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Abstract: A century ago, Neyman showed how to evaluate the efficacy of treatment using a randomized
experiment under a minimal set of assumptions. This classical repeated sampling framework serves as a
basis of routine experimental analyses conducted by today’s scientists across disciplines. In this paper,
we demonstrate that Neyman’s methodology can also be used to experimentally evaluate the efficacy of
individualized treatment rules (ITRs), which are derived by modern causal machine learning algorithms.
In particular, we show how to account for additional uncertainty resulting from a training process based on
cross-fitting. The primary advantage of Neyman’s approach is that it can be applied to any ITR regardless
of the properties of machine learning algorithms that are used to derive the ITR. We also show, somewhat
surprisingly, that for certain metrics, it is more efficient to conduct this ex-post experimental evaluation of
an I'TR than to conduct an ez-ante experimental evaluation that randomly assigns some units to the I'TR.
Our analysis demonstrates that Neyman’s repeated sampling framework is as relevant for causal inference
today as it has been since its inception.
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1 Introduction

Neyman’s seminal 1923 paper introduced two foundational ideas in causal inference [1]. First, Neyman
developed a formal notation for potential outcomes and defined the average treatment effect (ATE) as a
causal quantity of interest. Second, he showed how randomization of treatment assignment alone can be used
to establish the unbiasedness and estimation uncertainty of the standard difference-in-means estimator.
Since then, combined with the additional assumption of random sampling of units, Neyman’s repeated
sampling framework has served as a basis of routine experimental analyses conducted by scientists across
many disciplines.

Over the past two decades, however, the causal inference literature has gone beyond the ATE. Specifi-
cally, the realization that the same treatment can have varying impacts on different individuals led to the
development of statistical methods and machine learning algorithms for estimating heterogeneous treat-
ment effects [e.g., 2-5]. Furthermore, a number of researchers have developed various methods for deriving
data-driven individualized treatment rules (ITRs) [e.g. 6-13]. With an increasing availability of granular
data and modern computing power, these ITRs are becoming popular in business, medicine, politics, and
even public policy.

In this paper, we demonstrate that Neyman’s repeated sampling framework is still relevant for today’s
causal machine learning methods. We show how the framework can be used to experimentally evaluate the
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efficacy of any ITRs (including those obtained with machine learning algorithms via cross-fitting) under
a minimal set of assumptions. While some of our formal results are originally derived in our previously
published work [14] or follow directly from them, we focus on the intuition behind those theoretical results
to facilitate the future extensions to other settings.

We also show, using Neyman’s framework, that it is not always statistically more efficient to evaluate
an ITR by conducting a new randomized experiment where the treatment is the administration of the ITR
itself (i.e., ez-ante evaluation) than simply using the data from an existing randomized controlled trial (i.e.,
ex-post evaluation). All together, this paper shows how Neyman’s classical methodological framework can
be applied to solve today’s causal inference problems.

2 Neyman’s Repeated Sampling Framework

We begin by briefly introducing Neyman’s inferential approach to estimating the average treatment effect
(ATE). Suppose that we have a sample of n units and for each unit we define two potential outcomes, Y;(1)
and Y;(0), under the treatment and control conditions, respectively. Let T; denote the binary treatment
assignment variable, which is the ith element of n-dimensional treatment vector T'. Then, the observed
outcome can be written as ¥; = T;Y;(1) + (1 —T;)Y;(0). Finally, X; denotes a set of observed pre-treatment
covariates for unit i where X represents the support of covariate distribution.

As pointed out by Rubin in his discussion of Neyman’s 1923 paper [15], the above setup implicitly
assume no interference between units — the outcome of one unit is not influenced by the treatment of
another unit. We explicitly state this assumption below.

Assumption 1 (No Interference between Units). The potential outcomes for unit i do not depend on the
treatment status of other units. That is, for all t1,ta,...,t, € {0,1}, we have,

Yi(Ty =t1,Ta =tg,..., Ty =t,) = Yi(T; =t;).

Neyman considered the classical randomized experiment where the treatment assignment is completely
randomized with n; units assigned to the treatment condition and the remaining ng = n — ni units
assigned to the control condition.

Assumption 2 (Complete Randomization of Treatment Assignment). The treatment assignment proba-
bility is given by,

Pr(T =t | {Yi(1),Yi(0), Xi}iy) =
for each t where Z?:l t; =mny.

Under these two assumptions alone, Neyman showed the following sample average treatment effect (SATE)
can be estimated without bias,

reate = 3 {¥(1) = ¥i(0))
i=1

using the difference-in-means estimator 7,

n

. R 1
E(7 | {Yi(1),Yi(0)}?,) = 7sare where 7 = - > Y- o > (1 -T)Y;
i=1 i=1
Neyman also showed that the variance of this estimator is not identifiable but a conservative variance can
be estimated from the data without bias,
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where 57 = S0 (Vi(t) = V(0)2/(n — 1), Sor = X1, (¥5(0) = V(0))(¥;(1) = V(D)/(n — 1) and V(7) =
Sor Yi(t)/ng for t =0,1.

Neyman obtained the above results by averaging over all possible treatment assignments under complete
randomization. Subsequent work has extended Neyman’s framework to a superpopulation framework by
assuming that the sample of n units are obtained, through random sampling, from a superpopulation of
infinite size P.

Assumption 3 (Random Sampling of Units). Fach of n units, represented by a three-tuple consisting of
two potential outcomes and pre-treatment covariates, is assumed to be independently sampled from a super-
population P, i.e.,
ii.d.
(Yi(1),Yi(0), X;) "X P
This extended framework, which we call Neyman’s repeated sampling framework, is useful because it allows
us to estimate the population average treatment effect from the sample,

paTE = E(Y;(1) —Y;(0)).

Subsequent work has shown that the difference-in-means estimator is unbiased for the PATE and the exact
variance can be estimated without bias [16].

E(7) = ER@ [{Yi(1),Yi(0)}is1)] = Elrsare] = 7paTe, (1)
O'2 0'2
V() = E[V( [{Yi(1), Ya(0) }io)] + VIE(F [ {Yi(1), Yi(0)}ioy)] = 771 + ,72 (2)

where 07 = V(Y;(t)) for t =0, 1.
In the remainder of this article, we will show that this Neyman’s repeated sampling framework enables
an assumption-free experimental evaluation of data-driven individualized treatment rules.

3 Experimental evaluation of individualized treatment rules

In this section, we explain how Neyman’s repeated sampling framework can be applied to experimentally
evaluate the empirical performance of individualized treatment rules (ITRs), which assigns each individual
unit to either the treatment or control condition based on their observed characteristics.

3.1 Setup

Suppose that we use a machine learning (ML) algorithm to create an individualized treatment rule (ITR),
f: X —{0,1}.
Most commonly, researchers first estimate the conditional average treatment effect [see e.g., 7, 17-21]:
(@) = EIYi(1) - Y:(0) | X; = a].

They then derive an ITR as the treatment rule that assigns the treatment to everyone who is predicted to
have a positive CATE, i.e., f(x) = 1{7(x) > 0} where 7(x) is an estimate of the CATE. Throughout this
paper, we assume, without loss of generality, that a positive effect implies that the treatment is beneficial.
One may also consider a cost associated with the administration of treatment or a budget constraint that
limits the proportion of individuals who can receive the treatment.

Our goal is to evaluate the empirical performance of an ITR without assuming that an ITR is indeed
optimal. In the above example, we do not assume that 7(x) is an accurate estimate of the CATE. In fact,
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we do not make any assumption about how the I'TR is constructed and how accurate it is. The ITR may be
derived from an application of an ML algorithm or be even based on heuristics. For now, we only assume
that the ITR to be evaluated is given. For example, it may be estimated from an external data set to be
used in a downstream decision-making context. In Section 5, we discuss how to use the same experimental
data for both learning and evaluating an ITR.

To measure the performance of an ITR, we consider two quantities. The first is the Population Average
Value (PAV), which is defined as:

Ap = E[Yi(f(X3))). 3)

This is the standard metric of ITR’s overall performance. The second quantity is the Population Average
Prescriptive Effect (PAPE) [14, 22], which measures the benefit of individualizing treatment rule and is
defined as follows,

7p = E[Yi(f(X0))] — prE[Yi(1)] = (1 — pg)E[Yi(0)], (4)

where py = Pr(f(X;) = 1) represents the proportion of individuals who are treated by the ITR f.

The PAPE compares the performance of ITR against the non-individualized treatment rule that treats
the same proportion of randomly selected individuals. This contrasts with other quantities considered in
the literature such as the targeting operator characteristic (TOC) [23], which compares the performance
of ITR against the non-individualized rule that treats everyone. Unlike the TOC, the PAPE focuses on
the benefit of determining which individuals should be treated while holding the proportion of those who
receive the treatment constant.

To gain additional intuition about the PAPE, consider the following alternative but equivalent expres-
sion of the same quantity,

7 = Cov(f(X:),Yi(1) - ¥i(0)).

This alternative expression shows that the PAPE measures how well the ITR agrees with the true individual
treatment effect (ITE). To compare across datasets, we can further normalize the PAPE as the correlation
between the ITR and the true ITE, i.e.,

Tt
= Corr(f(X;),Y;(1) - Yi(0)).
VYV (X)) V(Yi(1) - Yi(0)
Although this provides a scale invariant quantity to understand the performance of ITR, it is not identifiable
from the data because we cannot identify the variance of ITE, i.e., V(Y;(1) — Y;(0)).
The above equality further implies the following inequality by applying Cauchy-Schwarz twice:

75 < VV((X)V(Yi(1) = Yi(0) < v/2p5(1 = ps)(V(Y;(1)) + V(Yi(0))). ()

Therefore PAPE is bounded provided that the second moments of the potential outcomes exist. Thus,
given a fixed variance of the potential outcomes, 7; is most likely largest around py = 0.5. This is because
when py is around 0.5, the ITR has the greatest room to deviate from the randomized treatment rule.

3.2 Estimation and Inference

To estimate the PAV and PAPE under Neyman’s repeated sampling framework, we consider the following
“difference-in-means” type estimators:

. 1 & 1 &

A(Zn) = e Z;YiTif(Xi) + P ;Yi(l = Ti)(1 - f(Xi)), (6)

A L I S RS SINID / L T o R
1(Zn) = —— m;mzﬂxmno;m T;)(1 - (X)) m;m - ;m )|,

(7)
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where py = >_1 | f(X;)/n is the estimated population proportion of individuals who receive the treatment
assignment and Z,, = {Y;, T;, X;}}_; represents the experimental data of sample size n. The factor n/(n—1)
in the PAPE estimator represents the loss in one degree-of-freedom due to estimating the population-level
quantity py.

The following theorems, reproduced from our previously published work [14], shows that, under Ney-
man’s repeated sampling framework, these two estimators are unbiased and the finite-sample variances can
be derived.

Theorem 1 (Unbiasedness and Variance of the PAV Estimator [14]). Under Assumptions 1, 2, and 3, the
expectation and variance of the PAV estimator defined equation (6) are given by,

E{j‘f(zn)} = A

2 2
Vi (Z) = —On) | B

ni no

where S, =371 (Yyi(t) = Yy ()% /(n — 1) with Yy(t) = 1{f(Xi) = t}Y;(t), and Yy(t) = 3202, Yyi(t)/n
fort ={0,1}.

Theorem 2 (Unbiasedness and Variance of the PAPE Estimator [14]). Under Assumptions 1, 2, and 3,
the expectation and variance of the PAPE estimator defined equation (7) are given by,

E{7¢(Zn)} = 7y,
n2  [E(S3,) E(S?
ViH(Z)) = (nfl) - (nSO) - % {73 —nps(1 — pp)r? +2(n — 1)(2ps — V7y7} |

where 3, = Y1 (Yyi(t) — Y(£))2/(n — 1) with Yi;(t) = (F(X;) — pp)Yi(t), and Yi(t) = Y0y Yyi(t)/n
fort ={0,1}.

The properties of the PAV estimator shown above follow immediately from Neyman’s classic results by
replacing the potential outcome Y;(t) with the the potential outcome that incorporates the ITR, i.e.,
1{f(X;) = t}Y;(t). The form of the estimator does not mean, however, that we are ignoring observations
whose prescribed treatment status differs from the observed one, i.e., f(X;) # T;. These observations
are still used when estimating the variance. An important implication of this subtle fact is discussed in
Section 3.4.

We can also compare the results of the PAPE estimator with Neyman’s classic results. We observe
that the relevant potential outcome is given by ?fi (t) = (f(X;) — pyp)Yi(t), which directly compares the
ITR with the randomized treatment rule. When compared to the PAV estimator, the variance of the PAPE
estimator has an additional term, which comes from the fact that ?fi(t) is correlated across observations
due to the estimation of the proportion py.

The correlation can be broadly decomposed into two components: (1) a negative component caused
by the negative correlation within the mean-adjusted ITR (f(X;) — py) and (f(X;) — Dy), and (2) the
remaining component that arises due to the interaction between f(X;) and 7;. The negative component
generally dominates if the ITR of interest treats roughly 50% of the population (ps ~ 0.5) and the average
treatment effect 7 is not too small. This suggests that the mean adjustment could lead to a variance
reduction when the ITR treats a roughly half of the population.

On the other hand, for ps % 0.5 and n > 1, this additional term is positive if and only if the following
condition holds:

el 2 2Py
~(n=1)2py -1
Thus, this additional term is only likely to be positive under a scenario where py is away from 0.5 and
the magnitude of the PAPE is much greater than that of the ATE (i.e., the ITR is performing well).
Equation (5) suggests that this is unlikely unless the variance of the individualized treatment effect is
large, implying a large degree of treatment effect heterogeneity.
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3.3 Performance Comparison among Multiple ITRs

While the PAPE compares an ITR with a random treatment assignment rule that treats the same pro-
portion of units, researchers are often interested in comparing the performance of multiple ITRs. In such
cases, we recommend estimating the difference in PAV between two ITRs that are subject to the same
budget constraint. [14] provides the details of estimation and inference regarding this quantity.

The use of PAPE for comparison of two ITRs are likely to be inappropriate. To see this, note that the
difference in PAPE can be written as the covariance between the agreement of two ITRs and the true ITE:

T — 19 = Cov(f(X;) — g(X;),Yi(1) — Y5(0)).

This expression shows that for ITRs with similar treatment proportions, the sign of this difference indicates
the relative capability of the ITRs in identifying the optimal individuals to treat. However, if the two ITRs
f and g have significantly different treatment proportions, then this comparison is difficult. Figure 1 shows
an example, in which ITR f has a higher PAV than ITR g, but f has a negative PAPE while g has a positive
PAPE. In this case, f is not an effective ITR as it performs significantly worse than random treatment,
but practitioners might still choose to not use g as it is able to identify a small percentage of good patients
to target.

Average outcome

E[Yi(1)]

|
|
|
|
|
|
|
|
|
| |
| |
| |
| |
o = o Proportion Treated, p
0.2 08 1

Figure 1. lllustration of PAPE for two different ITRs f and g. Here the z axis is the proportion of individuals treated, and
y axis is PAV. The PAV of f is higher than PAV of g, but ITR g has a positive PAPE 74 and the ITR f has a negative
PAPE ;.

3.4 Lack of invariance

Unlike Neyman’s ATE estimator, the PAV and PAPE estimators are not invariant to a constant shift of
the outcome variable. One might expect that adding a constant § to Y would shift the PAV estimator by &
and not affect the PAPE estimator at all. Unfortunately, this is not the case. For both of these estimators,
a constant shift of the outcome will result in an additional change of the equal magnitude. Let X‘}(Z )
and %J‘E(Z) be the new PAV and PAPE estimators under a constant § shift, i.e., X‘}(Z) = S\f(Z) + 6 and
%}S(Z) =7¢(Z) + 6. Then, we have,

n—1

N(Z2) - Ap(Z2) -6 =

n

. . 1 n 1 n
(7(2)-#1(2)) = ¢ <n D Tif(Xi)+ =Y (1= T)(1 - f(Xi)) ~ 1) :
Lz 0=
Since this term equals zero in expectation, the two estimators remain unbiased. However, this shift
affects their variances because the ITR f(X;) is only balanced on average due to the randomized treatment
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assignment. Intuitively, this is because the relevant potential outcomes in the case of both PAV and PAPE
are not invariant to a constant shift of the outcome variable. For PAV, the relevant potential outcome is
Y5i(t) = 1{f(X;) = t}Yi(t), so under a constant shift of 0, only samples with f(X;) = ¢ would be shifted
by ¢ while the remaining samples still has a value of zero. The intuition is similar for PAPE. Therefore, we
expect that balancing the observed outcomes Y; close to zero could result in increased efficiency.

We now derive the constant shift § that minimizes the resulting variances. We can show that a constant
shift of § to potential outcomes creates the following additional variance terms for both estimators:

Proposition 1 (Minimum Variance Estimators). The variances of the constant shift estimators are given

by:
V(3(2)) = VO§(Z) + bpp(1 —py) 221 4 2500 4 5. 7
! = V(s pr(L=pp) (= + —
V(Ag(z)) = V(7 (Z))_Q_L(; (1 py) 2K11 n 2K00 vy n Lo i
Tf = V7¢ (n—1)2 Dr by " o e =)

where kgt = B[Y;(s) | f(X;) = t]. Minimizing these variances over ¢ results in the following optimal value
of 85 and &% for the PAV and PAPE, respectively:

1
N = - (@%11 + E/‘%0) ; 6p=0y+0 (> .
n n n

Proof is in Appendix B. The proposition implies that if we wish to minimize variance across a range
of f(X;), then when n; = ng = n/2, the optimal value of 0 approximately balances the two potential
outcomes around zero after a constant shift, i.e.,

n

5S4 8+ (Yi(0) £ 63)) ~ 0.

n 4
=1

4 Ex-ante vs. ex-post experimental evaluations

So far, we have considered an ex-post evaluation, in which we first conduct a completely randomized
experiment and then evaluate ITRs using the data from the experiment. Alternatively, researchers may
consider an ez-ante experimental evaluation, in which we randomly assign units to an I'TR. That is, the ITR
itself is the “treatment” of this experiment. Ex-ante experimental designs are commonly used in practice
[see 24, 25, for example].

We apply the Neyman’s repeated sampling framework to compare the statistical efficiency of ez-ante
and ez-post experimental evaluations. We show below that, perhaps surprisingly, in some cases ez-post
evaluation is more efficient than ez-ante evaluation. Our result suggests that given a potential ethical
concern of ez-ante experimental evaluation, researchers may prefer ez-post evaluation. Another reason to
prefer ez-post evaluation is that this design allows one to evaluate any number of ITRs while the ez-ante
evaluation is tied to a particular ITR. In this section, our analysis focuses on the PAPE. Since the PAV
does not compare between two different treatment regimes, it does not make sense to design a randomized
trial around it.

4.1 Setup

For the ez-ante evaluation of the PAPE, we assume a simple random of n units from the same target
population, P. Consider a completely randomized experiment, in which a total of n; units are randomly
assigned to an ITR f while the remaining units n, = n — ny are assigned to the random treatment rule
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with the probability of treatment assignment equal to n,1/n,. Let F; be an indicator variable, which is
equal to 1 if unit 7 is assigned to the ITR f and is equal to 0 otherwise. Under the random treatment rule,
the number of units that are randomly assigned to the treatment condition is n,; while n,.g = n, — n,1
units are assigned to the control condition. As before, we use T; to represent the treatment indicator. We
formally state these assumptions.

Assumption 4 (Complete Randomization in the Ex-ante Evaluation of PAPE). The probability of being
assigned to the individualized treatment rule rather than the random treatment rule is given by,

1
()

for each f where Z?:l fi =ng. Among those who are assigned to the random treatment rule, i.e., F; =0,

Pr(F = f [{Yi(1),Yi(0), Xi}ily) =

the probability of treatment assignment is given by,

1

()
Nr1

Pr(T =t | {Y;(1),Y;(0), X;}7;) =

for each t where Y- (1 — Fy)t; = ny1.

Using this experimental data, we wish to estimate the PAPE defined in Equation (4). For simplicity, we
have the number of treated units under the random treatment rule to equal that under the ITR condition,
ie., py = ny1/n, where py = > | f(X;)/n, so that the evaluation estimator would not need to be
further adjusted. Fortunately, in practice, this can be easily accomplished so long as the covariates are
available prior to the randomization of treatment assignment among the group assigned to the random
treatment rule. Lastly, the so-called Neyman allocation implies that if the variances of Y;(1) and Y;(0)
differ significantly from one another, one can gain additional statistical efficiency by allocating more units
to the treatment condition whose potential outcome has a greater variance. This optimal design, however,
does require the availability of external data to estimate these variances. For the sake of simplicity, we do
not consider such optimal designs here.

We consider the following estimator of the PAPE for the ex-ante experimental evaluation that accounts
for a potential difference in the proportion of treated units between the ITR and the random treatment
rule by appropriately weighting the latter,

» n 1 n ﬁ n 1 —ﬁ n
77(Zn) = — (nf > FYi- n—fl SNou-mnyi-—LY a-ma-nyvi|. (8
i=1 =1 i=1

Nro

The ezx-ante evaluation differs from the ez-post evaluation in two ways. First, the ez-ante estimator
requires two separate random assignments (7; and F;) while the ez-post estimator only involves one.
Intuitively, an additional layer of randomization increases variance. Second, the ez-ante evaluation requires
a separate group that follows an ITR, whereas all individuals under the ez-post evaluation are simply
randomly assigned either to the treatment or control group. As a result, under the ez-post evaluation, we
utilize the samples identically, which could further reduce the variance. Together, we expect the ex-ante
evaluation to be less efficient than the ez-post evaluation as the full sample is not utilized for every part
of the estimation. Below, we use Neyman’s repeated sampling framework to confirm this intuition under a
set of simplifying assumptions.

4.2 Comparison of the two experimental designs
Before comparing two modes of evaluation, we derive the bias and variance of the ez-ante evaluation

estimators under the Neyman’s repeated sampling framework. In the current case, the uncertainty comes
from three types of randomness: (1) the random assignment to the individualized or random treatment rule,



e Michael Lingzhi Li and Kosuke Imai, Neyman Meets Causal Machine Learning === 9

(2) the randomized treatment assignment under the random assignment rule, and (3) the simple random
sampling of units from the target population. The next theorem shows that this estimator is unbiased and
the variance is identifiable. Proof is given in Appendix A.

Theorem 3 (Unbiasedness and Variance of the Ex-ante PAPE Estimator). Under Assumptions 1, 8, and /,
the expectation and variance of the ex-ante PAPE estimator defined in Equation (8) are given by,

E(73(Zn) = 77,

S} 03ST . (1-pp)2S}
. _ Cr o1 Pf) 20

1
+—5 {7f — oy (L= p)7 +2(n = 1)(2py — D7y}

where §3 = Y1 (Vi(£(X0) =V (FX)))2/(n—1), and SF = Y0, (Yi(t) = Y (D)2/(n—1) with Y (F(X)) =
S Vil (X)) /n and V() = Y0, Yilt)/n for t = 0,1.

Given these results, we examine the relative statistical efficiency of the ex-post and ex-ante experimental
evaluations. To facilitate the comparison, we assume ny = ng = ny = n, = n/2. In words, the ex-post
evaluation sets the treatment assignment probability to 1/2, and the ez-ante evaluation also sets the
probability of being assigned to the ITR to 1/2. In the same fashion, we also assume n,1 = nyo = n/4,
implying that the ex-ante evaluation sets the treatment assignment probability under the random treatment
rule to 1/2 as well. Although our result below may not be applicable beyond this simplified setting,
we believe that this equal allocation setting is a common choice in practice and therefore is worthy of
investigation.

Under this simplified setting, the difference in the variance of the PAPE estimator between the ez-ante
and ez-post evaluations is given by,

V(75(Zn)) = V(75(Zn))

= (ni—”m [E{p}S7 + (1 - pp)?S3} + 2 Cov(f(Xa)Yi(1), (1 - f(X:))Yi(0))
+ 2py Cov(f(X:)Yi(1),Yi(1)) +2(1 — py) Cov((1 — £(X:))Yi(0), Y;(0))]
= (nz_—"l)z [PFV(Yi(1) + (1= ps)2V(Yi(0) = 2ps (1 = pp)E(Yi(0) | £(X,) = O)E(Y;(1) | f(Xi) =1)
+2p7 {E(Y2(1) | f(X3) = 1) = E(Vi(D))E(Y;(1) | f(Xi) = 1)}
+2(1 = p)” {E(YZ(0) | £(Xi) = 0) — E(Y;(0)E(Yi(0) | f(Xi) =0)}] . (9)

The details of the derivation are given in Appendix C. Suppose now that the ITR correctly assigns individ-
uals on average, i.e., E(Y;(¢) | f(X;) =t) > E(Yi(t) | f(X;) =1—1) for t = 0,1. Under this assumption,
the last two terms in the square bracket are positive, i.e.,

E(Y2(t) | £(Xi) =1) —EYG0)EY;(t) | f(Xi)=1) > V(Y;(t) | f(Xi) =1),

for t = 0,1. Hence, the only term that is possibly negative in Equation (9) is the third term in the
square bracket. For simplicity, further assume that we shift the outcomes to minimize variance of the
ex-post estimator and achieved E(Y;(1) + Y;(0) | f(X;) = 1) = E(Yi(1) + Y;(0) | f(X;) = 0) = 0 (see
Equation (1)). This guarantees that the optimal choice of ¢ is zero and hence no adjustment in variance is
necessary. Under this assumption, we can bound Equation (9) from below as follows (see Appendix D for
details),

V(77(Zn)) = V(7(Z0n))

2 [AVG) + (1 —pp)?V(Yi(0) + 2p7V(Y;(1) | £(Xi) =1) +2(1 — pg)*V(Y;(0) | f(Xi) =0)

-1 P
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+2pp(1—py) [(1 = pHEYi(0) | £(X3) = 0} + pp{E(Yi(1) | £(Xi) = 1)}?]]
> 0.

The result implies that under a set of simplifying assumptions the ez-post evaluation is more efficient than
the ex-ante evaluation. We note, however, that this conclusion may not hold if the ex-ante and ez-post
setups have sample allocation different from the setting considered here.

5 Incorporating the uncertainty of machine learning training

In the above sections, we have assume that the ITR to be evaluated is given. For example, an I'TR may be
derived using an external data set. But, in many cases, researchers may wish to use the same experimental
data set to both derive an ITR and evaluate it. One possibility is to randomly split a data set into the
training and evaluation data sets, and then use the former to learn an ITR and the latter for its evaluation.
Unfortunately, this sample splitting approach does not utilize the data most efficiently.

An alternative and more efficient approach is cross-fitting. The idea is to randomly split the data into
K folds of equal size and then use each fold as the evaluation data while using the remaining K — 1 folds as
the training data to learn an ITR. By repeating this process across K folds and averaging the evaluation
results, we are able to use the entire data set for both training and evaluation.

While the dominant “double machine learning” (DML) approach uses the same cross-fitting procedure
[26], we show here that Neyman’s repeated sampling framework can also incorporate this cross-fitting
approach. Unlike the DML, Neyman’s framework enables us to derive the finite-sample properties of ITR
evaluation solely based on the random splitting of the data as well as randomization of treatment assignment

and random sampling of units.

5.1 Setup

Consider a generic ML algorithm, which we define as a deterministic function mapping the space of training
data of finite size, denoted by Z, to the space of all possible scoring rules S,

F:Z-8. (10)

Typically, the scoring rule of interest is the estimated CATE such that the largest value indicates the highest
treatment prioritization. Alternatively, the scoring rule may be based on the estimated baseline risk, i.e.,
E(Y;(0) | X; = «). We do not, however, assume that the ML algorithm used to generate the scoring rule
accurately estimates either the CATE or baseline risk. Indeed, we essentially impose no assumption on how
the scoring rule is created. Once the scoring rule is estimated by an ML algorithm, the ITR is given by,

fz,(@) = 1{F(Z,)(z) > 0}, (11)

where the notation makes it explicit that the ITR depends on the specific training data Z,, € Z of sample
size n.

Next, consider the following standard cross-fitting procedure. First, we randomly split the experimental
data of size n into K subsamples of equal size m = n/K where, for notational simplicity, we assume n
is a multiple of K. Then, for each &k = 1,2,..., K, we use the kth subsample as an evaluation dataset
Zﬁ,ff) = {XZ-(k)7Ti(k),l/i(k)}:-’;1 while the remaining (K — 1) subsamples are used as the training dataset
Zr(L:]ir)L ={X ngk),]’i(fk),}/i(fk)}?glm. Without loss of generality, we assume that the number of treated
(control) units is identical across K folds and denote it using my (mo = m — my).

Then, for each fold k, we estimate an ITR by applying the ML algorithm F to the training data
Z 7" which we denote by f(=F) = fz<7k) . We then evaluate the performance of the ML algorithm F' by

n—m?
)

computing an evaluation metric of interest based on the test data Zr(,ic . Repeating this process K times
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for each k and averaging the results gives a cross-fitting estimator of the evaluation metric. Here, we focus
on the cross-fitting PAV estimator,

K
~ 1 ~
Ae(Zn) = 2D Apen(Z), (12)

where A £(+) is defined in Equation (6). We now discuss the estimand, for which this cross-fitting estimator
is unbiased.

5.2 Evaluation metrics under cross-fitting

To extend Neyman’s repeated sampling framework to cross-fitting with K > 2 folds, we begin by noting
that the ITR in this setting varies as a function of training data. Thus, we consider the performance
measure that averages over the random sampling of training data as well as the randomization of treatment
assignment and random sampling of units. In other words, we evaluate the average performance of ITR
that is generated by the application of ML algorithm F across K different (but overlapping) training data
sets. This contrasts with the performance evaluation metric of a fixed ITR discussed in earlier sections.
For the PAV under cross-fitting, we consider an average ITR over across training data of size n — m,

fFn(Xi) = Bz, Afz,_ (X)) | Xi} = Pz, Afz, . (X:)=1]|X;},

which represents the proportion of times the estimated ITR would assign the treatment to a unit with a
specific value of covariates. The notation makes explicit the dependence on the size of training data n —m
as well as ML algorithm F'.

Under Neyman’s repeated sampling framework, one can view each estimated ITR as another random
sampling from a population of ITRs based on ML algorithm F' with training data set of size n —m. Thus,
the PAV under cross-fitting can be defined as,

Mo = B (X0)Yi(1) + (1= i (X0)Yi(0)).
For the PAPE, we consider the cross-fitting version of the proportion treated by ITR ps as follows:
Pr-m = Pz, {fz, (X)) =1}
Then, the PAPE under cross-fitting can be defined as:
T = E{ o (X)Yi(1) + (1= fi 0 (X0)Yi(0) = pr_n V(1) = (1= pf_,)Yi(0)}. (13)

As shown before, the PAPE is equal to the covariance between the average proportion treated and the
individual treatment effect,
Toem = Cov(fi_n(Xi), Yi(1) = Yi(0)).

5.3 Finite sample properties

We now apply Neyman’s repeated sampling framework to the cross-fitting PAV estimator given in Equa-
tion (12). It is easy to show that S\Q is an unbiased estimator of \!' . To derive the variance, we first
note that the evaluation metric is correlated across K folds because cross-fitting utilizes each subsample
for both training and testing,

V(en(ZW) K
K

: L A
VXic(Z0)) = — CovlA g (Z8)), 30 (280))
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where k # ¢. We then use a useful lemma about cross-fitting due to [27], and rewrite the covariance term
as follows,

~

k N 0
Cov(Apn (Z5)), 350 (280)) = V(A ;i (Z0))) — E(S}),
where 512? is the sample variance of A F—r) (Z,giC )) across K folds. Putting them together, we have,

VOE(Z.) = V(e (Z8) - B2 TE(SR) (14)

We can further analyze the first term of Equation (14) by following the analytical strategy used in
Theorem 1. The only difference is that the estimated ITR is correlated across observations due to training
process,

o E(5%) E(SY)
jon (@) = Lo I Cov(Y, (1) = V5,00, Y, (1) = Y, (0), (15)
where i # j, Vi () = 1{/F(X;) = t}Yi(t), and Sj%t is the sample variance of Y7, (t). Further simplifying
the covariance term yields the following theorem whose proof is given in Appendix A.5.1. of our previously
published work [14].

V(A

Theorem 4. (UNBIASEDNESS AND EXACT VARIANCE OF THE CROSS-FITTING PAV ESTIMATOR [14])
Under Assumptions 1-3 the expectation and variance of the cross-fitting PAV estimator defined in equa-
tion (12) are given by,

E(\i(Zn) = Ao
) E(S3)  E(S%) ; \ K-1
VOR(Z)) = 5 I B Con(FOP (X0, FNX) | Xi Xy | - S E(S),

for i # j, where 7, = Y;(1) — Y;(0), S;t =3 (Y5t — Yf(t))Q/(m —1), 82 = Zle(xf(,k)(zgﬂ) _
Xﬂ k)(Z(k))Q/(K — 1) with Y,(t) = 1{fP(X;) = 1}Y5(1) = Y (0)/m, and Ap o (Z3)) =
Yhey A (Z0))/K, for t ={0,1}.

In particular, we note that when compared with the fixed ITR setting, there are two additional terms. One
of these terms is proportional to Cov(f(~% (X;), f(=F) (X;) | X4, X;), which represents the covariance
between the evaluation samples due to the training process, and the product of individual treatment
effects 7;7;. This term is often positive because if the ITR is estimated well, it is more likely to make
the same treatment assignment to units when their individual treatment effects are similar. In numerical
experiments, we typically find that this term is usually relatively small. The other term —%E(S%) is
always negative and quantifies the efficiency gain resulting from utilizing the cross-validation procedure.

Furthermore, from Lemma 1 in [27], we can show that

B3 | <s;0>

V(A 0(Z9)) = +E{COV(f( M i)yf(_k)(XjHXan)Tﬂj} > E(SE).

mi

Therefore, maximally the efficiency gain resulting from the cross-fitting procedure reduces the variance to
E(S%) when the estimated PAV from each of K folds is completely independent.

6 A Numerical Study

In this section, we empirically validate our theoretical results through a numerical study. In particular,
we focus on demonstrating the results related to the lack of invariance (Proposition 1) and the efficiency
comparison between the ex-ante and ex-post estimators (Theorem 3). Strong finite-sample performance of
the proposed estimators have been extensively demonstrated in our previously published study [14].
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In all our simulations, we utilize the 28th data generating process (DGP) from the 2016 Atlantic
Causal Inference Conference (ACIC) Competition, of which the details are given in [28]. For the population
distribution of pre-treatment covariates, we use the empirical distribution of covariates from this sample
of n = 4802 observations with 58 covariates X including 3 categorical, 5 binary, 27 count data, and 13
continuous variables. That is, we obtain each simulation sample via bootstrap. We further assume that the
treatment assignment is completely randomized, and the treatment and control groups are of equal size,
i.e.,, n1 = nyg = n/2. Finally, the formula for the outcome model is reproduced in Appendix E.

0.8501 1.25
type

§ ex-ante
i 0-825 S 1.00+ == ex-post
= s
° °
2 0.8001 g 0.75-
S °
2 g
w n
£ 0.7751 5 0507
[} Q
& s

0.750+ @ 0257

-5.0 -25 0.0 25 50  0.00- . . . .
8 100 500 1000 2000

n
(a) The empirical standard error of PAV estimator as a function of
constant shift in potential outcomes. § = 0 minimizes the standard (b) Comparison of empirical standard error of the ex-ante and ex-post
error of PAV. PAPE estimators (y-axis) for various sample sizes (x-axis).

Figure 2. Numerical Experiments

First, we investigate the effect of shifting potential outcomes by a constant on the variance of estimators.
Figure 2a plots the empirical standard deviation of the PAV estimator (the vertical axis) with n = 100
samples from the DGP as a function of constant shift in potential outcomes (the horizontal axis). Here, we
centered the potential outcomes shift so that the optimal value of § given in Proposition 1 is zero, i.e.,

%511 + %l{oo =0.

As predicted by our theoretical analysis, we find that balancing the potential outcomes leads to a lower
standard error in the estimator due to the unbalanced nature of the relevant potential outcomes 1{f(X;) =
£Y;(0).

Second, we compare the statistical efficiency of the ex-ante and ex-post PAPE estimators under the
assumption ny = n, = n/2 and n,1 = nyo = n/4. Consistent with our theoretical results, Figure 2b shows
that the standard error of the ex-ante estimator is consistently greater than that of the ex-post estimator.
For example, when the sample size is 500, the former is over twice the latter.

7 Conclusion

In this article, we provided a short overview of how Neyman’s repeated sampling framework can be utilized
to experimentally evaluate the performance of arbitrary ITRs. We consider the two settings, one in which
an IRT is given and the other in which an ITR is estimated from the same data. We also demonstrated the
new challenges that result from the application of Neyman’s framework, including the lack of invariance
of evaluation estimators and the need to incorporate the uncertainty due to training of machine learning
algorithms. We further demonstrated how Neyman’s repeated-sampling framework can highlight the differ-
ence between the ex-ante evaluation and ex-post evaluation of ITRs by showing that the ex-post evaluation
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is statistically more efficient. Our ongoing work also applies this framework to the estimation of heteroge-
neous treatment effects discovered by machine learning algorithms [29]. All together, we have shown that a
century after his original proposal, Neyman’s analytical framework remains relevant and widely applicable
to the evaluation of today’s causal machine learning methods.
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A Proof of Theorem 3

We first consider the following intermediate estimator,

F(Z) = SV X)F -~ S YT (- F). (16)
T i=1

n
f i=1

This estimator differs from the ez-ante estimator of the PAPE 7“'}“, by a small factor, i.e., 7*}“ = (n—1)/nt;
under the condition that py = n,1/71. The following lemma derives the expectation and variance of this
estimator. Using this lemma, the results of Theorem 3 can be obtained immediately.
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Lemma 1 (Expectation and Variance of the Intermediate Estimator). Under Assumptions 1, 3, and 4,
the expectation and variance of the estimator given in Equation (16) for estimating the PAPE defined in

Equation (4) are given by,

E(7(

V(s (

Zn))
Zn))

n—1

TF,

—05)*S;

nf

E(53%) Tk {ﬁch% L
N1

nro

} + % {Tf2 —nps(1—pp)r?+2(n—1)(2py — 1)Tf7'} )

Proof. We first derive the bias expression. First, we take the expectation with respect to T3,

E[

3

—ZY X)F—nlrzn:

n

ZY F(X3))

Z{Y )Ti + Yi(0)(1 = T} = F) | X0 Y5(1),i(0), Fiiey

{n(l)m £Yi(0) (1 - Z—nf(x)) } (1-F).

i=1

71(Zn) [ { X, Yi(1), Yi(0), Fi}isy]

n

Next, we take the expectation with respect to Fj:

E [1 S vilf(x
[ e

- 1
=
i
£~
M
E

onf(X —W%ZZ{
—ZY(f(X -y

=1j=

n

=1 j=

1

nyn

) v (1 TR

X;)(1 = Fy) +Yi(0) (1= £(X5) (1= Fi) [ { X, Yi(1), Yi(0) }i ]

F) | (X i), i) b ]

Yi(1)f(X;) +Yi(0

MR- 1)}

(Ya(1)£(X;5) +Yi(0) (1 = £(X5))) -

Finally, we take the expectation over the sampling of {X;,Y;(1),Y;(0)}:

LY vx
=1
= E{Yi(f(Xi))} — prE(Yi(1))
= 7 Cov(Yi(1) ~ Yi(0), f(
_ ";%f.

X))

- % 3D WF(XG) +Yi(0) (1 - £(X;)}

i=1 j=1

— (1) B(Yi(0)) ~ 5 >~ E{Cov(¥i(1), F(X1)) + Cov(¥i(0), 1~ F(X1))}
=1

V{E(T?(Z ) [{X,Yi(1), Yi(0), Fi}ii)} + B{V(77(Zn) | Xi,Yi(1), Yi(0), i)}

Yi(f
nf;

1
HE{

=1

Z{YT +Y(1=T)}1 - F) | {X5,Y:(1),Y(0), Fi}iy

) F; — — Z{Yu )b + Yi(0)(1 - py)}(1 — Fy)

} |
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For the first term, we further use the law of total variance by conditioning on the sample, and center F;
via the transformation D; = F; — ny/n. For the second term, we use the results of [30], with the following
notation,

n

1
n—1

St = = S (0 - VW) S =
i=1

Z<m<o> —Y(0))(v;(1) - Y (1)),

for t = 0, 1. Then, the variance becomes,

V{i >_Di (:Y(f(Xz‘D + ,?17) {X,Yi(1),Y:(0) &H

n A27’L 2 oA n
W{iZ(Y(f(XZ-))—ﬁ)}w 1{pf 0% | A= pr)enSy

n
i=1 r

N1 Nro

where ¥; = pYi(1) + (1 — p;)Y;(0). Then, we have,

, ] _
V(75(Zn)) = ]Eiif) +—E(§l) +E nlr{

521052 502n

- jSl = pil)z 5 o5, —ﬁf)sol}

+ Cov((f(X:) —ps)Yi(1) — (f(Xi) — pf)Yi(0), (f(Xi) — pp)Yi(1) — (f(Xs) — Dy)Yi(0))
)

E(52 2 1 (521092 (1= pp)2n,yS2
_ (f)+E(5m i E 1{pf 051 | (1= py)"nn Sy

Nyl nyro

— 2% (1— py)S
0 - - pr(l—py) 01}

1
+ 2 {TJ% —nps(1—pp)r® +2(n—1)(2py — l)rfr}

E($2 RS2 (1—p,)2S2
- Elf)ﬂa{”f L, Qo P)5
f

1 9 )
Nyl nro } JrE{Tf —npg(l —ps)r* +2(n—1)(2py — V)7y7},

nil E:L:l(f/z — ?)2 and the last equality follows from the E(S2,) = E{ﬁ?Sf +(1- ]5?0)5’[2) +

2p¢(1 —pg)Sor} O

where S,Qn =

B Proof of Proposition 1

By definition, we have that:

ni o

_ 25{COV(f(Xi)Y¢(1),f(Xi)) 4 Cov((@ = F(X))Yi(1), 1 = f(X5)) } iy {pf(l —py) 21 —pf)}

ni )

~ oty (iE[YZ‘“) (X0 = 1+ ZEY(0) | £(X) = 0]+ - nlnno) |

Define b = 25 =1+ ﬁ Then, we have:

V(#3(2)) — V(#(Z))
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vy ( ZT Fx Z< T - f(Xm) ~V(#(2))

= 2b6 - Cov (n z), — ZTf )+ io > -1y - f(Xm) + %62V <nll > Tif(Xi) + nio da-1ya-
=1 3

=1 =1
= 2b%5 - Cov ( ZTf Z( —T)(1 - f(Xi)))
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— 2625 - Cov(prYT+ prY 1-1T, ZTf(X +§:(1—Ti)(1—f(Xi))>
=1 i=1
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C Difference of the PAPE Variances

To compute the difference of the two PAPE variances, we first define the following,

A = ppYi(1)—pgY (1), B = (1—pp)Y;(0) — (1—p5)Y(0),
Ci = f(X)Yi(1) - f(X)Y(1), D; = (1- f(X:)Y;(0) — (1 f(X))Y(0).

Then, a simple algebraic manipulation yields,

V(Tf(Zn)) = (TL— 1)2E <Z nl(n— ]_) + no(n— 1) &)
n? = A? B? C? + D? +20;D;
Ak Zn — E 3 3 3 2 ,
V(77 (Zn)) (n—1)2 (; ne1(n—1) + nro(n —1) + ng(n—1) +e

where £ = # {T)% —npr(l—pp)r2 +2(n—1)(2ps — l)TfT}. Given these expressions, the difference is
given by,

i A2(n1 —ny1) n B2(ng — nyo) C%(ny — ny) D2(ng — ny)
nyr1n (

(n n—1)  ngno(n—1) npni(n—1)  nyno(n—1)

n2
VE) VG = ot 1)2E<
i=1
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2C;D; 2A,C; 2B;D;
ngn—1) ni(n—1) non—1))"

Under the assumption that ny = ng = ny = n, = n/2 and n,o = ny1 = n/4, we have,

» . 2n "\ A2+ B?  20;D; 4 2A;C; + 2B;D;
V(#}(Zn) = V(3§(Zn)) = WE(Z Lt iDi iCi iDi

‘ n—1
=1

= iinl)z [E{p}S7? + (1= ps)2S3} + 2 Cov(F(X,)Yi(1), (1 — £(X,))Y;(0))

(n
+2pg Cov(f(X:)Yi(1),Yi(1)) + 2(1 — py) Cov((1 — f(X4))Yi(0),Y:(0))].
Finally, note the following,

Cov(f(Xy)Yi(1), (1 - f(Xi)) Yi(0))
= E{f/(X)Yi(1) (f(Xi) = 1) Yi(0)} — E{f(Xy)Yi()}E{(1 — f(X3)) Yi(0)}
= —Pr(f(Xi) = DEYi(1) | f(Xi) = 1) Pr(f(X:) = OE(Yi(0) | f(Xi) = 0)
= —ps(1=ppEYi(0) | £(Xi) = OEYi(1) | f(Xi) = 1),

and

py Cov(f(X;)Yi(1),Yi(1))
(1 —py) Cov(f(X:)Yi(0),Yi(0))

Hence, we have,

V(77(Zn)) = V(7(Zn))

pEYE (1) | f(X) =1) — E(;(1)EYi(1) | f(X) =1)}
(1= pp)? {E(Y(0) | £(X:) = 0) — E(Yi(0))E(Yi(0) | f(Xi) =0)}.

= (niinl)z [PFVYi(D) + (1= pp)*V(Yi(0) = 207 (1 = pp)E(Y:(0) | F(Xi) = OE(Yi(1) | £(Xi) =1)
+2p7 {E(Y? (1) | /(X0) = 1) - E(G(D)E(Yi(1) | f(X0) = 1)}
+2(1 - pp)* {E(V?(0) | [(X2) = 0) — E(Yi(0)E(Yi(0) | f(Xi) = 0)}]
2n

RCESIE [PFV(Yi(1) + (1= ps)?V(Yi(0) — 2p5 (1 — pp)E(Yi(0) | F(X,) = 0)E(Y;(1) | f(X3) = 1)

+2p3 {(V(Yi(1) | f(X) = 1)
+ (L—pp{EMi(1) | f(X) =1) —E(Yi(1) | £(X3) =0)}E(Yi(1) | f(X:) =1)}
+2(1 = py)? {V(Yi(0) | f(X;) =0)
+ p{E(Y;(0) | f(Xi) = 0) = E(Y;(0) | £(X3) = 1)}E[Y;(0) | f(X3) =0]}.

D Comparison under the Simplifying Assumptions

Define Mg, = E(Yi(s) | f(X;) =t) for s,t € {0,1}. Then, we can rewrite the variance difference as,

2n

V(75(Zn)) = V(7¢(Zy)) = =12

[p?V(Y'(l)) + (1= pg)?V(Yi(0)) = 2p4(1 = ps) M1 Moo
+2p7 {V(Yi(1) | f(Xi) = 1) + (1 = py) (M1 — Mio) M1 }
+2(1—py)? {VY(O | f(Xi) = 0) + pg(Moo — Mo1)Moo}] -

Now, consider a constant shift of the outcome variable, i.e., Y;(¢) + ¢ for ¢ = 0,1. Then, the variance
difference becomes,

V(75(Zn)) = V(7§(Zn))
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= moie 2,711)2 [p?V(Yi(l)) + (1= pp)?V(Yi(0) = 2p (1 = ps) (M1 + 6)(Mop + 6)

+2pf {v(vi(1) | f( D) =1)4+ 1 —ps) (M1 — Mio)(M11 +0)}

+2(1—py)? {V 0) | £(Xi) = 0) 4+ ps(Moo — Mor)(Moo + 6) }]
- oo [pfwm)) e —pf)zw-(o» ~ 2ps(1 - py) M1 Mo

+2p% {V(Yi(1) | f( i) =1)+ (1 —pg) (M1 — Mio) M1 }

+2(1 - py) {V 0) | f(Xi) =0)+ ps(Moo — Mo1) Moo }

—2pp(1—py)d® + pr(l —pp)8 {ps(M11 — Mig) + (1 — ps) (Moo — Mor) — M1y — Moo }|
= @?%ﬂﬁvmun+ufmﬁwn@%ﬂmumeme

+2pf {V 1) | f( i) =1)+ (1 —ps)(M11 — M) Mu}

+2(1 = py) {V 0) | £(Xi) = 0) 4+ ps(Moo — Mo1)Moo }

~2p(1—py)o? — 2pf(1 = s)8 {ps (Moo + M1o) + (1 = ps)(M11 + Mor)}] -
Thus, we observe that the variance difference decreases by,
2pf(1 —pf)(s2 + 2pf(1 —pf)(s {pf(Mo() + MlO) + (1 _pf)(Mll + M()l)} .

Since the ex-ante estimator is completely unaffected by this change, the constant shift increases the variance
of the ex-post evaluation estimator by the same amount. Under the simplifying assumptions, we have,

My + Moy = Moo+ M1o = 0.
Therefore, we can bound the difference in variance from below as follows,

V(75(Zn)) = V(7(Zn))

= (n 3”1)2 [p?”V(Yl(l)) + (1= py)?V(Yi(0)) — 2ps (1 — py)M11 Moo
+2p3 {V(Yi(1) | F(Xi) = 1)+ (1 = py)(Ma1 — Myo)Mi1 }
+2(1 = pp)* {V(Yi(0) | fF(Xi) = 0) + pg(Moo — Mo1) Moo }]
= (niinl)z [pr(Yi(l)) + (1= pg)?V(Y3(0) = 2pf (1 — pg) My1 Moo
+2p7 {V(¥i(1) | f( i) = 1)+ (1 = pg) (M1 + Moo) M1 }
+2(1 *Pf)Q {V(¥3(0) | f(Xs) =0) + ps(Moo + My1)Moo }|
2n

= oie [PFV(Yi(1) + (1 —pf)2V(Yz(0)) +2pFV(Yi(1) | f(Xi) = 1) +2(1 = py)?V(Yi(0) | f(Xs) = 0)

+2pp(1—py) [(1 = pr) MGy + pyMiy] ]
0.

A%

E The Outcome Model for the Numerical Study

E(Y;(t) | X;) = 1.60 + 0.53 X @99 — 3.80 X x99 (x99 — 0.98)(z29 + 0.86) — 0.32 x 1{z17 > 0}
+0.21 x 1{zg2 > 0} — 0.63 x z97 + 4.68 x 1{za7 < —0.61} — 0.39 x (z27 + 0.91)1{zo7 < —0.91}
+0.75 x 1{m30 < 0} — 1.22 x 1{ws4 <0} 4 0.11 x 2571{zg < 0} — 0.71 x 1{z17 < 0, = 0}
—1.82 x 1{zyo < 0,t =1} + 0.28 x 1{w39 < 0, = 0}
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+ {0.58 X o9 — 9.42 X JIQQ(IQQ - 0.67)(:5’29 + 0.34)} X 1{t = 1}
+ (0.44 X xo7 — 4.87 X 1{x27 < —080}) X 1{t = 0} —2.54 x l{t =0,x54 < 0}
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