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Abstract
We consider a graph coloring algorithm that processes vertices in order taken uniformly at random
and assigns colors to them using First-Fit strategy. We show that this algorithm uses, in expectation,
at most (1/2 +o(1)) · ln n / ln ln n different colors to color any forest with n vertices. We also construct
a family of forests that shows that this bound is best possible.
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1 Introduction

A proper k-coloring of a graph G = (V, E) is a function c : V 7→ {1, 2, . . . , k} that assigns a
color c(v) to each vertex v ∈ V so that any adjacent vertices are colored differently, i.e., for
each edge {u, w} ∈ E, c(u) ̸= c(w) is satisfied. For a given graph G, the smallest number k

for which G admits a proper k-coloring is the chromatic number of G and is denoted by χ(G).
Graph coloring is one of the most prominent disciplines within graph theory, with plenty
of variants, applications, and deep connections to theoretical computer science. Coloring
problems arise naturally in various job scheduling and resource allocation optimization
scenarios.

The graph coloring problem is also very popular and well motivated in the online setting,
with applications in job scheduling, dynamic storage allocation and resource management [9,
11, 12]. In the online graph coloring problem, an online algorithm receives as input a graph
G = (V, E) presented in an online fashion. The vertices of V are revealed one after one, in
a presentation order v1 ≪ v2 ≪ . . . ≪ vn. When a new vertex vt is revealed in the t-th
round, for 1 ⩽ t ⩽ n, all the edges connecting vt with vertices in Vt−1 = {v1, . . . , vt−1} are
also revealed. An online algorithm A has to immediately assign a feasible color to vt, that is,
a color that is different from those assigned to the neighbors of vt in Vt−1. The goal is to
minimize the total number of colors used.
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The performance of an online graph coloring algorithm A is often measured by its
competitive ratio. If we denote by χA(G, ≪) the number of colors used by A when coloring a
graph G in a presentation order ≪, then the competitive ratio of A is the maximum ratio
χA(G, ≪) / χ(G) over all graphs G and all orders ≪. This means, that for a single graph,
the analysis focuses on the worst case scenario, and the presentation order is often considered
to be selected by an adversary. If A is a randomized algorithm, then it is usual to measure
the competitive ratio with respect to the expected number of colors used when coloring G in
order ≪ over all the random choices of A.

Contrary to the offline setting, even coloring 2-colorable graphs is not easy for online
algorithms. It is impossible to construct an online algorithm that would use any constant
number of colors to color all 2-colorable graphs. Thus, the research focuses on restricted
graph classes, and competitive ratio is often expressed as a function of the number of vertices
in a graph. In fact, even for inputs restricted to online forests with n vertices, the best
competitive ratio that can be achieved by either randomized or deterministic online coloring
algorithm is Θ(log n) colors [3, 6, 1]. The optimal number of colors used by any deterministic
online algorithm to color 2-colorable graphs with n vertices is known to be somewhere
between 2 log2 n − 10 (by a result of Gutowski et al. [5]) and 2 log2 n (see a paper by Lovász,
Saks, and Trotter [10]).

An algorithm known as First-Fit is arguably the simplest and the most understood of
all online deterministic coloring algorithms. When a vertex vt is revealed in the t-th round,
First-Fit picks the least positive integer i which does not occur as a color of any of the
previously colored neighbors of vt and assigns i as a color of vt. First-Fit performs well
on online trees, achieving the competitive ratio of Θ(log n) within this class. To be more
precise, Bean [3] and, independently, Gyárfás and Lehel [6] proved that First-Fit uses at
most log2 n + 1 colors on forests with n vertices. Irani [8] generalized this result, showing
that First-Fit uses O(d log n) colors on d-degenerated graphs with n vertices. Later, Balogh
et. al. [2] with corrections of Chang and Hsu [4] improved the above result to at most
(log d+1

d
n + 2) colors. For bipartite graphs, there is an easy construction by Lovász, Saks,

and Trotter [10] that shows that First-Fit uses as many as n
2 colors to color a 2-colorable

graph with n vertices.
In this paper, we are interested in the random arrival model for online algorithms, that

tries to focus on the average case, rather than the worst case scenario. In this model, the
presentation order of a graph is not determined by an adversary, but instead it is selected
uniformly at random from all possible permutations of the vertex set. The performance
ratio of a deterministic online algorithm A on a graph G is measured by the expectation
E≪

[
χA(G,≪)

χ(G)

]
over the random choice of ≪. The performance ratio of A on a class of graphs

G is the the maximum performance ratio taken over all graphs in G.
In particular, our intention is to start the systematic study of the performance ratio of

First-Fit coloring algorithm in random arrival model. For a class of graphs G, let RFFG(n)
denote the maximum performance ratio of First-Fit taken over all graphs in G with n vertices,
i.e.,

RFFG(n) = max
G∈G,|G|=n

E≪

[
χFF(G, ≪)

χ(G)

]
.

For an easy comparison to the adversarial model, we define:

FFG(n) = max
G∈G,|G|=n

max
≪

[
χFF(G, ≪)

χ(G)

]
.
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In this paper, we prove the following result, which establishes the performance of First-Fit
on the class of forests.

▶ Theorem 1. For the class F of forests, we have RFFF (n) = (1/2 ± o(1)) · ln n / ln ln n.

As mentioned above, we have FFF (n) = Θ(log n). Theorem 1 shows that the randomiza-
tion of the presentation order gives a noticeable, yet rather moderate increase in performance
compared to the adversarial model.

One can also consider the following natural off-line graph coloring algorithm. Given
a graph G, it selects an order ≪ of vertices of G uniformly at random. Then it uses
First-Fit strategy to color vertices of G in order ≪. Theorem 1 shows that this algorithm
uses O(log n / log log n) colors in expectation to color any forest. This algorithm does not
compete with easy 2-coloring algorithms based on graph traversal. Our objective, however,
is to establish the groundwork for a systematic analysis of First-Fit, and other simple online
algorithms, in the random arrival model for other graph classes, such as d-degenerate graphs,
bipartite graphs, and subsequently, k-colorable graphs. It should be noted that for 3-colorable
graphs, the most effective known randomized online algorithm utilizes expected O

(
n1/2

)
colors, as proved by Halldórsson [7]. Considering that the best lower bound for 3-colorable
graphs is in the order of Ω

(
log2 n

)
, as demonstrated by Vishwanathan [13], it appears that

the direction we are pursuing holds promise for intriguing outcomes.
Another rationale for this line of inquiry is that First-Fit in random arrival model serves as

an illustration for the following distributed coloring algorithm that works in the synchronous
model. Each vertex of the graph represents a computation node, and edges represent
communication links. To divide nodes into independent subsets, each node performs a sleep
for a random number of units of time, and then assigns to itself the first possible number
not assigned to any of the neighbors. This algorithm uses a small number of messages and
is quite fast. Although we refrain from further delving into this setting, we underscore the
versatility afforded by our analysis.

The paper is organized as follows. In Section 2 we show that First-Fit uses at most
(1/2 + o(1)) · ln n / ln ln n different colors in expectation on any forest with n vertices. In
Section 3 we construct a family of trees for which First-Fit uses (1/2 − o(1)) · ln n / ln ln n

different colors in expectation. The final section contains brief comments and some open
problems regarding the analyzed problem.

2 Upper bound

In this section we show that First-Fit uses at most O(log n / log log n) different colors in
expectation on any forest with n vertices. For this purpose let us first make a basic observation.
For any fixed graph G = (V, E) and any order ≪ of V , we denote by G≪ the acyclic directed
graph obtained from G by orienting every edge {u, v} ∈ E so that it is oriented from u to v

if and only if u ≪ v.

▶ Observation 2. For any graph G = (V, E), a presentation order ≪ of V , a positive
integer i, and a vertex v ∈ V , if First-Fit assigns color i to v when coloring G in order ≪
then there is a directed path in G≪ with i vertices and v as the last vertex.

Proof. We prove the observation by induction with respect to i. The statement is trivial for
i = 1, so let us assume i ⩾ 1 and that the thesis holds for all values up to i. Suppose that
First-Fit assigns color i + 1 to vertex v in some round of the algorithm. At this point, v has
a neighbor u with u ≪ v that was assigned with color i in some earlier round. By induction
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hypothesis, there is a directed path P in G≪ with i vertices and u as the last vertex. Since
u ≪ v, and G≪ is acyclic we know that v does not belong to P . Thus, we get the desired
path by extending P with directed edge (u, v). ◀

We call a simple path P in a directed graph to be bidirected if it is either a directed path,
or P can be split into two directed paths, each starting at one of the end points of P , and
both sharing the same last vertex.

▶ Corollary 3. For any forest T = (V, E), a presentation order ≪ of V , and a positive
integer i ⩾ 2, if First-Fit uses color i when coloring T in order ≪ then there is a bidirected
path in T ≪ with 2i − 2 vertices.

Proof. For i = 2, by Observation 2 we get a directed path with 2 vertices. Suppose i ⩾ 3,
and that First-Fit assigns color i to some vertex v of T . At this point, v has a neighbor u

that is colored i − 1, and a different neighbor w that is colored i − 2. By Observation 2 there
is a directed path with i − 1 vertices and u as the last vertex, and a directed path with i − 2
vertices and w as the last vertex. As T is a forest, these paths are vertex disjoint. Since
u ≪ v, and w ≪ v, we get the desired bidirected path in T ≪ by extending both paths with
directed edges (u, v) and (w, v). ◀

▶ Lemma 4. For the class F of forests, every n ⩾ 3, and an αn = ln ln ln n+1
ln ln n−ln ln ln n−1 , we have:

RFFF (n) ⩽ (1 + αn) ln n

2 ln ln n
+ 3

2 .

Proof. It is straightforward to verify that RFFF (3) = 1 and RFFF (4) < 2, hence the lemma
holds for n = 3, 4. Let us assume that n ⩾ 5. Then, since the function ln ln x−ln ln ln x−1 > 0
for every x > e except x = ee, then ln ln n − ln ln ln n − 1 > 0, and hence αn > 0. Consider
any forest T with n vertices. Let k =

⌈
(1+αn) ln n

ln ln n

⌉
, and observe that our goal is to prove that

First-Fit uses at most k + 2 colors in expectation when coloring T in a random order. Indeed,
we can assume that χ(T ) = 2, as otherwise T is an independent set, and First-Fit uses only
one color when coloring T in any order. Note that (1 + αn) ln n/ ln ln n > ln n/ ln ln n > 1.
Hence, k ⩾ 2. By Corollary 3, for every order ≪ of the vertices of T and a positive integer
i ⩾ 2, if χF F (T, ≪) = i, then there is a bidirected path with 2i − 2 vertices in T ≪. Consider
any two vertices x, y of T . There is at most one simple path in T with end points x and y.
If this path exists, and is a path with exactly 2i − 2 vertices, then the probability that this
path is bidirected in T ≪ for a random order ≪ is exactly 22i−3 / (2i − 2)!. Otherwise, the
probability that there is such a path with end points x and y equals 0.

Thus, by the union bound, the probability that there is at least one bidirected path with
2i − 2 vertices in T ≪ is upper bounded by

(
n2 / 2

)
·
(
22i−3 / (2i − 2)!

)
. Hence, the expected
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number of colors used by First-Fit in a random order satisfies:

E≪ [χF F (T, ≪)] =
∞∑

i=1
i · P(χF F (T, ≪) = i) ⩽ k + 1 +

∞∑
i=k+2

i · n2 · 22i−4

(2i − 2)! ⩽

= k + 1 + n2 · 4k−1

(2k)! ·
∞∑

i=k+2

i · 22(i−(k+1))

(2k + 1) · (2k + 2) · . . . · (2i − 3) · (2i − 2) ⩽

⩽ k + 1 + n2 · 4k−1

(2k)! ·
∞∑

i=k+2

22(i−(k+1))

1 · (2k + 2) · . . . · (2i − 3) · 2 ⩽

⩽ k + 1 + n2 · 4k−1

(2k)! ·
∞∑

i=1

22i−1

(2i − 1)! =

= k + 1 + n2 · 4k−1

(2k)! · sinh 2 ⩽

⩽ k + 1 + n2 · 4k

(2k)! . (1)

For k =
⌈

(1+αn) ln n
ln ln n

⌉
, as x ln x − x is an increasing function for x ⩾ 1, and αn > 0, k ⩾ 2,

we have that

ln
(

(2k)!
4k

)
⩾ 2k ln(2k) − 2k − k ln 4 = 2k ln k − 2k ⩾

⩾ 2 · (1 + αn) ln n

ln ln n
· ln
(

(1 + αn) ln n

ln ln n

)
− 2 · (1 + αn) ln n

ln ln n
⩾

⩾ 2 · (1 + αn) ln n

ln ln n
·
(

ln
(

ln n

ln ln n

)
− 1
)

=

= 2 · ln ln n

ln ln n − ln ln ln n − 1 · ln n

ln ln n
· (ln ln n − ln ln ln n − 1) =

= ln(n2),

and as a consequence, (2k)!
4k ⩾ n2, hence by (1),

E≪ [χF F (T, ≪)] ⩽ k + 2.

As this holds for any forest T with n vertices, we conclude that

RFFF (n) ⩽ (1 + αn) ln n

2 ln ln n
+ 3

2,

which ends the proof. ◀
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As αn = O(log log log n / log log n) in Lemma 4, we immediately get the following corollary.

▶ Corollary 5.

RFFF (n) ⩽ (1/2 + o(1)) · ln n / ln ln n .

3 Lower bound

In this section, for any given 0 < γ < 1, and a positive integer k we construct a tree T , such
that First-Fit uses k colors to color T in a random presentation order with probability at
least 1 − γ. Thus, E≪[χF F (T, ≪)] ⩾ k(1 − γ). The number of vertices in the constructed
tree is of the order kdk where d is a constant depending on γ. This implies that RFFF (n) =
Ω(log n / log log n).

For the purpose of analysis, we use a slightly modified, yet equivalent random model.
Namely, rather than choosing a permutation in a straightforward manner, we utilize a natural
two-stage process. We first associate with every vertex v of a graph G an independent
random variable Xv ∼ U [0, 1] uniformly distributed over [0, 1] interval. We call Xv to be
the position of a vertex v. Then, we order the vertices according to their positions, i.e., so
that u ≪ v if and only if Xu ⩽ Xv. Note that such an order is uniquely determined with
probability 1. Moreover, by the symmetry of the process, each resulting vertex permutation
is equiprobable.

▶ Lemma 6. For the class F of forests, we have:

RFFF (n) ⩾ (1/2 − o(1)) · ln n / ln ln n .

Proof. Fix any 0 < γ < 1, and any integer k ⩾ 3. Let c = 10/γ2 and r = ⌈ck ln k⌉. Set
εi = iγ/k for i = 1, 2, . . . , k. We recursively define rooted trees T r

1 , T r
2 , . . . , T r

k as follows. The
tree T r

1 is a single vertex, and for i = 1, 2, . . . , k − 1, the tree T r
i+1 is constructed of r copies

of each of the trees T r
j with j = 1, 2 . . . , i by joining their roots to a single additional vertex –

the root of T r
i+1 (hence the root of T r

i+1 has degree ri). See Figure 1.
Consider First-Fit coloring of T r

i in a random presentation order, for any fixed i ∈
{1, 2, . . . , k}. We assume that the presentation order is given by the positions Xv ∈ [0, 1]
drawn uniformly at random for every vertex v of T r

i . By the construction of T r
i , the longest

simple path ending at the root of T r
i includes at most i vertices. From Observation 2 we

immediately obtain the following claim.

▷ Claim 7. The color assigned by First-Fit to the root of T r
i when coloring T r

i in any order,
does not exceed i.

We define Bi to be the random event that First-Fit assigns color smaller then i to the root
vertex of T r

i when coloring T r
i in a random presentation order.

▷ Claim 8. For every i = 1, 2, . . . , k we have

P(Bi) ⩽ εi = iγ

k
.

Proof. We prove the claim by induction on i. For i = 1, First-Fit assigns color 1 to the only
vertex of T r

1 and hence P(B1) = 0. Now, for the induction step, we fix any 1 ⩽ i ⩽ k − 1,
and assume that

P(Bj) ⩽ εj (2)
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v

v
(1)
1

T
(1)
1

a copy of T r
1

v
(2)
1

T
(2)
1

a copy of T r
1

. . . v
(r)
1

T
(r)
1

a copy of T r
1

r copies of T r
1

v
(1)
2

T
(1)
2

a copy of T r
2

. . . v
(r)
2

T
(r)
2

a copy of T r
2

r copies of T r
2

. . . v
(1)
i

T
(1)
i

a copy of T r
i

. . . v
(r)
i

T
(r)
i

a copy of T r
i

r copies of T r
i

Figure 1 Recursive construction of the tree T r
i+1

holds for every j = 1, 2, . . . , i. We shall prove that P(Bi+1) ⩽ εi+1. For that we focus on the
coloring of T = T r

i+1. Denote the root of T by v and let v
(q)
j with j = 1, . . . , i, q = 1, . . . , r

be the neighbors of v in T where each v
(q)
j is the root of one of the r copies of T r

j attached
to v – we denote this copy as T

(q)
j . See Figure 1. We denote the (random) color First-Fit

assigns to any vertex w by c(w).
Suppose the position of v is fixed and equals x. Note that if for some 1 ⩽ j ⩽ i there is

some q such that c(v(q)
j ) ⩾ j and the position of v

(q)
j is smaller than x, then c(v) ̸= j. Indeed,

due to Observation 2 and the fact that v
(q)
j is positioned before v we have that c(v(q)

j ) ⩽ j

and it is assigned with color j by the assumption c(v(q)
j ) ⩾ j. Therefore, if there is such a q

for every 1 ⩽ j ⩽ i, then we get c(v) ⩾ i + 1. This allows for the following inequality,

P
(
Bi+1 | Xv = x

)
⩾ P

(
∀j ⩽ i ∃q ⩽ r : c(v(q)

j ) ⩾ j ∧ X
v

(q)
j

< x | Xv = x
)

=

=
i∏

j=1
P
(

∃q ⩽ r : c(v(q)
j ) ⩾ j ∧ X

v
(q)
j

< x | Xv = x
)

=

=
i∏

j=1

(
1 −

r∏
q=1

P
(

c(v(q)
j ) < j ∨ X

v
(q)
j

> x | Xv = x
))

(3)

where the two last equalities above follow by the independence of the corresponding events
for a fixed value of x. Obviously P(X

v
(q)
j

> x | Xv = x) = 1 − x, as positions of the vertices
are independent. Further, for any assignment X of positions to all vertices of T , one can
consider First-Fit coloring of T

(q)
j in order given by the restriction of X to the vertices of

T
(q)
j . Color assigned to the root of T

(q)
j in this restricted coloring is not greater then the
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color assigned to this vertex in the coloring of T . Thus, P(c(v(q)
j ) < j | Xv = x) ⩽ P(Bj),

and by (2), for every j ⩽ i, we have:

P
(

c(v(q)
j ) < j ∨ X

v
(q)
j

> x | Xv = x
)
⩽ max {0, 1 − x + εj} . (4)

By (3) and (4), we thus obtain that

P (Bi+1) = 1 − P
(
Bi+1

)
= 1 −

∫ 1

0
P
(
Bi+1 | Xv = x

)
dx ⩽

⩽ 1 −
∫ 1

0

i∏
j=1

max {0, 1 − (1 − x + εj)r)} dx ⩽

⩽ 1 −
∫ 1

εi

(1 − (1 − x + εi)r)idx, (5)

where the last inequality follows by the fact that εj ⩽ εi for j ⩽ i. Substituting y = 1−x+εi

in (5) we further obtain:

P(Bi+1) ⩽ 1 −
∫ 1

εi

(1 − yr)idy. (6)

Let f(y) = (1 − yr)i. Observe that f(0) = 1, f(1) = 0, and f is strictly decreasing in [0, 1].
Thus, we obtain that

∫ εi

0 f(y)dy ⩽ εi, and by (6),

P (Bi+1) ⩽ εi + 1 −
∫ 1

0
f(y)dy ⩽ εi + 1 −

(
1 − γ

2k

)
· f
(

1 − γ

2k

)
⩽

⩽ εi + γ

2k
+ 1 − f

(
1 − γ

2k

)
. (7)

In order to prove that P (Bi+1) ⩽ εi+1 = εi+ γ
k it thus remains to show that f(1− γ

2k ) ⩾ 1− γ
2k .

Note that

f
(

1 − γ

2k

)
=
(

1 −
(

1 − γ

2k

)r)i

⩾

(
1 −

(
1 − γ

2k

)ck ln k
)k

=
(

1 −
(

1 − γ

2k

) 2k
γ

γ
2 c ln k

)k

.

Now, for α = 2k
γ ⩾ 1 we have that (1 − 1

α )α < 1
e . Thus,

f
(

1 − γ

2k

)
⩾

(
1 − 1

e
γc ln k

2

)k

=
(

1 − 1
k

γc
2

)k

.

As for 0 < β = 1
k

γc
2

< 1 we have that 1 − β > e− β
1−β , we thus further obtain that

f
(

1 − γ

2k

)
⩾ e− βk

1−β = e
− k

k
γc
2 −1 ⩾ 1 − k

k
γc
2 − 1

.

Now, for c = 10
γ2 , and using k ⩾ 3 we get

f
(

1 − γ

2k

)
⩾ 1 − k

k
5
γ − 1

⩾ 1 − 1
k

3
γ

.

Observe that k
3
γ > 2k

γ for γ ∈ [0, 1], and k ⩾ 3. This finally gives that f(1 − γ
2k ) ⩾ 1 − γ

2k ,
and consequently, by (7), P (Bi+1) ⩽ εi+1, which ends the proof of Claim 8. ◀
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By Claims 7 and 8, First-Fit assigns color k to the root of T r
k with probability at least 1 − εk.

Using Claim 7 (or Observation 2), one can thus easily deduce the following claim.

▷ Claim 9. P(χF F (T r
k , ≪) = k) ⩾ 1 − γ.

▷ Claim 10. T r
k has exactly (r + 1)k−1 vertices.

Proof. We prove the claim by induction on k. For k = 1 the claim trivially holds. Let us
assume that k ⩾ 1 and that the claim holds for all the trees T r

1 , . . . , T r
k . By the construction

of T r
k+1,

|T r
k+1| = 1 + r ·

k∑
i=1

|T r
i | = 1 + r ·

k∑
i=1

(r + 1)i−1 = 1 + r · 1 − (r + 1)k

1 − (r + 1) = (r + 1)k.

◀

For any value of k, we set γ = 1
ln k , and for this choice of γ we get c = 10 ln2 k and

r =
⌈
10k ln3 k

⌉
. Let us denote by nk the number of vertices in T r

k . Then the following
hold for k large enough. Firstly, by Claim 10, we have ln nk ⩾ k. Consequently, again by
Claim 10,

ln nk ⩽ (k − 1) ln
(
2 + 10k ln3 k

)
⩽ k (ln k + 4 ln ln k)

⩽ k (ln ln nk + 4 ln ln ln nk) . (8)

By Claim 9 and (8), we thus finally obtain that

E≪ [χF F (T r
k , ≪)] ⩾ k ·

(
1 − 1

ln k

)
(9)

⩾
ln n

ln ln n + 4 ln ln ln n
·
(

1 − 1
ln ln n − 2 ln ln ln n

)
= g(n). (10)

Note that g(n) is an increasing function for large enough n. Note also that nk is also an
increasing function of k. Consider any (large enough) n such that nk ⩽ n ⩽ nk+1 for some k.
Then, since RFFF (n) is a nondecreasing function of n, by (9) and (10),

RFFF (n) ⩾ RFFF (n1) ⩾ 1
2 · E≪ [χF F (T r

k , ≪)] ⩾ 1
2 · k ·

(
1 − 1

ln k

)

⩾
1
2 ·
(

(k + 1) ·
(

1 − 1
ln(k + 1)

)
− 1
)

⩾
1
2 · (g(nk+1) − 1)

⩾
1
2 · (g(n) − 1) =

(
1
2 − o(1)

)
ln n

ln ln n
,

which finishes the proof of Lemma 6. ◀
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4 Final comments

Finally, Theorem 1 is obtained by combining the matching bounds of Corollary 5 and
Lemma 6. This concludes our investigation of the efficiency of First-Fit in the random arrival
model on the class of forests. First-Fit is efficient on this class even in the adversarial model.
Still, the randomization of the presentation order allows for some increase in performance.
This raises the hope that First-Fit is more effective in the average case than it is in the worst
case also on some other graph classes.

The systematic analysis of First-Fit in the random arrival model on other graph classes
should continue for the class B of bipartite graphs. There, First-Fit is known to be extremely
inefficient in the adversarial model with FFB = Θ(n). However, there is another simple
algorithm [10], a clever modification of First-Fit, that uses O(log n) colors to color any
bipartite graph with n vertices. A natural extension of our research would be to assess the
First-Fit algorithm in the random arrival model on bipartite graphs. We anticipate that the
outcome will not deviate significantly from the results obtained for forests.

▶ Conjecture 11. First-Fit in the random arrival model uses at most poly(log n) colors
when coloring any bipartite graph with n vertices.

Addressing the aforementioned conjecture represents a significant cognitive pursuit.
However, a truly remarkable feat would be to establish some nontrivial bounds for 3-colorable
graphs. We want to thank Anna Zych-Pawlewicz for inspiring the work on this project.
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