xπ /∈ l, and Xπ 6= X. In the second case, X 6= O = l ·m, so X /∈ m, and X 6= Xπ.

(b) implies (d). Since Oπ 6= O = RO ·m, it follows that Oπ /∈ RO, so SO1 6= RO = RO1.
Since R 6= O1 = RO1 · SO1, we have R /∈ SO1, and R 6= S.

(d) implies (b). Given that R 6= S, with R, S ∈ BB′, we have BB′ = RS; thus B ∈ RS.
Since B 6= O = RO · l, it follows that B /∈ RO = RO1, so RS 6= RO1. Since S 6= R =
RS ·RO1, we have S /∈ RO1; thus SO1 6= RO1. Since A 6= O, we have A′ = Aρ1 6= Oρ1 = O1.
Since O1 6= A′ = m·n, it follows thatO1 /∈ m, and thus O1 6= Oπ. Since Oπ 6= O1 = RO1·SO1,
we have Oπ /∈ RO1, and hence Oπ 6= O.

6 The Fundamental Theorem

The Fundamental Theorem of Projective Geometry is the basis for many results, including
Pascal’s Theorem, the goal of the present work. The crucial component must be derived
from an axiom.

Axiom T. If a projectivity of a range or pencil onto itself has three distinct fixed elements,
it is the identity.
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Classically, Axiom T has the equivalent form, If a projectivity π from a range onto itself
has distinct fixed points M and N , with π 6= ι, and Q is a point of the range distinct from
both M and N , then Qπ 6= Q. Constructively, this appears to be a stronger statement, since
the implication “¬(Qπ = Q) implies Qπ 6= Q” is constructively invalid. To give a proof of
the stronger statement, or to give a Brouwerian counterexample using the analytic model
P
2(R), remains an open problem.

Theorem 6.1. Fundamental Theorem. Given any three distinct points P , Q, R in a range
l, and any three distinct points P ′, Q′, R′ in a range m, there exists a unique projectivity π :
l → m such that PQR〈π〉P ′Q′R′. Similar properties hold also for other types of projectivity.

Proof. The required projectivity was constructed in Theorem 5.6; uniqueness follows from
Axiom T.

Corollary 6.2. If a projectivity from a range to a distinct range has a fixed point, then it is
a perspectivity.

Proof. If A is a fixed point of the projectivity π, then it is the point common to the two
ranges. Choose distinct points Q,R in the domain, distinct from A, denoting the images
Q′, R′; thus AQR〈π〉AQ′R′. Use Lemma 5.4 to construct a projection ρ that agrees with π
at these three distinct points; it follows that π = ρ.

Corollary 6.3. Let l and m be distinct lines with common point O, let A,B,C be distinct
points on l, let A′, B′, C ′ be distinct points on m, with all six points distinct from O, and let
π be the projectivity from l to m such that ABC〈π〉A′B′C ′. Then π is nonperspective if and
only if the lines AA′, BB′, CC ′ are nonconcurrent.

Proof. Lemma 5.8 constructs a projectivity that agrees with π at three distinct points.

Definition 6.4. Let π : l → m be a nonperspective projectivity between distinct ranges l
and m. Set O = l ·m, V = Oπ, and U = Oπ−1

. Pending verification below, the line UV will
be called the axis of homology for π.

Theorem 6.5. Let l and m be distinct lines with common point O, and let π : l → m be a
nonperspective projectivity. If A and B are distinct points on l, each distinct from O, then
A 6= Bπ, B 6= Aπ, ABπ 6= BAπ, and the point ABπ ·BAπ lies on the axis of homology for π.

Proof. We use the notation of Definition 6.4. Since π is nonperspective, we have V 6= O =
l ·m, so it follows from Axiom C7 that V /∈ l and V 6= U . Thus the definition of the axis of
homology UV is valid. Since A 6= O = l ·m, we have A /∈ m, so A 6= Bπ; similarly, B 6= Aπ.
By cotransitivity, either A 6= U or B 6= U . In the first case, we have Aπ 6= O = l · m, so
Aπ /∈ l, OAπ = m, and BAπ 6= l. Since A 6= B = BAπ · l, it follows that A /∈ BAπ, so
ABπ 6= BAπ. By symmetry, we obtain the same result in the second case. Thus we may set
Q = ABπ · BAπ.

Since Aπ /∈ l, we have a projection ρ1 : l → Aπ∗. Since A 6= O, it follows that A /∈ m, so
we also have the section ρ2 : A

∗ → m. Define π1 = ρ1π
−1ρ2, a projectivity from A∗ to Aπ∗.

Since AAπ is a fixed line, Corollary 6.2(dual) shows that π1 is a perspectivity.
Now (AU)π1 = AπU , (AV )π1 = m, and (ABπ)π1 = AπB. Thus the axis of the perspec-

tivity π1 passes through all three of the points AU · AπU = U , AV ·m = V , and Q. Hence
Q lies on UV .
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Corollary 6.6. Let l and m be distinct lines with common point O, let π : l → m be a
nonperspective projectivity, let h be the axis of homology for π, and let A be a point on l with
A 6= O and Aπ 6= O. If B is a point on l with B 6= O and B 6= A, then Bπ = A(BAπ ·h) ·m.

Proof. We have h = UV , where V = Oπ and U = Oπ−1

, according to Definition 6.4. Since
π is nonperspective, Oπ 6= O. Applying π−1, we have O 6= Oπ−1

= U. Since U 6= O = l ·m,
it follows from Axiom C7 that U /∈ m, and thus m 6= h. Similarly, from V 6= O we obtain
l 6= h. From Aπ 6= O, applying π−1, we have A 6= U = l · h; thus A /∈ h. From A 6= O,
it follows that Aπ 6= Oπ = V = m · h; thus Aπ /∈ h, so BAπ 6= h. Now we may set
E = BAπ · h; since A /∈ h, we have A 6= E. By the theorem, E ∈ ABπ, so Bπ ∈ AE. Thus
Bπ = AE ·m = A(BAπ · h) ·m.

Notes for Theorem 6.5 and Corollary 6.6. The restrictions on the points, or some such, are
necessary. For example, if A = O and B = U , then the expression ABπ in the theorem
takes the meaningless form OO. In the corollary, if the conditions are all satisfied except
that Aπ = O, then the expression A(BAπ · h) reduces to UU .

The concept of projectivity may be extended to the entire plane. A collineation of the
plane P is a bijection of the family P of points, onto itself, that preserves collinearity and
noncollinearity. A collineation σ induces an analogous bijection σ′ of the family L of lines.
A collineation is projective if it induces a projectivity on every range and pencil.

Proposition 6.7. A projective collineation with four distinct fixed points, each three of which
are noncollinear, is the identity.

Proof. Let the collineation σ have the fixed points P,Q,R, S as specified; thus the three
distinct lines PQ, PR, PS are fixed. The mapping σ′ induces a projectivity on the pencil
P ∗; by the Fundamental Theorem this projectivity is the identity. Thus every line through
P is fixed under σ′; similarly, the same is true for the other three points.

Now let X be any point on the plane P. By three successive applications of cotransitivity
for points, we may assume thatX is distinct from each of the points P,Q,R. Since PQ 6= PR
by Proposition 2.4, using cotransitivity for lines we may assume that XP 6= PQ. Since
Q 6= P = XP · PQ, it follows from Axiom C7 that Q /∈ XP ; thus XP 6= XQ. Since
X = XP ·XQ, and the lines XP and XQ are fixed under σ′, it follows that σX = X.

The construction of a collineation of the plane mapping any set of four distinct points,
each three of which are noncollinear, onto any similar set of corresponding points, using a
constructive synthetic theory, is an open problem.

7 Involutions

The property of the harmonic conjugate construction, that the process applied again to the
resulting point produces the original point, Lemma 4.9(b), admits a generalization.

Definition 7.1. An involution is a projectivity, from a range or pencil to itself, of order 2.
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Theorem 7.2. Let A and B be distinct points in a range l, and let υ be the mapping of
harmonic conjugacy with respect to the base points A,B; i.e., set Xυ = h(A,B;X), for all
points X in the range l. Then υ is an involution.

Proof. Theorem 4.10 shows that υ is a bijection of the range l onto itself, of order 2.
To show that υ is a projectivity, we use Definition 4.1 and the notation adopted there.

Select a point R outside AB, and select a point P on BR distinct from both B and R.
Construct the perspectivities ρ1(P ;AB,AR), ρ2(B;AR,AP ), ρ3(R;AP,AB), and the pro-
jectivity πB = ρ3ρ2ρ1.

Let X be any point in the range l, with X 6= B. Since P 6= B = BR · AB, it follows
from Axiom C7 that P /∈ AB, so PX 6= AB; set lX = PX. Since B 6= X = AB · PX, we
have B /∈ PX; thus BR 6= PX. Now R 6= P = BR · PX, so R /∈ lX . Thus, to construct the
harmonic conjugate Xυ, we may use the point R and the line lX in the definition. We find
that XπB = R(B(PX ·AR) ·AP ) ·AB = R(B(lX ·AR) ·AP ) ·AB = R(BQX ·AP ) ·AB =
RSX · AB = Xυ. Thus πB agrees with υ for all points in the range l that are distinct from
B.

Similarly, construct the projectivity πA; it will agree with υ for all points in l that are
distinct from A. Choose any three distinct points on l, each distinct from both A and B.
Since πA and πB agree at these three points, by the Fundamental Theorem they are the same
projectivity; call it π. By cotransitivity, each point in the range l is either distinct from A,
or distinct from B. Hence υ = π.

Lemma 7.3. Given any four distinct points A,B,C,D in a range l, there exists a projectivity
π from l to itself such that ABCD〈π〉BADC.

Proof. Select a line m through D, distinct from l, and select a point Q outside both lines
l and m. Set ρ1 = ρ(Q; l, m). Since A 6= D = l · m, it follows from Axiom C7 that
A /∈ m, and thus AQ 6= m. Similarly, both B and C lie outside m, and BQ and CQ are
both distinct from m. Since A 6= C = CQ · l, we have A /∈ CQ. Similarly, B /∈ CQ, so
BQ 6= CQ. Set ρ2 = ρ(A;m,CQ), R = AQ · m, S = BQ · m, and T = CQ · m. Since
S 6= Q = BQ · CQ, it follows that S /∈ CQ and AS 6= CQ; set U = AS · CQ. Since
D 6= B = BQ · l, we have D /∈ BQ, so D 6= S. Since S 6= D = l ·m, we have S /∈ l, so S 6= A.
Finally, set ρ3 = ρ(S;CQ, l). It is clear that ABCD〈ρ1〉RSTD〈ρ2〉QUTC〈ρ3〉BADC; set
π = ρ3ρ2ρ1.

Theorem 7.4. A projectivity from a range to itself, that interchanges two distinct elements,
is an involution.

Proof. Let AB〈π〉BA, where A 6= B. Let X be any point in the range, and set Y = Xπ. By
symmetry and cotransitivity, it suffices to consider the case in which X 6= A. Suppose that
Y π 6= X, and suppose further that Y 6= X and X 6= B.

Applying π, it follows that Y 6= A and Y 6= B. Using Lemma 7.3, construct a projectivity
π1 with ABXY 〈π1〉BAYX. Since the projectivity π agrees with π1 at three distinct points,
by the Fundamental Theorem we have π = π1, so Y π = X. This contradicts the first
assumption above, and negates the last.

Thus X = B; applying π here, we have Y = A. Thus Y π = B = X, contradicting the first
assumption and negating the second. Thus Y = X, and it follows that Y π = Xπ = Y = X,
contradicting and negating the first assumption. Hence Y π = X.
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Theorem 7.5. If an involution π on a range l has a fixed point M , then it has a second,
distinct, fixed point N , and π is the mapping of harmonic conjugacy with respect to these
points; thus Xπ = h(M,N ;X), for all points X in l.

Proof. Select a point A in l so that Aπ 6= A. Either M 6= A or M 6= Aπ; in either case,
applying π we find that M is distinct from both A and Aπ. Set N = h(A,Aπ;M); by Lemma
4.6, N 6=M , and by Lemma 4.9(a), we have N = h(Aπ, A;M). Applying the projectivity π,
we have Nπ = h(A,Aπ;M) = N . Thus N is a second fixed point.

If an alternative selection of the point A results in the second fixed point N1 6=M , then,
by the Fundamental Theorem, N1 = N , since N1 6= N would mean that we have three
distinct fixed points. Thus, for any point X in the range l, if Xπ 6= X, then h(X,Xπ;M,N).

Now consider any point X in the range l. By cotransitivity, we may assume that X 6=M .
Suppose that Xπ 6= h(M,N ;X), and suppose further that X 6= N and X 6= Xπ. We have
h(X,Xπ;M,N) from above. By Theorem 5.3 and Lemma 7.3, it follows that h(M,N ;X,Xπ),
contradicting the first assumption, and negating the last; thus X = Xπ. Now we have three
distinct fixed points; this contradiction negates the second assumption. Thus X = N , a
contradiction negating the first assumption. Hence Xπ = h(M,N ;X).

8 Conics

We define conics by means of projectivities, using the method of Steiner [Ste32].

Definition 8.1. Let π : U∗ → V ∗ be a nonperspective projectivity between distinct pencils
of lines. The conic κ = κ(π;U, V ) defined by π is the locus of points {l · lπ : l ∈ U∗}.13 For
any point X, we say that X lies outside κ, written X /∈ κ, if X 6= Y for all points Y on κ.
At times, the locus κ may be called a point-conic; the dual locus is a line-conic.

Proposition 8.2. Let κ = κ(π;U, V ) be a conic.
(a) The base points U and V are points of κ.
(b) Any three distinct points on κ are noncollinear.
(c) For any point P on κ, the line l ∈ U∗, such that P = l · lπ, is unique. If P 6= U , then

l = UP , while if P 6= V , then l = (V P )π
−1

.
(d) For any point X, if ¬(X /∈ κ), then X ∈ κ.

Proof. (a) The line o = UV in the pencil U∗ has a corresponding line oπ in V ∗; this pair of
lines determines the point o · oπ = V of κ. Similarly for U .

(b) This follows from Corollary 6.3(dual).
(c) By cotransitivity, either P 6= U or P 6= V . In the first case, both U and P lie on l, so

l = UP . Similarly, in the second case we have lπ = V P .
(d) Let X be a point on the plane such that ¬(X /∈ κ). By cotransitivity, we may assume

that X 6= U ; set x = UX and Z = x · xπ. Suppose that X 6= Z. We will show that X 6= Y
for any point Y of κ. Either Y 6= X or Y 6= U . We need to consider only the second case;
set y = UY . By (c), we have Y = y · yπ. Either Y 6= X or Y 6= Z; again we need to

13With π being nonperspective, this is usually called a non-singular conic; we leave the constructive study
of the singular conics for a later time.
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consider only the second case. Since Y 6= x · xπ, it follows from Axiom C7 that either Y /∈ x
or Y /∈ xπ. In the first subcase, y 6= x. In the second subcase, yπ 6= xπ, and since π is a
bijection we again have y 6= x. Since X 6= U = x · y, it follows that X /∈ y, and X 6= Y . This
shows that X /∈ κ, a contradiction. Hence X = Z, and now we have X ∈ κ.

Proposition 8.3. Given any five distinct points U,V,A,B,C, each three of which are non-
collinear, there exists a unique conic, with base points U and V, containing all five points.

Proof. This follows from Corollary 6.3(dual).

The following three lemmas are required for Pascal’s Theorem. The first is a special case;
two vertices of the hexagon are the base points of a projectivity that defines the conic.

Lemma 8.4. Let κ = κ(π;U, V ) be any conic, and A,B,C,X points of κ, with all six points
distinct. Then the three points O = UA · V C, Y = UX ·BC, Z = V X ·AB are distinct and
collinear.

Proof. That the three points in question are properly defined follows from Proposition 8.2(b).
Set D = UA ·BC and E = V C ·AB; thus D 6= A, so DA = UA, and E 6= C, so CE = V C.
Consider the sections ρ1 : U

∗ → BC and ρ2 : V
∗ → AB; thus UA,UB, UC, UX〈ρ1〉DBCY

and V A, V B, V C, V X〈ρ2〉ABEZ. Setting π1 = ρ2πρ
−1

1 , we obtain a projectivity π1 : BC →
AB, with DBCY 〈π1〉ABEZ. Since B is a fixed point, it follows from Corollary 6.2 that π1
is a projection; the center is DA ·CE = UA ·V C = O. The center of a projection lies outside
each of the ranges it maps; thus the three points are distinct. Also, Z = Y π1 = OY · AB,
and hence Z ∈ OY .

Lemma 8.5. Let U,A,B, C, V,X be distinct points, each three of which are noncollinear. If
the three points O = UA ·V C, Y = UX ·BC, Z = V X ·AB are collinear, then there exists a
nonperspective projectivity π : U∗ → V ∗ such that all six points are on the conic κ(π;U, V ).

Proof. Set a = UA, b = UB, c = UC, x = UX, a′ = V A, b′ = V B, c′ = V C, x′ = V X,
l = BC, m = AB, D = a · l, and E = c′ ·m; thus O = a · c′, Y = x · l, and Z = x′ ·m.

Since C /∈ a, we have C 6= O. Since O 6= C = c′ · l, it follows from Axiom C7 that
O /∈ l. Similarly, O /∈ m, so we may construct the projection ρ = ρ(O; l, m). We have
Dρ = OD ·m = a ·m = A, and Cρ = OC ·m = c′ ·m = E. By hypothesis, Z ∈ OY , so
Y ρ = OY ·m = Z. Thus DBCY 〈ρ〉ABEZ. We also have sections of the pencils, ρ1 : U

∗ → l
and ρ2 : V ∗ → m, such that abcx〈ρ1〉DBCY and a′b′c′x′〈ρ2〉ABEZ. Setting π = ρ−1

2 ρρ1,
we obtain a projectivity π : U∗ → V ∗, with abcx〈π〉a′b′c′x′. Since the points a · a′, b · b′,
c · c′ are noncollinear, it follows from Corollary 6.3(dual) that π is nonperspective. The conic
κ(π;U, V ) clearly includes all six points.

Lemma 8.6. (Steiner) Given any conic κ = κ(π;U, V ), and any distinct points U1, V1 on κ,
there exists a unique nonperspective projectivity π1 : U

∗
1 → V ∗

1 such that κ = κ(π1;U1, V1).

Proof. (a) Special case; U1 = U and V1 = W , where W is any point of κ that is distinct
from both U and V . Select points A,B on κ such that the points U,A,W,B, V are distinct,
and let X be any point of κ distinct from these five. Applying Lemma 8.4 to the points
U,A,W,B, V,X, we obtain three collinear points of interest. A cyclic permutation of these

23



six points results in W,B, V,X, U,A, with the same three points of interest. Thus Lemma
8.5 applies, and we obtain a conic κ1 = κ(π1;U,W ) containing all six points. By Proposition
8.3, this conic, with base points U,W , is independent of the choice of X.

Let Y be any point of κ, and suppose that Y /∈ κ1. Now Y is distinct from each of the
points U, V,W,A,B, so the construction of κ1 may be repeated with Y in place of X; thus
Y is on κ1, a contradiction. From Proposition 8.2(d), it follows that Y ∈ κ1; thus κ ⊂ κ1.

Applying the same construction method, now to κ1, we obtain a conic κ2 = κ(π2;U, V ),
with κ1 ⊂ κ2. By Proposition 8.3, κ = κ2, and hence κ = κ1.

(b) General case. Using Axiom E, select distinct points W1,W2 on κ, each distinct from
all four points U, V, U1, V1. Four applications of special case (a) result in the sequence (U, V ),
(U,W2), (W1,W2), (U1,W2), (U1, V1) of base-point changes.

(c) The uniqueness follows from the Fundamental Theorem.

Theorem 8.7. There exists a unique conic containing any given five distinct points, each
three of which are noncollinear.

Proof. The existence follows from Theorem 5.6 and Corollary 6.3(dual), the uniqueness from
Proposition 8.3 and Lemma 8.6.

9 Pascal’s Theorem

For information concerning Blaise Pascal (1623-62), see [Kli72, p. 295-299].

Definition 9.1. A simple hexagon is a set ABCDEF of six distinct points, in cyclic order,
each three of which are noncollinear. The six points are the vertices; the six lines joining
successive points are the sides. The pairs of sides (AB,DE), (BC,EF ), (CD,FA) are said
to be opposite.

Theorem 9.2. (Pascal) If a simple hexagon is inscribed in a conic, the three points of
intersection of the pairs of opposite sides are distinct and collinear.

Proof. Label the inscribed hexagon as UABCV X, and apply Lemma 8.6 to view the conic
as κ = κ(π;U, V ). Now Lemma 8.4 yields the result.

According to legend, Pascal gave in addition some four hundred corollaries. Here we have
only one; it recalls a traditional construction method for drawing a conic “point by point”.14

Corollary 9.3. Let A,B,C,D,E be five distinct points of a conic κ, and let l be a line
through E that avoids A,B,C,D. If l passes through a distinct sixth point F of κ, then
F = l · A(CD · (AB ·DE)(BC · l)).

Proof. The Pascal line p of the hexagon ABCDEF passes through the three points X =
AB ·DE, Y = BC · EF , and Z = CD ·AF . Since A /∈ CD, we have A 6= Z, so AF = AZ.
Since B /∈ CD, we have BC 6= CD, so by cotransitivity for lines either p 6= BC or p 6= CD.
In the first case, since C /∈ EF , we have C 6= Y = BC · p, so it follows from Axiom C7 that
C /∈ p. Thus in both cases we have CD 6= p, and Z = CD · p. Now F = EF ·AF = l ·AZ =
l · A(CD · p) = l · A(CD ·XY ) = l · A(CD · (AB ·DE)(BC · l).

14For example, as in [You30, p. 68].

24



10 Tangents and secants

The construction of poles and polars with respect to a conic, in Section 11, will involve the
properties of tangents and secants.

Definition 10.1. Let κ be a conic, and P a point on κ. A line t that passes through P is
said to be tangent to κ at P if P is the unique point of κ that lies on t. The dual concept is
a point of contact L of a line l that belongs to a line-conic λ.

Proposition 10.2. Let κ be a conic, P a point on κ, and t a line passing through P . The
following are equivalent.

(a) The line t is tangent to κ at P .
(b) For any point Q of κ, if Q 6= P and π is the nonperspective projectivity such that

κ = κ(π;Q,P ), then t = (QP )π.
(c) There exists a point Q of κ with Q 6= P , and corresponding nonperspective projectivity

π, with κ = κ(π;Q,P ), such that t = (QP )π.

Proof. Given (a), and a point Q as specified in (b), set u = tπ
−1

. Since u · t is a point of κ
which lies on t, it must be P ; thus u = QP , so t = uπ = (QP )π.

Given (c), and a point Q as specified, let R be a point on κ with R ∈ t. Suppose that
R 6= P ; thus t = PR. From Proposition 8.2(c), applied to π−1 : P ∗ → Q∗, it follows that
R = t · tπ

−1

= t ·QP = P , a contradiction; hence R = P , and this proves (a).

Corollary 10.3. Let κ be a conic, and P any point on κ.
(a) There exists a unique line t that is tangent to κ at P .
(b) Let t be the tangent to κ at P . If Q is any point on κ, with Q 6= P , then Q /∈ t.

Proof. (a) follows directly from Lemma 8.6 and Proposition 10.2. For (b), select any point
Q as specified in (b) of the same proposition; thus t = (QP )π. Since π is nonperspective, we
have t 6= QP . Since Q 6= P = t ·QP , it follows from Axiom C7 that Q /∈ t.

Theorem 10.4. Let κ be any conic, and let UABCV be a pentagon inscribed in κ, with five
distinct vertices. The point of intersection of the tangent u at U , with the side opposite, is
collinear with the points of intersection of the other two pairs of nonadjacent sides. That is,
the three points O = UA · V C, Z = UV · AB, Y = u · BC are collinear.

Proof. Using Lemma 8.6, construct the projectivity π so that κ = κ(π;U, V ). That the
three points in question are properly defined follows from Proposition 8.2(b) and Proposition
10.3(b). Set D = UA ·BC, and E = V C ·AB. Since A /∈ BC, we have A 6= D, so DA = UA.
Since C /∈ AB, we have C 6= E, so CE = V C.

Construct the sections ρ1 : U∗ → BC and ρ2 : V ∗ → AB; clearly, UA,UB, UC, u
〈ρ1〉DBCY and V A, V B, V C, V U〈ρ2〉ABEZ. Setting π1 = ρ2πρ

−1

1 , we obtain a projectivity
π1 : BC → AB, with DBCY 〈π1〉ABEZ. Since B is a fixed point, it follows from Corollary
6.2 that π1 is a projection; the center is DA ·CE = UA ·V C = O. Thus Z = Y π1 ∈ OY .

Theorem 10.5. Let κ be any conic, and let UABV be a quadrangle inscribed in κ. The
point of intersection of the tangent at U with the side V B, the point of intersection of the
tangent at V with the side UA, and the diagonal point lying on UV , are collinear.
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Proof. Let π be the projectivity such that κ = κ(π;U, V ), and denote the tangents at U
and V by u and v. The three points in question are then Y = u · V B, O = v · UA, and
Z = UV · AB. Set D = UA · V B, and E = v · AB. Since A /∈ V B, we have A 6= D, so
DA = UA. Since V /∈ AB, we have V 6= E, so V E = v.

Construct the sections ρ1 : U
∗ → V B and ρ2 : V

∗ → AB; it is clear that UA,UB, UV, u
〈ρ1〉DBV Y and V A, V B, v, V U〈ρ2〉ABEZ. Setting π1 = ρ2πρ

−1

1 , we obtain a projectivity
π1 : V B → AB, with DBV Y 〈π1〉ABEZ. Since B is a fixed point, π1 is a projection with
center DA · V E = UA · v = O. Thus Z = Y π1 ∈ OY .

Theorem 10.6. Let κ be any conic, and let UABV be a quadrangle inscribed in κ. The
point of intersection of the tangents at U and V , and the two diagonal points not lying on
UV , are distinct and collinear.

Proof. Construct the projectivity π so that κ = κ(π;U, V ). Denote the tangents at U and V
by u and v; the three points in question are then O = u · v, D1 = UA · V B, D2 = UB · V A.
Set E = u · V B and F = v ·UB. Since U /∈ V B, we have U 6= E, so EU = u; by symmetry,
FV = v.

Construct the sections ρ1 : U∗ → V B and ρ2 : V ∗ → UB; clearly, u, UB, UV, UA
〈ρ1〉EBV D1 and V U, V B, v, V A〈ρ2〉UBFD2. Setting π1 = ρ2πρ

−1

1 , we obtain a projectivity
π1 : V B → UB, with EBVD1〈π1〉UBFD2. Since B is a fixed point, π1 is a projection;
the center is EU · FV = u · v = O. The center of a projection lies outside each of the
ranges it maps; thus the three points are distinct. Since D2 = Dπ1

1 ∈ OD1, the points are
collinear.

Corollary 10.7. Given any conic κ = κ(π;U, V ), the center of homology of the projectivity
π is the intersection u · v of the tangents to κ at U and V .

The following theorem is related to the existence of secants, to be constructed in Theorem
10.10.

Theorem 10.8. The following two statements are equivalent:
(a) The tangents at any three distinct points of a point-conic are nonconcurrent; the

points of contact of any three distinct lines of a line-conic are noncollinear.
(b) The family of all tangents to a point-conic is a line-conic; the family of all points of

contact of a line-conic is a point-conic.

Proof. Since (a) follows directly from (b) and Proposition 8.2(b), with its dual, it only
remains to prove that (a) implies (b).

Given a point-conic κ = κ(π;A,B), select a point C ∈ κ, distinct from both A and B, and
let a, b, c be the tangents at these three points. Since A 6= B, by Proposition 10.3(b) we have
A /∈ b, and thus a 6= b; similarly for the other points and tangents. Set E = a·b, F = b·c, and
G = a·c. It follows from (a) that the points A,E,G are distinct, as are E,B, F . Thus we may
construct the projectivity ϕ : a→ b such that AEG〈ϕ〉EBF . Since Eϕ 6= E, it follows from
Lemma 5.8 that ϕ is nonperspective, so the family of lines λ = λ(ϕ; a, b) = {QQϕ : Q ∈ a}
is a line-conic; the axis of homology for ϕ is clearly h = AB.

(1) If P is any point of the point-conic κ with P 6= A,B,C, then the tangent p to κ at P
is a line of the line-conic λ. To prove this, denote the diagonals of the quadrangle ABCP
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by D1 = AC ·BP , D2 = AB ·CP , and D3 = AP ·BC. Also, set S = a · p and T = b · p. By
Theorem 10.6, the points F,D1, D2 are distinct and collinear, as are the points S,D1, D2,
the points G,D1, D2 and the points T,D1, D2.

Since F 6= E = a · b, it follows from Axiom C7 that F /∈ a, so F 6= S and SF = SD2.
From (a), we have G 6= E, F 6= E, S 6= E, and S 6= G, so we may apply Corollary 6.6
and the axis of homology. Thus Sϕ = G(SF · h) · b = G(SD2 · AB) · b = GD2 · b = T , and
SSϕ = ST = (a · p)(b · p) = p; hence p ∈ λ.

(2) The tangents a, b, c of the point-conic κ are each lines of the line-conic λ. For a and
b, this follows from Proposition 8.2(a)(dual). For c, it suffices to note that GF = c.

(3) Each tangent to the point-conic κ is a line of the line-conic λ. Let P be any point
of κ, with tangent p, and suppose that p /∈ λ. Suppose further, in succession, that P 6= A,
P 6= B, P 6= C. Now we have p ∈ λ by (1), a contradiction. Thus P = C, so p = c,
and p ∈ λ by (2), a contradiction. Thus P = B. Continuing this way, we arrive at a final
contradiction. Thus ¬(p /∈ λ), and it follows from Proposition 8.2(d)(dual) that p ∈ λ.

(4) Each point of contact of λ is a point of κ. Apply the dual of the method in (1)
to the line-conic λ, using the second part of condition (a). The result is a point-conic
κ1 = κ(ψ : A,B), where aeg〈ψ〉ebf , and e = AB, f = BC, g = AC. It follows from the dual
of (3) that every point of contact of λ is a point of κ1. We have a, AB,AC〈π〉BA, b, BC, and
these six lines, in order, are identical to those just noted for ψ. Thus, by the Fundamental
Theorem, ψ = π and κ1 = κ.

(5) Each line of the line-conic λ is a tangent of the point-conic κ. Let l be a line of λ,
with point of contact L. By Definition 10.1, l is the unique line of λ passing through L, and
by (4), L ∈ κ. Let t denote the tangent to κ at L. By (3), t is a line of λ; hence t = l.

A line that passes through two distinct points of a conic κ is a secant of κ.

Lemma 10.9. Let κ be a conic, P a point on κ, and t the tangent to κ at P . If l is a line
through P , and l 6= t, then l passes through a second point R of κ, distinct from P ; thus l is
a secant of κ.

Proof. Select Q and π as in Proposition 10.2(c). Thus κ = κ(π;Q,P ) and t = (QP )π, so
P ∈ tπ

−1

. Set R = l · lπ
−1

. Since l 6= t and P 6= Q = lπ
−1

· tπ
−1

, it follows from Axiom C7
that P /∈ lπ

−1

, and hence P 6= R.

For any conic, the following theorem will provide, through an arbitrary point of the
plane, the one secant needed to construct polars in Lemma 11.1, and the two distinct secants
needed for Corollary 11.4, relating polars to inscribed quadrangles. The need for this theorem
contrasts with complex geometry, where every line meets every conic.

Theorem 10.10. Let κ be a conic, and assume statement (a) of Theorem 10.8.
(a) Through any given point of the plane, we may construct at least two distinct secants

of κ.
(b) On any given line of the plane, we may construct at least two distinct points, through

each of which pass two tangents of κ.

Proof. (a) Let P and κ be given, and select distinct points A,B,C on κ, with tangents a, b, c.
By hypothesis, these tangents are nonconcurrent; thus the points E = a · b and F = b · c are
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distinct. Either P 6= E or P 6= F ; it suffices to consider the first case. Then, by Axiom C7,
either P /∈ a or P /∈ b. It suffices to consider the first subcase; thus P 6= A and PA 6= a.
Now it follows from Lemma 10.9 that PA is a secant.

Denote the second point of PA that lies on κ by R, and choose distinct points A′, B′, C ′

on κ, each distinct from both A and R. Using these three points, construct a secant through
P with the above method; we may assume that it is PA′. By Proposition 8.2(b), A′ /∈ AR =
PA; hence PA′ 6= PA.

(b) This now follows from the dual of (a) and Theorem 10.8(b).

11 Poles and polars

For this section only, we adopt an additional axiom, asserting statement (a) of Theorem
10.8. Under Axiom P we are enabled to use Theorem 10.10 to construct, through any point
of the plane, a secant to any conic. It remains an open problem to determine whether this
axiom may be derived from the others.

Axiom P. The tangents at any three distinct points of a point-conic are nonconcurrent; the
points of contact of any three distinct lines of a line-conic are noncollinear.

The traditional method for defining a polar using a quadrangle, considering separately
points either on or not on a conic, is precluded, since we cannot always decide, constructively,
which case applies to a given point.

Theorem 11.1. Construction of a polar. Let κ be a conic, and let P any point on the plane.
Through the point P , construct a secant q of κ, using Axiom P and Theorem 10.10. Denote
the intersections of q with κ by Q1 and Q2, let the tangents at these points be denoted q1 and
q2, and set Q = q1 · q2. Set Q′ = h(Q1, Q2;P ), the harmonic conjugate of P with respect to
the points Q1, Q2. Then the line p = QQ′ is independent of the choice of the secant q.

Proof. Since Q1 6= Q2, by cotransitivity we may assume that P 6= Q2. From Proposition
10.3(b) it follows that Q1 /∈ q2; thus Q1Q2 6= q2. From Lemma 4.5 we have Q′ 6= Q2 =
Q1Q2 · q2, so by Axiom C7 it follows that Q′ /∈ q2; thus Q′ 6= Q, and the line p is properly
defined.

Now let r be any secant of κ, through P , with R1, R2, r1, r2, R, R
′ defined similarly, and

set s = RR′. We must show that s = p.
(a) Special case; P ∈ κ. In this case, Q1 = P , so q1 = t, the tangent at P ; thus Q ∈ t.

Also, by Lemma 4.4, we have Q′ = P , so Q′ ∈ t. Thus p = t; similarly, s = t.
(b) Special case; P /∈ κ and r 6= q. Since Q1 6= P = q · r, it follows that Q1 /∈ r, so

Q1 6= R1. Similarly, all four points Q1, Q2, R1, R2 are distinct. By Theorem 10.6, applied to
the quadrangle Q1Q2R1R2, the point Q is collinear with the diagonals D1 = Q1R2 · Q2R1

and D2 = Q1R1 ·Q2R2, so we have Q ∈ D1D2.
The harmonic conjugate of P with respect to Q1, Q2 is given by Definition 4.1. Cor-

responding to the configuration C,A,B, l, R, P,Q, S in the definition, where h(A,B;C) =
AB · RS, here we have the configuration P,Q1, Q2, PR2, D2, R2, R1, D1. By Theorem 4.7,
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harmonic conjugates are independent of the choice of construction elements; thus Q′ =
Q1Q2 ·D1D2, so p = D1D2. Similarly, s = D1D2.

(c) General case. Suppose that s 6= p, and suppose further that P /∈ κ, and r 6= q. This
contradicts (b), negating the third assumption, so r = q, and now it is evident that s = p.
This contradicts the first assumption, negating the second; thus P ∈ κ. This contradicts
(a), negating the first assumption; hence s = p.

Definition 11.2. Let κ be a conic, and P any point on the plane. The line p obtained in
Theorem 11.1 is called the polar of P with respect to κ.

Corollary 11.3. Let κ be a conic, P any point on the plane, and p the polar of P . Then p
passes through:

(i) the harmonic conjugate of P with respect to the points of intersection of any secant
of κ that passes through P ;

(ii) the point of intersection of the tangents to κ at the points of intersection of any secant
of κ that passes through P .

Corollary 11.4. Let κ be a conic, and let P be any point outside κ. Inscribe a quadrangle
in κ with P as one diagonal point, using Theorem 10.10. Then the polar of P is the line
joining the other two diagonal points.

Definition 11.5. Let κ be a conic, and l any line on the plane. A construction analogous
to that of Theorem 11.1 results in a point L, called the pole of l with respect to κ.

The dual of Theorem 10.10 yields a point E on l, which might be called a dual-secant.
Through E pass two distinct lines e1, e2 of the line-conic λ. By Theorem 10.8, λ is the family
of all tangents to κ. Joining the points of contact E1, E2 of the lines e1, e2, we obtain a line
e = E1E2. We also construct a line e′ = h(e1, e2; l), the harmonic conjugate of l, in the
pencil E∗, with respect to the base lines e1, e2. The pole of l is thus the point L = e · e′.
Corollaries analogous to those above also apply to poles.

Theorem 11.6. Let κ be a conic.
(a) If a line p is the polar of a point P , then P is the pole of p, and conversely.
(b) If a point P is on κ, then the polar of P is the tangent to κ at P .

Proof. Statement (a) follows from Corollary 11.3 and its analog for poles. For (b), we note
that in Theorem 11.1 for the construction of the polar p, we now have Q1 = P , by Proposition
8.2(b). Thus q1 = t, the tangent at P , and Q ∈ t. Also, by Lemma 4.4, we have Q′ = P , so
Q′ ∈ t. Thus p = QQ′ = t.

It remains an open problem to construct correlations and polarities using the axioms
adopted here, to develop the theory of conics constructively using the von Staudt [Sta47]
definition, whereby a conic is a locus of points defined by a polarity, and to prove that von
Staudt conics are equivalent to the Steiner [Ste32] conics considered here.
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Part II

Analytic constructions

A projective plane P
2(R) is built from subspaces of the linear space R

3, using only construc-
tive properties of the real numbers. This model will establish the consistency of the axiom
system adopted in Part I. The properties of P2(R) have guided the choice of axioms, taking
note of Bishop’s thesis, “All mathematics should have numerical meaning” [B67, p. ix].

12 Real numbers

To clarify the methods used here, we give examples of familiar properties of the real numbers
that are constructively invalid, and also properties that are constructively valid.

The following classical properties of a real number α are constructively invalid: Either
α < 0 or α = 0 or α > 0, and If ¬(α = 0), then α 6= 0. Constructively invalid statements
in classical metric geometry result when the condition P lies outside l, written P /∈ l, is
taken to mean that the distance d(P, l) is positive. For examples of constructively invalid
statements for the metric plane R

2, we have the statement Either the point P lies on the
line l or P lies outside l, considered in Example 1.1, and the statement If ¬(P ∈ l), then
P /∈ l.

Bishop determined the constructive properties of the real numbers, using Cauchy se-
quences of rationals, while referring to no axiom system of formal logic, but only a presup-
position of the positive integers [B67, p.2]. A notable resulting feature is that the relation
α 6= 0 does not refer to negation, but is given a strong affirmative definition; one must
construct an integer n such that 1/n < |α|. Among the resulting constructive properties of
the reals are the following:

(i) For any real number α, if ¬(α 6= 0), then α = 0.
(ii) For any real numbers α and β, if αβ 6= 0, then α 6= 0 and β 6= 0.
(iii) Given any real numbers α and β with α< β, for any real number x, either x > α or

x < β.
Property (iii) serves as a constructive substitute for the Trichotomy property of classical

analysis, which is constructively invalid. For more details, and other constructive properties
of the real number system, see [B67, BB85, BV06]. For a constructive axiomatic study of the
reals, with applications to formal systems of computable analysis, see [Bri99]. For axioms
for the real numbers, and a construction of the reals without using the axiom of countable
choice, see [R08].

Brouwerian counterexamples. To determine the specific nonconstructivities in a clas-
sical theory, and thereby to indicate feasible directions for constructive work, Brouwerian
counterexamples are used, in conjunction with omniscience principles. A Brouwerian coun-
terexample is a proof that a given statement implies an omniscience principle. In turn, an
omniscience principle would imply solutions or significant information for a large number of
well-known unsolved problems. This method was introduced by L. E. J. Brouwer [Bro08] to
demonstrate that use of the Law of Excluded Middle inhibits mathematics from attaining its
full significance.
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Omniscience principles are primarily formulated in terms of binary sequences, at times
called decision sequences; the zeros and ones may represent the results of a search for a solu-
tion to a specific problem, as in Example 1.1. These omniscience principles have equivalent
statements in terms of real numbers; the following are those most often used in connection
with Brouwerian counterexamples.

Limited principle of omniscience (LPO). For any real number α, either α = 0 or α 6= 0.

Lesser limited principle of omniscience (LLPO). For any real number α, either α ≤ 0
or α ≥ 0.15

Markov’s principle (MP). For any real number α, if ¬(α = 0), then α 6= 0.

A statement is considered constructively invalid if it implies an omniscience principle.
The statement considered in Example 1.1, Either P ∈ l, or P /∈ l, implies LPO; thus it is
constructively invalid. For more information concerning Brouwerian counterexamples, and
other omniscience principles, see [B67, BB85, M83, M88, M89, R02].

13 The model P2(R) in Euclidean space

The model will be built following well-known classical methods, adding constructive refine-
ments to the definitions and proofs.

Definition 13.1. The plane P
2(R) consists of a family P2 of points, and a family L2 of

lines.
• A point P in P2 is a subspace of the linear space R

3, of dimension 1. When the vector
p = (p1, p2, p3) spans P , we write P = 〈p〉 = 〈p1, p2, p3〉.
• A line λ in L2 is a subspace of R3, of dimension 2. When the vectors u, v span λ, and
l = u× v, we write λ = [l] = [l1, l2, l3], and λ = UV , where U = 〈u〉 and V = 〈v〉.
• Points P = 〈p〉 and Q = 〈q〉 are equal, written P = Q, if p × q = 0; they are distinct,
written P 6= Q, if p× q 6= 0.
• Lines λ = [l] and µ = [m] are equal, written λ = µ, if l×m = 0; they are distinct, written
λ 6= µ, if l ×m 6= 0.
• Incidence relation. Let P = 〈p〉 be a point and λ = [l] a line. We say that P lies on λ,
and that λ passes through P , written P ∈ λ, if p · l = 0.
• Outside relation. For any point P and any line λ, we say that P lies outside the line λ,
and that λ avoids the point P , written P /∈ λ, if P 6= Q for all points Q on λ.

Notes for Definition 13.1.
1. The definitions are independent of the choice of vectors spanning the respective sub-

spaces. That they are in accord with Definitions 2.2 and 2.3 for a projective plane is evident,
except for cotransitivity of the inequality relations, which will be verified in Theorem 13.8.

15The omniscience principle LLPO was introduced by Bishop [B73].
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2. The constructive properties of the real numbers will carry over to vectors in R
3. For

example, v 6= 0 means that at least one of the components of the vector v is constructively
nonzero.

3. The equality, inequality, incidence, and outside relations are invariant under a change
of basis.

4. We avoid interpreting the conditions P ∈ λ and P /∈ λ using the relations of set-
membership and set-inclusion in the classical sense. Theorem 13.2 and Example 13.7 will
confirm that the primary relation P /∈ λ, point outside a line, is constructively stronger than
the condition ¬(P ∈ λ).

5. The triad 〈p1, p2, p3〉 is traditionally referred to as homogeneous coördinates for the
point P , and the triad [l1, l2, l3] as line coördinates for the line λ.

Theorem 13.2. Let P = 〈p〉 be a point of P2(R), and λ = [l] a line. Then P /∈ λ if and
only if p · l 6= 0.

Proof. By a change of basis, we may assume that l = (0, 0, 1).
First let P /∈ λ. In the case p3 6= 0 we have p·l 6= 0 directly. In the other two cases, we may

set Q = 〈q〉 = 〈p1, p2, 0〉; then Q ∈ λ, so P 6= Q. Thus p × q 6= 0; i.e., (−p3p2, p3p1, 0) 6= 0,
and hence p · l = p3 6= 0.

For the converse, let p · l 6= 0; thus p3 6= 0. For any point Q = 〈q〉 on λ, we have q3 = 0,
so either q1 6= 0 or q2 6= 0. It follows that p× q = (−p3q2, p3q1, p1q2 − p2q1) 6= 0, and hence
P 6= Q.

Corollary 13.3. Let P = 〈p〉, Q = 〈q〉, R = 〈r〉 be points of P2(R), with Q 6= R. Then
P /∈ QR if and only if the vectors p, q, r are independent.

Corollary 13.4. Let P = 〈p〉 be any point of P2(R), and λ = [u×v] any line. The following
conditions are equivalent:

(a) ¬(P /∈ λ).
(b) P ∈ λ.
(c) The vector p is in the span of the vectors u, v.

Corollary 13.5. Let Q = 〈q〉, and R = 〈r〉 be points on P
2(R), with Q 6= R, and let P be a

point on QR. If P 6= R, then there exists a unique real number α such that P = 〈q + αr〉.

Corollary 13.6. Definition 13.1, for the plane P
2(R), is self-dual.

Example 13.7. For the plane P
2(R), the following statements are constructively invalid.

(a) If P and Q are any points, then either P = Q or P 6= Q.
(b) If λ and µ are any lines, then either λ = µ or λ 6= µ.
(c) If P is any point, and λ any line, then either P ∈ λ or P /∈ λ.
(d) If λ is any line, and P is a point such that ¬(P ∈ λ), then P /∈ λ.

Proof. Let α be any real number. For (a), set P = 〈p〉 = 〈0, 0, 1〉 and Q = 〈q〉 = 〈α, 0, 1〉.
Then p × q = (0, α, 0), so the statement implies LPO. A similar counterexample serves for
(b). For (c), set P = 〈0, α, 0〉 and λ = [0, 1, 0]; the statement implies LPO. For (d), assume
also that ¬(α = 0), with P and λ as in the example for (c); now the statement implies
MP.
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Theorem 13.8. Cotransitivity. If P and Q are points on the plane P
2(R), with P 6= Q,

then for any point R, either R 6= P , or R 6= Q.

Proof. By a change of basis, it suffices to consider the situation in which P = 〈p〉 = 〈1, 0, 0〉,
Q = 〈q〉 = 〈0, 1, 0〉, andR = 〈r〉 = 〈r1, r2, r3〉; then r×p = (0, r3,−r2) and r×q = (−r3, 0, r1).
In the case r1 6= 0, we have r×q 6= 0, so R 6= Q. In the other two cases we obtain R 6= P .

Lemma 13.9. On the plane P
2(R), for any projection ρ : λ → µ of a range of points λ

onto a range µ, there exists a non-singular linear transformation τ of R3 that induces ρ; i.e.,
Xρ = 〈τx〉, for all points X = 〈x〉 in the range λ.

Proof. We adapt the proof found in [Art57, p. 94]. Select vectors m and t so that µ = [m]
and the center of ρ is T = 〈t〉. Select distinct points U1 = 〈u1〉 and U2 = 〈u2〉 in λ,
select vectors vi such that Uρ

i = 〈vi〉, and construct a non-singular linear transformation
τ : R3 → R

3 such that τui = vi. Since 〈v1〉 ∈ TU1, and 〈v1〉 6= T , it follows from Corollary
13.5 that 〈v1〉 = 〈u1 + αt〉 for some scalar α, and thus v1 = βu1 + t1 for a nonzero scalar β
and a vector t1 in T ; we may assume that β = 1. Similarly, we have v2 = u2 + t2, for some
t2 ∈ T .

Let X = 〈x〉 be any point of λ, with x = α1u1 + α2u2. Then τx = α1v1 + α2v2, so
〈τx〉 ∈ µ. Also, τx = α1u1 + α2u2 + t3 = x + t3, where t3 ∈ T . Now set y = t × x, so
TX = [y]. Then y = t × (τx − t3) = t × τx, and τx · y = τx · t × τx = 0, so 〈τx〉 ∈ TX.
Hence 〈τx〉 = TX · µ = Xρ.

Theorem 13.10. For any projectivity π of the plane P
2(R), there exists a non-singular

linear transformation τ of R3 that induces π.

Corollary 13.11. Any projectivity of a range or pencil of P
2(R), onto itself, with three

distinct fixed elements, is the identity.

14 Axioms verified for the plane P
2(R)

This verification will establish the consistency of the axiom system adopted in Part I. The fol-
lowing example shows that for Axiom C3, Distinct lines have a common point, the condition
of distinctness is essential.

Example 14.1. On the plane P
2(R), the following statements are constructively invalid.

(a) Given any points P and Q, there exists a line that passes through both points.
(b) Given any lines λ and µ, there exists a point that lies on both lines.

Proof. It will suffice to consider the second statement. For a Brouwerian counterexample,
let α be any real number, and set α+ = max{α, 0} and α− = max{−α, 0}. Define lines
λ = [α+, 0, 1] and µ = [0, α−, 1]. By hypothesis, we have a point R = 〈r〉 = 〈r1, r2, r3〉 that
lies on both lines. Thus α+r1 + r3 = 0, and α−r2 + r3 = 0. If r3 6= 0, then we have both
α+ 6= 0 and α− 6= 0, an absurdity; thus r3 = 0. This leaves two cases. If r1 6= 0, then α+ = 0,
so α ≤ 0, while if r2 6= 0, then α− = 0, so α ≥ 0. Hence LLPO results.

33



Notes for Example 14.1.
1. The counterexample for the first statement, the dual of that given for the second,

is easier to visualize. On R
2, thought of as a portion of P2(R), consider two finite points

which are extremely near or at the origin: P on the x-axis, and Q on the y-axis. If P is very
slightly off the origin, and Q is at the origin, then the x-axis is the required line λ. But in the
opposite situation we would need the y-axis. Such a large jump in the output, resulting from
a miniscule variation of the input, would be a severe discontinuity in a proposed constructive
routine, and is a very strong indication that a solution would be constructively invalid.

2. Note on the Heyting extension [H59]. The above example is essentially the same as
that used in [M13a] to show that in the Heyting extension the strong common point property
(i.e., for all lines, not only distinct lines) is constructively invalid. In [M13a, Note, p. 113] it
was claimed that a constructive projective plane ought to have the strong property. However,
it is now seen that various versions of a constructive real projective plane are possible. The
question of the common point property for the Heyting extension remains an interesting
open problem. For comments concerning this issue in the classical literature, see [Pic75,
Section 1.2].

3. Note on the projective extension of [M14]. The strong common point property was
obtained for this plane, but the cotransitivity property was found to be constructively invalid
[M14, pp. 704-5]. The results of the various studies tend to indicate the incompatibility of
the two properties, strong common point and cotransitivity, in any constructive projective
plane; making this idea precise is an open problem.

Theorem 14.2. Axiom Group C, and Axioms F, D, E, T, are valid on P
2(R).

Proof. Axioms C1 and C4 of Section 2, and Axiom E of Section 5, are evident. Given distinct
points P = 〈p〉 and Q = 〈q〉, set l = p×q, and λ = [l]. Then p · l = 0, so P ∈ λ, and similarly
Q ∈ λ. Similarly, if lines λ = [l] and µ = [m] are distinct, then the point P = 〈l×m〉 lies on
both lines. Thus Axioms C2 and C3 are verified. Axiom C6 was verified in Corollary 13.4

For Axiom C5, consider lines λ = [l] and µ = [m] = [u × v], and let P = 〈p〉 be a point
on λ that is outside µ. Thus p · u × v 6= 0, and the vectors p, u, v are independent. By a
change of basis, we may assume that u, v, p is the standard basis; thus m = e3. Since P ∈ λ,
we have p · l = 0, so l3 = 0. Now l ×m = (l2,−l1, 0) 6= 0, and hence λ 6= µ.

The converse to Axiom C5 is also valid: If the lines λ and µ are distinct, then there exists
a point P ∈ λ such that P /∈ µ. To prove this, let λ = [l] and µ = [m] be distinct lines. By
a change of basis, we may assume that l = e3. Since l ×m 6= 0, we have (−m2, m1, 0) 6= 0;
thus either m1 6= 0 or m2 6= 0. In the first case, set P = 〈e1〉. Then p · l = 0, so P ∈ λ, while
p ·m = m1 6= 0, so P /∈ µ. The second case is similar.

For Axiom C7, let λ and µ be distinct lines, and let P 6= Q = λ · µ. Select a point
R ∈ λ so that R 6= Q; thus λ = QR. By the converse to Axiom C5, verified in the preceding
paragraph, we may select a point S ∈ µ such that S /∈ λ. Thus S 6= Q, so µ = QS, and
the points Q,R, S are noncollinear. By a change of basis, we may assume that R = 〈e1〉,
S = 〈e2〉, Q = 〈e3〉, and P = 〈p〉 = 〈p1, p2, p3〉. Then λ = [e2], and µ = [e1]. Since P 6= Q,
we have p× e3 6= 0, so (p2,−p1, 0) 6= 0, and thus either p2 6= 0, or p1 6= 0. In the first case,
we have P /∈ λ, while in the second case we find that P /∈ µ.

For Axiom F of Section 2, Fano’s Axiom, by a change of basis we may assume that
the quadrangle PQRS has vertices 〈e1〉, 〈e2〉, 〈e3〉, and 〈e〉 = 〈1, 1, 1〉. The six sides are
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then PQ = [0, 0, 1], PR = [0, 1, 0], PS = [0, 1,−1], QR = [1, 0, 0], QS = [1, 0,−1], and
RS = [1,−1, 0]. The diagonal points are D1 = PQ ·RS = 〈1, 1, 0〉, D2 = PR ·QS = 〈1, 0, 1〉,
and D3 = 〈d〉 = PS · QR = 〈0, 1, 1〉. Thus D1D2 = [m] = [1,−1,−1]. Since d ·m 6= 0, we
have D3 /∈ D1D2. Thus the diagonal points are noncollinear.

For Axiom D of Section 3, Desargues’s Theorem, consider triangles PQR and P ′Q′R′,
perspective from a center O = 〈o〉. By a change of basis, we may assume that P,Q,R =
〈e1〉, 〈e2〉, 〈e3〉; thus QR = [e1], RP = [e2], and PQ = [e3]. Since O /∈ PQ, we have o3 6= 0,
and similarly for o1 and o2; thus we may assume that O = 〈1, 1, 1〉. Now OP = [0, 1,−1].
Since P ′ ∈ OP , and P ′ 6= P , it follows from Corollary 13.5 that P ′ = 〈α, 1, 1〉 for some scalar
α; similarly, Q′ = 〈1, β, 1〉, and R′ = 〈1, 1, γ〉. It follows that P ′Q′ = [1 − β, 1 − α, αβ − 1],
Q′R′ = [βγ − 1, 1− γ, 1− β], and R′P ′ = [1− γ, γα− 1, 1− α]. Now the points in question
are A = 〈a〉 = PQ · P ′Q′ = 〈α − 1, 1 − β, 0〉, B = 〈b〉 = QR · Q′R′ = 〈0, β − 1, 1 − γ〉,
and C = 〈c〉 = RP · R′P ′ = 〈α − 1, 0, 1 − γ〉. Since c · a× b works out to 0, it follows that
C ∈ AB. Thus the points A,B,C are collinear. To show that the line AB avoids each of the
six vertices, we first note that since the center O lies outside each of the six sides, we have
O 6= Q′; it follows that β 6= 1, and similarly, γ 6= 1. Thus e1 · a× b = (1− β)(1− γ) 6= 0, and
we have P /∈ AB. By symmetry of the vertices of the triangle, Q and R also lie outside AB.
By symmetry of the two triangles, the points P ′, Q′, R′ lie outside AB. Hence the triangles
are perspective from the axis AB.

Axiom T of Section 6, the uniqueness portion of the Fundamental Theorem, was verified
in Corollary 13.11.

It remains an open problem to develop the analytic theory of conics constructively, and
to determine the constructive validity of Axiom P of Section 11 in an analytic setting.

Acknowledgments. The author is grateful to the referee and to Dr. G. Calderón for many
useful suggestions.
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