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Abstract

We study the evolution of random matroids represented by the sequence of random
matrices over Fq where columns are added one after the other, and each column vector is
a uniformly random vector in Fn

q , independent of each other. We study the appearance
of matroid minors, the appearance of circuits, the evolution of the connectivities and
the critical number. We settle several open problems in the literature.

1 Introduction

Random graphs were first introduced by Erdős and Rényi [6] in 1959, and in particular
they studied the evolution of random graphs by studying a random process of graphs on a
set of n vertices, where the edges are added one after the other in the process. The most
astonishing phenomenon in the study of random graph evolution is the characterisation of
phase transitions of various (often increasing) graph properties. For instance, initially, the
graph is acyclic with each component being a tree of bounded order. Then, small cycles
may start to appear whereas each component remains in small size and contains at most
one cycle. At the time where the number of edges is around n/2, small components start
to rapidly connect to each other and form a giant component in which more complicated
graph structures start to appear. Long cycles and graph minors of fixed sizes simultaneously
appear at the time the giant component emerges. Other well studied graph properties and
graph parameters include connectivity, Hamiltonicity, the appearance of given subgraphs,
chromatic number, etc.

The Erdős-Rényi graph process immediately induces a random process on graphical ma-
troids, which motivates the generalisations to other classes of random matroid processes. One
generalisation is to consider the matroids represented by the incidence matrices of random
uniform hypergraphs, which was introduced by Cooper, Frieze and Pegden [4], and was more

1

ar
X

iv
:2

40
4.

17
02

4v
1 

 [
m

at
h.

C
O

] 
 2

5 
A

pr
 2

02
4



formally described and studied as an evolutionary random process in [7]. The other general-
isation is to consider uniformly random vectors over a finite field and add them one after the
other independently, and consider the random matroids represented by these matrices. This
model was first introduced by Kelly and Oxley [9, 10]. In their model, they consider random
subsets of the elements in the complete projective geometry PG(n− 1, q) where q is a prime
power. Two related models were introduced and studied. In the first one, PG(n − 1, q; p)
where p ∈ [0, 1], every element in PG(n− 1, q) is kept independently with probability p. In
the second model PG(n−1, q;m) where m is an integer between 0 and (qn−1)/(q−1), a uni-
formly random subset of m elements of PG(n−1, q) is selected. Obviously, PG(n−1, q; p) and
PG(n− 1, q;m) are analogs of G(n, p) and G(n,m) for random graphs, and PG(n− 1, q;m)
is precisely PG(n− 1, q; p) conditioned to |PG(n− 1, q; p)| = m; i.e. exactly m elements are
selected. After that, Kordecki [12, 13], Kordecki and Luczak [14, 15] further studied matroid
properties of these models, including circuits, connectivity, and submatroids, etc. Soon after
the introduction of PG(n − 1, q;m) and PG(n − 1, q; p), Kelly and Oxley [8] introduced a
slightly different model M([Uq]n×m). In this model, [Uq]n×m is a uniformly random n × m
matrix over Fq, and M([Uq]n×m) is the matroid represented by [Uq]n×m. Due to the indepen-
dence of the column vectors, [Uq]n×m is a little easier to analyse than PG(n − 1, q; p) and
PG(n − 1, q;m). Indeed, as noted by all the authors that followed this study, these three
models are asymptotically equivalent for all the problems (e.g. rank, circuits and connectiv-
ity) they were studying. We give a proof of their equivalence in Proposition 1 below.

In this paper, we use the last model introduced by Kelly and Oxley [8], however we stress
that columns are added one by one and we are interested in the evolution of the matroids
represented by this random process of matrices. Let Fq denote the finite field of order q
where q is a prime power. Let v be a uniformly random vector in Fn

q , and let (vi)i≥1 be a
sequence of random vectors that are independent copies of v. Finally, for every m ≥ 1, let
Am = [v1, . . . , vm] be the n × m matrix formed by including the first m vectors v1, . . . , vm
in the sequence, and let M [Am] be the matroid represented by Am. Notice that for every
m ≥ 1, Am has the same distribution as [Uq]n×m. We study various matroid properties and
parameters of M [Am] as m grows. In particular, we take a thorough study of the time when
matroid minors of small ranks appear, the appearance of the projective geometry of growing
rank of n as a minor, the appearance of the circuits of different lengths, the evolution of the
connectivity, and the growth rate of the critical number. We discuss them in turn in the
coming subsections. We start our discussions by unifying the notions of the three models
PG(n − 1, q; p), PG(n − 1, q;m) and M [Am] and show their asymptotic equivalence. The
following Gaussian binomial coefficients will be used throughout the paper, which counts the
k-dimensional subspaces of Fn

q :[
n

k

]
q

:=
k−1∏
i=0

qn−i − 1

qk−i − 1
; [n]q :=

[
n

1

]
q

=
qn − 1

q − 1
.

Notice that PG(n − 1, q) contains exactly [n]q elements. Given a sequence of probability
spaces indexed by n, we say a sequence of events An occurs asymptotically almost surely
(a.a.s.) if limn→∞ P(An) = 1. The standard Landau notation and basic matroid notions such
as simple matroid, free matroid, and the rank of a matroid will be introduced in Section 2.
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Proposition 1. The three models (M1): M [Am], (M2): PG(n − 1, q;m) and (M3): PG(n −
1, q; p), are related as follows:

(a) (M1), conditioned on the event that M [Am] is simple, is equivalent to (M2).

(b) (M3), conditioned on the event that precisely m elements of PG(n− 1, q) are included,
is equivalent to (M2).

(c) If m = o(qn/2) then (M1) and (M2) are asymptotically equivalent.

Proof. Parts (a,b) are obvious. For part (c), suppose that m = o(qn/2). By part (i), it suffices
to show that a.a.s. M [Am] is simple. The probability that Am has a zero column is at most
mq−n = o(1). Each element in PG(n−1, q) corresponds to exactly q−1 vectors in Fn

q . Thus,

the probability that Am has two linearly dependent columns is at most
(
m
2

)
[n]q(q−1)2q−2n =

o(1). Hence, a.a.s. M [Am] is a simple matroid.

1.1 Minors

Let N be an Fq-representable matroid. Let τN-minor be the smallest m such that M [Am]
contains N as a minor (the definition of matroid minor is given in Section 2). Altschuler and
Yang [1] determined the critical window in which τN-minor lies, provided that the size of N is
fixed, i.e. independent of n. Given a matrix or a matroid M , let crk(M) denote the co-rank
of M . Given a random variable Xn and a real number xn, we write Xn = Op(xn) if

lim
ε→0

lim sup
n→∞

(
P(Xn < εxn) + P(Xn > ε−1xn)

)
= 0.

Theorem 2. Suppose N is a fixed non-free Fq-representable matroid.

(a) (Theorems 5 and 6 of [1]) Let k ≥ 0 be a positive integer. There exist constants
C,D > 0 depending on N , q and k such that

lim inf
n→∞

P(τN-minor ≤ m) > C if m = n + k and k ≥ 1

lim sup
n→∞

P(τN-minor ≤ m) ≤ D if m = n− k.

(b) (Theorems 3 and 8 of [1]) τN-minor = n + Op(1).

Note that if N is a free matroid with rank r such that n − r → ∞ then it is easy to
see (e.g. it follows easily from the proof of Lemma 22) that a.a.s. all the columns of Ar

are linearly independent and thus a.a.s. τN-minor = r. On the other hand, if N is not Fq-
representable then N can never be a minor of M [Am], no matter how large m is. Therefore,
in the discussions of matroid minors we only focus on non-free Fq-representable matroid.

Altschuler and Yang gave specific bounds C,D in Theorem 2(a). Interested readers
can find them in [1]. We do not express them here, as these bounds only give qualitative
information about P(|τN-minor−n| > k) for k → ∞, which they used to come to the conclusion
of Theorem 2(b). However these bounds give little information about P(τN-minor ≤ n + k)
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when |k| is small. Our first result is a strengthening of Theorem 2(a) by providing the precise
limiting distribution of τN-minor − n. For convenience, we define

∑h
i=j ai to be 0 and

∏h
i=j ai

to be 1 if h < j for any sequence of real numbers or real functions ai. Given a power series
P (z) let [zn]P (z) denote the coefficient of zn in P (z).

Theorem 3. Let N be a fixed Fq-representable matroid and let r and c denote the rank and
the co-rank of N respectively. Suppose that c ≥ 1. Then, for any fixed k ∈ Z,

lim
n→∞

P(τN-minor = n + k) = Cc,k,

where Cc,k = 0 if k > c; and if k ≤ c then

Cc,k = βc,kq
k−c

c−1∑
i=0

(
αc,k,0 +

c−1∑
i=1

1∏i
j=1(1 − q−j)

αc,k,i

)
,

βc,k =
∞∏

j=c+1−k

(1 − q−j),

αc,k,i = [zc−1−i]
c−k−1∏
j=0

(1 − zq−j) = (−1)c−1−i
∑
∗

q−
∑c−1−i

r=1 jr ,

where the summation
∑

∗ in the expression for αc,k,i is over all integers 0 ≤ j1 < j2 < . . . <
jc−1−i ≤ c− k − 1.

We plot below the limiting point-wise probabilities P(τN-minor = n + k) for k ∈ [−10, 5]
when (q, c) = (2, 1) (the one on the left) and when (q, c) = (2, 2) (the one in the middle). The
last figure on the right compares the limiting cumulative distribution function P(τN-minor ≤
n + k), in red dots, with the bounds in Theorem 2(a) by Altschuler and Yang, in green
curve. Recall that the bounds in Theorem 2(a) are upper bounds for non-positive k and
lower bounds for positive k.

Our second result improving over Altschuler and Yang’s is a hitting time result of τN-minor
when the rank and the co-rank of N are fixed or slowly growing functions of n. Let τcrk=c be
the smallest m such that the co-rank of Am is equal to c. This is well defined as the co-rank
of Am is non-decreasing as m grows.

Theorem 4. Suppose that N is an Fq-representable non-free matroid such that rqrc = o(n),
where r and c denote the rank and the co-rank of N respectively. Then a.a.s. τN-minor = τcrk=c.
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As a direct corollary, we prove that a.a.s. an N -minor is formed by step n + crk(N),
improving Theorem 2(b). On the other hand, there is a non-vanishing probability that the
first N -minor is created precisely during the step n + crk(N).

Corollary 5. Suppose that N is a fixed non-free Fq-representable matroid. Let c be the
co-rank of N . Then, a.a.s. τN-minor = n + Op(1). Moreover, letting γq,c =

∏∞
j=c(1 − q−j), we

have
lim
n→∞

P(τN-minor ≤ n + c) = 1; lim
n→∞

P(τN-minor ≤ n + c− 1) = 1 − γq,c,

for every (q, c). Moreover,

lim
q→∞

γq,c = 1 for every c; lim
c→∞

γq,c = 1 for every q.

The next corollary shows that τN-minor has a 1-point concentration if |N | is not too large,
and crk(N) = ω(1). Here, |N | denotes the size of N , which is the number of elements in N .

Corollary 6. Suppose that N is an Fq-representable non-free matroid. If crk(N) = ω(1)
and |N | ≤ (2 − ε)

√
logq n for some fixed ε > 0, then a.a.s. τN-minor = n + crk(N).

Note that the matroid N in Theorems 2, 3, 4 and Corollaries 5 and 6 is general, and
does not need to be simple. In the next corollary of Theorem 4, we generalise Theorem 2
and study τPGr, the minimum integer m such that M [Am] contains the complete projective
geometry PG(r − 1, q) as a minor. All the logarithms in the paper are natural logarithms
with base e, unless otherwise with a specified base.

Theorem 7. Suppose that r = ω(1). Let ζ = [r]q.

(a) A.a.s. τPGr ≤ n + ζ log ζ + ω(ζ).

(b) If r = ω(log n) then a.a.s. τPGr ∼ ζ log ζ.

(c) If N is an Fq-representable simple non-free matroid with rank r ≤ α log n for any fixed
α < 1/ log q then a.a.s. τN-minor ∼ n.

Remark 8. Theorem 7 determines the asymptotic value of τPGr provided that r ≤ (1 −
ε) logq n for some fixed ε > 0, or r = ω(log n). However, we did not manage to prove a lower
bound for τPGr that matches its upper bound in Theorem 7(a) for logq n ≤ r = Θ(log n).
There is a trivial lower bound n + ζ − r = n + (1 + o(1))ζ, since the co-rank of Am must
be at least the co-rank of PG(r − 1, q) (see Lemma 23 below). It is possible that in the
range logq n ≤ r = Θ(log n), both the upper bound (Theorem 7(a)) and the lower bound
(n + (1 + o(1))ζ) are not tight.

The proofs of Theorems 3, 4 and 7, and the proofs of Corollaries 5 and 6 will be presented
in Section 3.
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1.2 Circuits

The circuits in a matroid (see its formal definition in Section 2) are minimal dependent
subsets and are analogs of cycles in a graph. The appearance of the circuits with constant
length has been studied by Kelly and Oxley [8], whereas the longer circuits were investigated
by Kordecki and  Luczak [15]. We collect and restate their results in the following theorem.

Theorem 9. (a) (Theorem 5.1 of [8]) Suppose that k = o(m) and that mkq−n is bounded.
Then

Pr(M [Am]has no k-circuits) ∼ exp

(
−(q − 1)k−1

k!

mk

qn

)
.

(b) (Theorem 6 of [15]) For each 1 ≤ k ≤ n + 1, let µk =
(
m
k

)
(q − 1)kq−n.

(i) If µk → 0, then a.a.s. M [Am] does not contain a k-circuit.

(ii) If µk → ∞ and either n − k → ∞ or k(m − k)/m → ∞, then a.a.s. M [Am]
contains a k-circuit.

Remark 10. Kordecki and  Luczak’s result [15] was proved for PG(n − 1, q;m). The same
holds for M [Am] by Proposition 1. The original statement of [15, Theorem 6] was slightly
stronger, by considering the appearance of circuits whose lengths lie in a specified interval.
For simplicity we stated a simplified version. The value µk is the asymptotic number of
circuits with length k in PG(n− 1, q;m) and M [Am].

Theorem 9 provides the full information on the types of circuits that are likely or unlikely
to appear in M [Am] for every m. We give a few interesting corollaries of Theorem 9 in terms
of τk-circ, the minimum integer m such that M [Am] has a circuit with length k. Given
0 < a ≤ 1, define

ga(y) = y log y + a log(q − 1) − a log a− (y − a) log(y − a) − log q, for y ≥ a, (1)

where 0 log 0 is defined to be 0 so that ga(y) is continuous at y = a.

Corollary 11. (a) Let k be a fixed positive integer. Then, τk-circ = Θp(q
n/k).

(b) If k → ∞ and k = o(n) then a.a.s. τk-circ ∼ 1
e(q−1)

kqn/k.

(c) If k ∼ an for some fixed 0 < a ≤ 1 then ga(y) has a unique root b, and a.a.s. τk-circ ∼
bn.

Remark 12. For 0 < a ≤ 1, let b = b(a) be the unique root of ga(y). Then b is strictly
convex and has a minimum value of 1, achieved at a∗ := q−1

q
. Moreover, b(1) < 2 and

b(a) → ∞ as a → 0.

Remark 12 follows from simple calculus and we include its proof in the Appendix for
interested readers. A plot of b(a) for q = 2 is given below in Figure 1. Following Remark 12 we
immediately obtain the following interesting corollary about the length of the first appearing
circuit and the appearing time of the first Hamilton circuit (i.e. the circuit with length n).
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Figure 1: Plot of b(a) Figure 2: Upper bound of α from Kelly and
Oxley and our lower bound

Corollary 13. (a) The first circuit appearing in M [Am] has length asymptotic to (1 −
q−1)n;

(b) The first Hamilton circuit appears in less than 2n steps for every finite field Fq.

The proofs for Corollaries 11 and 13 are given in Section 4.

1.3 Connectivity

The concept of vertex-connectivity in graphs generalizes naturally to matroids. It is easily
seen that a graph G is k-vertex-connected if and only if it is not the union of two edge-disjoint
subgraphs G1, G2 such that min{|V (G1)|, |V (G2)|} > k, and |V (G1)∩V (G2)| < k; the latter
is equivalent to |V (G1)| + |V (G2)| − |V (G)| < k.

Analogously, a vertical k-separation in a matroid M is a partition (A1, A2) of M so that

(i) min{rk(A1), rk(A2)} ≥ k, and

(ii) rk(A1) + rk(A2) − rk(M) ≤ k − 1.

The vertical connectivity κ(M) is defined to be the smallest k such that M has a vertical
k-separation. It may be the case that M has no vertical k-separations for any k, in which
case κ(M) = ∞1; this holds, for instance, if M = Fn

q .
From the perspective of graph theory, this is the most natural notion of matroid connec-

tivity; indeed, if G is a graph with no isolated vertex, then the value of κ for the graphic
matroid M(G) is equal to the vertex connectivity of G: see [21], Theorem 8.6.1. (Incidentally,
this fact is the reason for the unnatural-looking offset by one in condition (ii)).

However, κ fails to have a certain natural matroid property: invariance under duality.
Each matroid M has a dual matroid M∗, and the relationship between M and M∗ is crucial
in much of matroid theory – for instance, we have M∗∗ = M , and matroid duality agrees
with planar duality in the case of the graphic matroids of planar graphs. It is not necessary

1some work defined κ(M) to be the rank of M in this case

7



here to discuss matroid duality in detail, but we comment that the rank function of the dual
matroid is given by rk∗(X) = |X| + rk(E(M) \X) − rk(M) (see [21], Proposition 2.1.9).

In general, we have κ(M) ̸= κ(M∗), so vertical connectivity has a dual notion. A cyclic
k-separation of M is a vertical k-separation of M∗, and the cyclic connectivity κ∗(M) is the
smallest k such that M has a cyclic k-separation. Similarly as before, κ∗(M) defined to be
∞ if no cyclic separation exists. Using the above formula for the dual rank function, one
can easily show that a partition (A1, A2) of M is a cyclic k-separation of M if and only if

(i) rk(Ai) < |Ai| for each i, and

(ii) rk(A1) + rk(A2) − rk(M) ≤ k − 1.

Condition (i) can be replaced with the requirement that A1 and A2 are dependent, or
by the condition min(rk∗(A1), rk

∗(A2)) ≥ k. It is harder to relate this intuitively to graphs,
except to comment that, if M is the graphic matroid of a planar graph G, then the cyclic
connectivity of M is the vertex connectivity of a planar dual of G. One way to construct
a small cyclic separation in a matroid M is simply to take a small circuit; if C is a circuit
of M for which E(M) \ C is a dependent set, then (C,E(M) \ C) satisfies (i), and rk(C) +
(rk(E(M) \ C) − rk(M)) ≤ |C| − 1 + 0, so C gives a cyclic |C|-separation, implying that
κ∗(M) ≤ |C|. In the setting of planar duality, this corresponds to a fact that a small cycle
in the planar dual of G gives rise to a small cut in G.

Evidently cyclic connectivity is not invariant under matroid duality. However, there is a
third notion of connectivity that is. A Tutte k-separation of M is a partition (A1, A2) of M
so that

(i) min{|A1|, |A2|} ≥ k, and

(ii) rk(A1) + rk(A2) − rk(M) < k − 1.

The Tutte connectivity t(M) is the smallest k so that G is Tutte k-connected. Each
cyclic or vertical k-separation is also a Tutte k-separation, which implies that t(M) ≤
min(κ(M), κ∗(M)). In fact, one can show that if |M | ≥ 3 and t(M) < ∞, then there is
always either a vertical or a cyclic t(M)-separation, which implies that equality holds. This
fact is essentially stated in [21], Proposition 8.6.6, but the notation is slightly different from
ours in edge cases, as κ(M) and κ∗(M) are defined in [21] to always be finite.

Proposition 14. If M is a matroid with |M | ≥ 3, then t(M) = min{κ(M), κ∗(M)}.

This fact shows that Tutte connectivity is invariant under matroid duality, so in a sense
it is the most natural connectivity notion of the three; usually the unadorned ‘connectivity’
of a matroid refers to the Tutte connectivity.

The girth gir(M) of a matroid M is the size of a smallest circuit of M , or ∞ if M is inde-
pendent. We have seen that in nontrivial cases, small circuits give small cyclic separations.
It follows that the girth usually provides an upper bound for the connectivity of a matroid.
The following bound ([21], Theorem 8.6.4) will be useful.

Proposition 15. If M is a matroid that is not a uniform matroid Ur,n with n ≥ 2r − 1,
then t(M) = min(κ(M), gir(M)).

8



A striking difference between matroid and graph connectivities is the monotonicity. From
the definitions it is easy to see that all of the Tutte, the vertical, and the cyclic connectivities
are not monotone; i.e. adding elements to a matroid may decrease the connectivity. Our first
observation is that κ(M [Am]) is a.a.s. monotonely non-decreasing as m grows. On the other
hand, the Tutte connectivity first follows κ(M [Am]), and then after some linear number
of steps, it becomes governed by gir(M [Am]) and decreases as m grows. The evolutionay
trajectory of κ∗(M [Am]) is very different from κ(M [Am]), which starts from ∞ and in the
end is governed by gir(M [Am]). We will study κ∗(M [Am]) in a different paper.

Theorem 16. (a) A.a.s. κ(M [Am]) is monotonely non-decreasing as m increases.

(b) A.a.s. t(M [Am]) = κ(M [Am]) for all m = n + o(n).

(c) A.a.s. there exists m̂ = Θ(n) such that t(M [Am]) = κ(M [Am]) for all m < m̂, and
t(M [Am]) < κ(M [Am]) for all m ≥ m̂.

Thanks to the monotonicity of the vertical connectivity of M [Am] as shown in Theo-
rem 16(a), it is natural to define τk-conn to be the smallest m such that M [Am] is vertically
k-connected. Due to Proposition 15 and our good understanding of τk-circ from Corollary 11,
τk-conn and τk-circ together would immediately determine the evolution of t(M [Am]). The
limiting distribution of τk-conn has been determined by Kordecki and  Luczak [15] when k is
a constant; whereas an upper bound on τk-conn was provided by Kelly and Oxley [8] when k
is linear in n.

Theorem 17. [15, Theorem 4] Let k ≥ 2 and m− n− (k− 1) logq n → c for some constant
c. Then

lim
n→∞

P
(
M [Am] is k-connected

)
= exp

(
− (q − 1)k−2q−c/(k − 1)!

)
.

Kelly and Oxley give the following upper bounds for when M [An×m] becomes k-connected.

Theorem 18. (a) ([8, Theorem 4.4]) A.a.s. κ(M [Am]) = ∞2 if m ≥ (1 + α)n where α is
any constant such that

α >
log(2q − 1)

2 log q − log(2q − 1)
.

(b) ([8, Theorem 4.5] ) Suppose that k ∼ tn for some fixed 0 < t < 1 then a.a.s. τk-conn ≤
(1 + α)n for any constant α such that

t log

[
(1 + t)α

t2

]
< (α− t) ln q − 2t.

Our contributions are the determination of the sharp phase transition of τk-conn for all
k = o(n), and a lower bound on τk-conn for k = Θ(n).

Theorem 19. (a) Suppose k → ∞ and k = o(n). Then, a.a.s. τk-conn − n ∼ k logq(n/k).

2In the original work of [8], the theorem was phrased as “M [Am] is vertically n-connected”; we rephrased
it to be consistent with our definition of vertical connectivity when no separator exists.
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(b) Suppose that k ∼ tn for some fixed 0 < t < 1. Then, a.a.s. τk-conn ≥ (1 + α)n where α
is any constant satisfying the following.

t log
1 + α

t
+ (1 + α− t) log

1 + α

1 + α− t
+ t log(q − 1) − α log q > 0. (2)

Our lower bound on τk-conn for linear k does not match the upper bound in Theorem 18.
See Figure 2 for the plot in which we compare the upper bounds by Kelly and Oxley and the
lower bounds in Theorem 19(b); the horizontal axis is for t = k/n, and the vertical axis is
for n−1τk-conn − 1. Determining the asymptotic value of τk-conn for k = Θ(n) is an interesting
open problem.

The proofs for Theorems 16 and 19 will be given in Section 5.

1.4 Critical number

The critical number is an extension of the notion of the chromatic number of graphs to
matroids. It is easy to see that a graph G is 2k-colourable if and only if E(G) is the union
of k edge cuts of G. For each set U ⊆ V (G), the edge cut δ(U) corresponds to the set of
support-2 vectors in FV

2 that have a nonzero dot product with the characteristic vector 1U .
Hence, we can form an analogue of chromatic number by defining χq(M) for each matroid
M ⊆ Fn

q to be the minimum k such that there are vectors v1, . . . , vk ∈ Fn
q such that, for

all w ∈ M , the dot product wTvi is nonzero for some i ∈ [k]. In other words, χq(M) is
the minimum integer k such that there exists an (n− k)-dimensional subspace S of Fn

q such
that M ∩ S = ∅. We call χq(M) the critical number of M ; it has previously been called the
critical exponent. It can be seen as the right analogue of chromatic number in a variety of
contexts; see [21], p. 588 for a discussion.

Our goal is to determine when M [Am] has critical number k for all 1 ≤ k ≤ n. (In
the range of values for m that we consider, Am will a.a.s. not contain a zero column, so the
critical number is well-defined). Notice that the critical number starts at 1 (i.e. when m = 1)
and increases monotonically with m (i.e. as more columns are added). Also, notice that the
critical number cannot skip over any values of k, since adding one column can increase the
critical number by at most one. Thus, we focus on determining the step when the critical
number of M [Am] jumps from k to k + 1 for 1 ≤ k ≤ n− 1.

Let τk-crt be the minimum integer m such that χq(M [Am]) = k+1. In other words, τk-crt
is the precise step where the critical number jumps from k to k+ 1. We obtain the following
theorem whose proof will be presented in Section 6.

Theorem 20. Let k be a positive integer such that k ≤ n− logq n− logq log n−ω(1). Then,
a.a.s. τk-crt ∼ −k(n− k) log q/ log(1 − q−k).

Remark 21. Note that our theorem covers all positive integers k up to distance logq n +
logq log n+ω(1) from n. For greater k up to n−1 we have the trivial asymptotic upper bound
nqn log q on τk-crt from coupon collection (with qn coupons).

1.5 Other related work

Other than the rank, circuits, connectivity, critical number, minors that are discussed in this
paper, the thresholds and limiting distributions of the number of small submatroids were
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studied by Oxley [20], and further extended by Kordecki [12, 13].
The uniformly random matroid on n elements was introduced and studied by Mayhew,

Newman, Welsh and Whittle [17]. Research in this direction focuses on enumeration of
matroids and matroid extensions. We refer the readers to [16, 3, 19, 11, 22] for results in
this field.

2 Preliminary

A matroid is defined on a pair M = (E, I) where E is a set called the ground set of the
matroid M , and I ⊆ 2E denotes the set of independent sets of M . The size of M is
|E|, the number of elements in the ground set. The rank of M , denoted by rk(M), is the
size of a largest independent set. The co-rank of M , denoted by crk(M), is defined by
|E| − rk(M). Let F be a field. A matroid M = (E, I) is said F-representable if there is
a matrix A = [ap]p∈E over F, where the columns of A are indexed by elements in E, such
that S ⊆ E is an independent set if and only if {ap : p ∈ S} is a linearly independent set.
A matroid M is free if E(M) is an independent set, and M is simple if M does not have
dependent subsets of cardinality one or two. Consequently, if M is represented by a matrix
A over F, then M is free if all columns of A are linearly independent, and M is simple if A
does not contain the zero column, or two linearly dependent columns. The uniform matroid
Ur,n = ([n], I) is the matroid on ground set [n] such that I consists of all subsets of [n] of
cardinality at most r. A circuit of a matroid is a minimal dependent subset of elements in
M . In other words, every proper subset of a circuit is an independent set. The length of a
circuit is the number of elements in the circuit.

Suppose that M = (E, I) and X ⊆ E. The deletion of X from M is defined by M \X =
(E \X, {I ∈ I : I∩X = ∅}). The contraction of X from M is defined by M/X = (E \X, I∗)
where

I∗ = {I ∈ I : I ∩X = ∅, I ∪ J ∈ I for some maximal independent subset J of X}.

A submatroid of M is any matroid obtained by deleting a subset of elements in M ; whereas
a minor of M is a matroid obtained by deleting and contracting elements in M . If M is a
matroid represented by a matrix A over a field F, then there are matrix operations described
as follows which yield representations for submatroids and minors of A.

Given a matrix A over F where columns are indexed by E, and X ⊆ E, let AX denote the
matrix obtained from A by only including columns in X. Let AE/X be any matrix obtained
by first obtaining matrix B ∼ A via row operations such that

BX =

[
Ia×a ∗

0 0

]
, where a = rk(AX),

and then deleting the a rows where Ia×a lies, together with all the columns in X. Suppose
that A = [ap]p∈E is a matrix representing M = (E, I), and X ⊆ E. Then, M \ X is
represented by AE\X and M/X is represented by AE/X . We refer the readers to Oxley [21]
for other basics in matroid theory.

Finally, we use standard Landau notation in this paper. Given sequences of real numbers
an and bn, we say an = O(bn) if there exists C > 0 such that |an| ≤ C|bn| for every n. We say
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an = o(bn) if limn→∞ an/bn = 0. We say an = Θ(bn) or an ≍ bn if an, bn > 0 and an = O(bn)
and bn = O(an). Finally, we write an = ω(bn) if an, bn > 0 and bn = o(an).

3 Minors

Lemma 22 (Lemma 2 of [1]). For every m ≤ n,

P
(
rk(Am) = m

)
=

m−1∏
i=0

(1 − qi−n).

Proof. It follows immediately by the fact that given the first i ≤ m − 1 column vectors of
Am being linearly independent, the probability that the (i+ 1)-th column vector falls in the
span of the first i column vectors is equal to qi−n.

Lemma 23. If M is a matroid containing N as a minor, then crk(M) ≥ crk(N).

Proof. Let e ∈ E(M). In both the case of deleting e or contracting e, the rank of M
decreases by at most one, and the size of the ground set of M decreases by exactly one.
Thus, crk(M) ≥ crk(M \ e) and crk(M) ≥ crk(M/e). The result follows.

Proof of Theorem 4. By Lemma 23, τN-minor ≥ τcrk=c. To prove that a.a.s. τN-minor ≤ τcrk=c,
consider the following equivalent way of generating the process Am for m ≤ τcrk=c. As each
column vector vi is drawn, we only expose whether vi lies in the subspace generated by
v1, . . . , vi−1. If it is, we colour the column red; otherwise we colour it blue. Stop the process
when there are exactly c red columns. The following claim follows by Lemma 22.

Claim 24. A.a.s. the first n/2 columns are blue.

Next, we expose all the column vectors corresponding to the blue columns. Let AB denote
the submatrix of Am composed of all blue columns of Am. Since the column vectors of AB

are linearly independent, AB is row equivalent to the identity matrix, with possibly a few
zero rows underneath. In other words, there is an invertible matrix P such that PAB = [I0]
where 0 are a set of all-0 vectors.

Finally, we expose the column vectors corresponding to the red columns. Note that each
red column vector is a uniformly random vector in the span of the blue column vectors
generated before it.

Claim 25. Suppose that v is a red column vector and there are i blue columns before v.
Then, Pv ∼

[
[Uq ]i×1

0

]
.

In other words, Pv has the same distribution as the vector obtained by appending n− i
0’s after a uniformly random vector in Fi

q.
Consider M = M [Am]. Take the first n/2 blue columns of Am and partition them into

t := ⌈n/2r⌉ groups I1, . . . , It (by discarding the remaining columns if n/2 is not divisible by
r), where I1 denotes the first r blue columns, I2 denotes the next r blue columns, etc. The
a.a.s. existence of at least n/2 blue columns in Am is guaranteed by Claim 24. Let Xj be
the matrix obtained from Am by contracting all blue columns except for the blue columns
in Ij for 1 ≤ j ≤ t. Then, each Xj has form [Ir×r | Rj].

12



Claim 26. (Rj)
t
j=1 are mutually independent, and each Rj ∼ [Uq]

r×c.

Since N is Fq representable, we may represent N by a rank-r matrix of form [Ir×r | R]
for some r× c matrix R over Fq. By definition, M contains N as a minor if Rj = R for some
1 ≤ j ≤ t. By Claim 26, this occurs with probability q−rc for each 1 ≤ j ≤ t. Moreover, all
Rj are independent. Thus, the probability that M has an N -minor is at least

1 − (1 − q−rc)t ≥ 1 − exp
(
− n

2r
q−rc

)
= 1 − o(1),

since rqrc = o(n).
It remains to prove Claims 25 and 26.

Proof of Claim 25. Let v1, . . . , vi denote the i blue column vectors that appear before v.
Let z1, . . . , zi be i.i.d. uniform random variables in Fq. Since v is a uniform random vector
in ⟨v1, . . . , vi⟩, the span of v1, . . . , vi, v ∼

∑i
j=1 zjvj. Hence,

Pv ∼
i∑

j=1

zjPvj.

The claim follows by the distribution of z1, . . . , zi and the fact that P [v1, . . . , vi] =
[
Ii×i
0

]
.

Proof of Claim 26. Let AR be the matrix formed by the red columns of Am. By Claim 24
we may assume that the first n/2 columns of Am are all blue, and thus by Claim 25, the
submatrix of PAR formed by the first n/2 rows has distribution [Uq]

n/2×c. The claim follows
by noticing that R1 is the first r rows of PAR, R2 is the next r rows of PAR, etc.

Proof of Theorem 3. By Theorem 4, τN-minor = n+k if crk(An+k−1) = c−1 and crk(An+k) =
c, which happens if rk(An+k−1) = rk(An+k) = n + k − c. Our derivation of P(rk(An+k−1) =
rk(An+k) = n + k − c) is an easy adaptation of the proof of [14, Fact 3]. For each 1 ≤ j ≤
n+k−c, let uj be the number of column vectors v that are added in the process (Am)n+k

m=1 that
lies in the subspace S generated by the column vectors added before v when the dimension
of S is equal to j. Then, letting u :=

∑n+k−c
j=0 uj, rk(An+k−1) = rk(An+k) = n + k − c if and

only if u = c and un+k−c ≥ 1. Moreover, all ujs are independent random variables, and for
each 1 ≤ j ≤ n + k − c − 1, uj has geometric distribution with probability qj−n. It follows
then that

P
(

rk(An+k−1) = rk(An+k) = n + k − c
)

= [zc]

(
n+k−c−1∏

j=0

∞∑
h=0

(zqj−n)h(1 − qj−n)

)(
∞∑
h=1

(zqk−c)h

)

= [zc](1 + O(q−n))βk,czq
k−c

n∏
t=c−k

1

1 − zq−t

= qk−cβk,c[z
c−1](1 + O(q−n + zq−n))

∞∏
t=c−k

1

1 − zq−t

= qk−cβk,c[z
c−1](1 + O(q−n + zq−n))

c−k−1∏
t=0

(1 − zq−t)
∞∏
t=0

1

1 − zq−t
.
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By Euler’s formula (see [2, Corollary 2.2]), if |t| < 1 and |z| < 1 then

∞∏
i=0

1

1 − zti
= 1 +

∞∑
i=1

zi∏i
j=1(1 − tj)

.

Thus,

P
(
τN-minor = n + k

)
= qk−cβk,c[z

c−1](1 + O(q−n + zq−n))

(
c−k−1∏
t=0

(1 − zq−t)

)(
1 +

∞∑
i=1

zi∏i
j=1(1 − q−j)

)

∼ βk,cq
k−c

(
[zc−1]

c−k−1∏
t=0

(1 − zq−t) +
c−1∑
i=1

1∏i
j=1(1 − q−j)

[zc−1−i]
c−k−1∏
t=0

(1 − zq−t)

)
.

The theorem follows.

Proof of Corollary 5. The claim that P(τN-minor ≤ n + c) = 1 − o(1) follows by Theorem 3.
Moreover, Cc,c in Theorem 3 is equal to γq,c =

∏∞
j=c(1−q−j) > 0. Hence, limn→∞ P(τN-minor ≤

n + c− 1) = 1 − γq,c.

Proof of Corollary 6. Since |N | ≤ (2 − ε)
√

logq n, rc ≤ (1 − ε) logn
q where r = rk(N)

and c = crk(N), and thus rqrc = o(n). By Theorem 4, a.a.s. τN-minor = τcrk=c. Since
c = ω(1), a.a.s. τcrk=c = n + ω(1) by Lemma 22. It follows then that a.a.s. rk(Acrk=c) = n
and consequently τcrk=c = n + crk(N).

Before proving Theorem 7, we present a probabilistic tool of Poisson approximation of
the balls-into-bins model.

Lemma 27. Suppose b balls are placed into k bins, independently and uniformly at random.
Let E be the event that every bin gets at least one ball. Set λ = b/k. Then

P(E) ≤ 2(1 − e−λ)k ≤ 2e−ke−λ

and P(E) ≤ 2ke−λ.

Proof. Let Y1, . . . , Yk be independent Poisson variables each with mean λ. Then, the distri-
bution of the number of balls in bins is the same as (Y1, . . . , Yk) conditioned to

∑k
i=1 Yi = b

(see e.g. [18, Theorem 5.6] for a proof). By Theorem 5.10 of [18] (with f(x1, . . . , xk) be the
indicator variable that xi ≥ 1 for every 1 ≤ i ≤ k or f(x1, . . . , xk) be the indicator variable
that xi = 0 for some 1 ≤ i ≤ k),

P(E) ≤ 2P(Yi ≥ 1∀i) = 2(1 − e−λ)k; P(E) ≤ 2P(Yi = 0 for some i) ≤ 2ke−λ.

We also need the following lemma from [1] concerning the distribution of a uniformly
random vector in Fn

q after a change of basis.

Lemma 28. [1, Lemma 5] Suppose that P ∈ Fn×n
q is invertible, then PAm ∼ [Uq]

n×m.

Next, we assume that r = r(n) → ∞. Recall that

ζ =

[
r

1

]
q

=
qr − 1

q − 1
.
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Note that PG(r − 1, q) has ζ elements.
Proof of Theorem 7. For part (a), let f = ω(ζ) and f = o(ζ log ζ). First we prove that a.a.s.

τPGr ≤ n + ζ log ζ + 2f.

Set m = n + ζ log ζ + 2f . By Lemma 22, a.a.s. the first n + f columns of Am have rank n.
Following these, there are b = ζ log ζ + f columns. After a change of basis, we obtain the
following matrix that is row equivalent to Am:

[In×n ∗ B],

where In×n is the n by n identity matrix, ∗ is a set of f columns, and B is obtained from
the above b columns after the change of basis. By Lemma 28, B ∼ [Uq]

n×b.
Deleting the f columns in ∗ and contracting all but the first r columns in In×n we obtain

[Ir×r Br],

where Br is the r × b matrix obtained from the first r rows of B. Hence, Br ∼ [Uq]
r×b. By

definition M [Ir×r Br] is a minor of Am. It is thus sufficient to prove that Br contains all
elements in PG(r− 1, q). (It suffices to prove that Br contains all elements other than those
already contained in Ir×r. However it does not change the bound in any significant way.)

Consider each element of PG(r− 1, q) as a bin and consider each column of Br as a ball.
We say a ball j is thrown into a bin z if the j-th column vector of Br corresponds to one of
the q−1 vectors associated to the z-th bin. Hence, Br contains all elements in PG(r−1, q) if
and only if every bin receives at least one ball. A ball here corresponds to a nonzero column
vector, and it is easy tho show that a.a.s. at most f/2 of the b columns can be zero columns.
Hence, the total number of balls is at least b− f/2, and the total number of bins is equal to
ζ. Setting λ = (b− f/2)/ζ = log ζ + f/2ζ and by Lemma 27,

P(τPGr > m) ≤ 2ζe−λ = O(qre− log ζ−f/2ζ) = O(exp(−f/2ζ + O(1))) = o(1),

as log ζ = r log q + O(1).
For part (b), the upper bound immediately follows from part (a). For the lower bound, fix

ε > 0 and we prove that if r = ω(log n) then a.a.s. τPGr ≥ (1−ε)ζ log ζ. Set m = (1−ε)ζ log ζ.
By Lemma 22, we may assume that Am has rank n. For each J ⊆ [m] where |J | = n − r,
let XJ be the indicator variable that AJ has rank n− r, and the contraction of columns in
J produces a matroid that contains PG(r − 1, q) as a minor. Let X =

∑
J XJ over all such

subsets J . We claim that for every J ,

EXJ ≤ 2 exp(−ζε). (3)

Then,

EX = 2

(
m

n− r

)
exp(−ζε) ≤ exp (n logm− ζε) = exp(−ζε + O(nr)) = o(1),

where the last equation above holds as r = ω(log n). The lower bound for (b) follows by the
Markov inequality. It only remains to prove (3).
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Proof of (3). Similarly as before, the rank of Am is a.a.s. n and the contraction of columns in
J where |J | = n−r produces a matrix [Ir×r B], where each column of B is a uniform random
vector in Fr

q, provided that AJ has rank n−r. Moreover, B has b = m−(n−r) ≤ (1−ε)ζ log ζ
columns. By Lemma 27 (with λ = b/ζ ≤ (1 − ε) log ζ),

P(XJ = 1) ≤ 2 exp
(
− ζe−(1−ε) log ζ

)
= 2 exp(−ζε).

Finally, for part (c), the upper bound is again implied by part (a), noticing that ζ log ζ =
o(n) for the range of r in part (c), and the fact that PG(r − 1, q) contains every Fq-
representable minors of rank r. The lower bound follows since a.a.s. Am is a free matroid if
m− n → −∞ and thus a.a.s. τN-minor ≥ n− ω(1).

4 Circuits

Proof of Corollary 11. For (a), set m = cqn/k where c > 0 is fixed. Then by Theorem 9(a),

Pr(M [Am] has no k-circuits) ∼ exp

(
−(q − 1)k−1ck

k!

)
.

Moreover, the above probability tends to 1 if c → 0, and tends to 0 if c → ∞. Therefore,
τk-circ = Θp(q

n/k).
For (b), assume that k,m → ∞ and k = o(m). Let µk be as defined in Theorem 9. Then,

log µk = log
(
m
k

)
+ k log(q − 1) − n log q, (4)

where, by Stirling’s formula,

log
(
m
k

)
= m logm− k log k − (m− k) log(m− k) + o(1)

= m logm− k(logm + log k/m) − (m− k)(logm + log(1 − k/m)) + o(1)

= k log
(
m
k

)
+ (m− k)

k

m
+ O(k2/m) = k log

(
em
k

)
+ o(k). (5)

Fix c > 0. Setting m = c 1
e(q−1)

kqn/k, we find that k = o(m) and thus by (4) and (5) we
obtain

log µk = k log(cqn/k) + o(k) − n log q = k log c + o(k).

It follows now that µk = o(1) if c < 1 and µk = ω(1) if c > 1. Thus, part (b) follows by
Theorem 9(b).

For part (c), we need the following claim about the function ga(y).

Claim 29. For every 0 < a ≤ 1, there exists a unique b such that ga(b) = 0. Moreover,
g′a(b) > 0.

Let b be the unique root of ga(y). Set m = cbn for some fixed c > 0. By Stirling’s formula
and a similar calculation as before, provided that cb > a,

log µk = −k log(k/m) − (m− k) log(1 − k/m) + k log(q − 1) − n log q + O(log n)

∼ n (−a log a + cb log cb− (cb− a) log(cb− a) + a log(q − 1) − log q) = nga(cb).
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By the definition of b and Claim 29, µk = o(1) if c < 1 and µk = ω(1) if c > 1. Part (c)
follows. It only remains to prove Claim 29 and verify that b > a (hence cb > a for c = 1 ± ε
for every sufficiently small ε > 0).
Proof of b > a. This follows immediately from the facts that ga(y) is defined on y ≥ a and
that ga(a) = a log(q − 1) − log q < 0.
Proof of Claim 29. We find that g′a(y) = log y − log(y − a) > 0 for all y > a. Moreover,
limy→∞ ga(y) = ∞, and we have shown that ga(a) < 0. It follows that ga(y) has a unique
root b > a.

Proof of Corollary 13. Part (b) follows by Remark 12 that b(1) < 2 (the proof of Remark 12
is given in the Appendix). For part (a), let a∗ = 1−q−1 and let b = b(a∗) = 1. By Remark 12
and Corollary 11(c), a.a.s. at some step m = (1 + o(1))n, M [Am] has a circuit whose length
is asymptotic to a∗n. It remains to show that a.a.s. the first circuit cannot have length that
is not asymptotic to a∗n. Fix ε > 0. We prove that there exists c = c(ε) > 0 such that
a.a.s. there is no circuit of length greater than (a∗ + ε)n or shorter than (a∗ − ε)n by step
m = (1 + c)n. Note that the expected number of circuits of length k in M [Am] is asymptotic
to µk given in Theorem 9(b). For every k ≥ (a∗ + ε)n or k ≤ (a∗ − ε)n, let ak = limn→∞ k/n
(without loss of generality we may assume that ak exists by the subsubsequence principle)
and let bk be the unique root of gak(y). By the condition on k and since b is strictly convex
by Remark 12, it follows that bk > b(a∗) + δ = 1 + δ for some fixed δ = δ(ε) > 0. Let
m = (1 + δ/2)n = c′bkn for some c′ ≤ 1 − δ/4. We have shown in the previous proof that
log µk ∼ ngak(c′bk) < −c′′n for some fixed c′′ = c′′(ε) > 0, as c′ < 1. Hence, the probability
that M [Am] has a circuit of length greater than (a∗ +ε)n or shorter than (a∗−ε)n is at most
ne−c′′n = o(1) by the union bound (over all k such that k ≥ (a∗ + ε)n and k ≤ (a∗ − ε)n)
and the Markov inequality.

5 Connectivity

Lemma 30 (Proposition 3 of [5]). If M = (E, I) contains a vertically k-connected subma-
troid with the same rank as M , then M is vertically k-connected.

Proof. Let e ∈ E such that M \ e has the same rank as M . That is, rk(E \ {e}) = rk(E).
It suffices to show that if M is not vertically k-connected, then neither is M \ e. Therefore,
suppose M has a vertical ℓ-separation (X, Y ) for some ℓ < k. That is, rk(X) + rk(Y ) ≤
rk(E) + ℓ− 1 and rk(X), rk(Y ) ≥ ℓ. Without loss of generality we may assume that e ∈ X.
Let X ′ = X \ {e}. If rk(X ′) = rk(X), then (X ′, Y ) is a vertical ℓ-separation of M \ e. If
rk(X ′) = rk(X) − 1, then (X ′, Y ) is a vertical (ℓ − 1)-separation of M \ e. In either case,
M \ e is not vertically k-connected.

Proof of Theorem 16(a). Let f → ∞ be a slowly growing function of n. Obviously, a.a.s.
κ(M [Am]) = 1 for steps m ≤ n − f , as M [Am] is a free matroid. We leave it as an easy
exercise that a.a.s. κ(M [Am]) remains one for all n − f ≤ m ≤ n + f . Finally, we know
that a.a.s. the rank of Am is n for m = n + f . Combining all, a.a.s. κ(M [Am]) = 1 for all
m ≤ n + f , and κ(M [Am]) is non-decreasing for all m ≥ n + f by Lemma 30.

Proof of Theorem 19. We first prove the upper bound in part (a) by extending the proof
of Kelly and Oxley [8, Theorem 4.5]. Fix ε > 0. Set m = n + (1 + 2ε)k logq(n/k). Let
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f = ω(1) be a slowly growing function of n. Let D be the first n − f columns of Am. Let
Eℓ be the event that M [Am] is vertically ℓ-separated, rk(Am) = n, and all columns of D are
independent. Since a.a.s. all columns of D are linearly independent and rk(Am) = n, we
have

P(M [Am] is not vertically k-connected) ≤ o(1) +
∑

ℓ≤k−1

P(Eℓ). (6)

The probability of Eℓ was upper bounded by Kelly and Oxley in the following lemma.

Lemma 31. ([8, Lemma 4.7]) P
(
Eℓ
)
≤
∑⌊ 1

2
(n+ℓ−1)⌋

j=ℓ b(ℓ, j) where(
m− |D|

n + ℓ− 1 − |D|

)(
n + ℓ− 1

j

)(
qj + qn+ℓ−1−j − qℓ−1

qn

)m−(n+ℓ−1)

.

We will prove the following claim.

Claim 32. P(M [Am] is not vertically k-connected) ≤ O(nk · b(k − 1, k − 1)) + o(1).

Proof of Claim 32. By (6) and Lemma 31, it suffices to show that b(ℓ, j) is maximized at
(ℓ, j) = (k − 1, k − 1). Fix 1 ≤ ℓ ≤ k − 1 and ℓ ≤ j < ⌊1

2
(n + ℓ− 1)⌋. Then

b(ℓ, j)

b(ℓ, j + 1)
=

j + 1

n + ℓ− 1 − j

(
qj + qn+ℓ−1−j − qℓ−1

qj+1 + qn+ℓ−2−j − qℓ−1

)m−(n+ℓ−1)

.

Let A be the fraction inside the parentheses above, and let B = (q2 + 1)/2q. We first prove
that A ≥ B. Note that A ≥ B if and only if

2qj+1 + 2qn+ℓ−j − 2qℓ ≥ qj+3 + qn+ℓ−j − qℓ+1 + qj+1 + qn+ℓ−2−j − qℓ−1,

which holds if and only if

(q2 − 1)qn+ℓ−2−j + qℓ−1(q − 1)2 ≥ (q2 − 1)qj+1.

Since j < (n+ ℓ− 1)/2, we have n+ ℓ− 2− j ≥ j + 1. This verifies that A ≥ B. Therefore,

b(ℓ, j)

b(ℓ, j + 1)
≥ Am−(n+ℓ−1)

n
≥ Bm−n−k

n
≥ 1,

where the last inequality holds by the definition of B and by the setting of m. Thus, b(ℓ, j)
is decreasing in j. Next, write b(ℓ, ℓ) = XY Z, where

X =

(
m− n

ℓ− 1

)
, Y =

(
n + ℓ− 1

n− 1

)
, Z =

(
qℓ + qn−1 − qℓ−1

qn

)m−n−ℓ+1

.

Then Y is increasing in ℓ. Since 2ℓ < 2k ≤ m− n, so is X. Also, Z is increasing in ℓ since
its base is less than one and increasing in ℓ, and its exponent is decreasing in ℓ. Therefore,
b(ℓ, ℓ) is increasing in ℓ, so b(ℓ, j) ≤ b(ℓ, ℓ) ≤ b(k − 1, k − 1), as required.
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Observe that

b(k − 1, k − 1) =

(
m− n + f

k − 2 + f

)(
n + k − 2

k − 1

)(
qk−1 + qn−1 − qk−2

qn

)m−n−k+2

≤
(

4k logq(n/k)

k

)k+f (
4n

k

)k (
1 + qk−n

q

)(1+ε)k logq(n/k)

,

where to derive the last inequality above we used the fact that m − n − k + 2 = (1 +
2ε)k logq(n/k)−k+2 ≥ (1+ε)k logq(n/k) since k = o(n). Therefore, using that n−k → ∞,
we have

log
[
nk · b(k − 1, k − 1)

]
≤ log(nk) + (k + f) log log(n/k) + k log(n/k) + O(k) + (1 + ε)k logq(n/k)(− log q + O(qk−n))

= −εk log(n/k) + O(log n + k log log(n/k)))

which goes to −∞ since k = o(n) and k = ω(1). Thus, nk · b(k − 1, k − 1) tends to zero. By
Claim 32, a.a.s. M [Am] is vertically k-connected.

Next we prove the lower bounds in part (a) and (b) by the second moment method. A straight
application of the second moment method to all possible separations would lead to failure due to
heavy correlations. Instead we carefully craft the counting structures that imply the existence of a
certain type of vertical (k − 1)-separations. For a pair (I, S), where I is a subset of k − 1 columns
of Am and S is an (n− 1)-dimensional subspace of Fn

q , define XI,S to be the indicator variable that

(i) I ⊆ Sc, and all columns of I are linearly independent, and

(ii) All column vectors in Am \ I are in S, and rk(Am \ I) ≥ k − 1.

Let Ic denote Am \ I, the set of vectors not in I. Note that (ii) above implies that k− 1 ≤ rk(Ic) ≤
n− 1. Thus, XI,S = 1 for some (n− 1)-dimensional subspace S immediately implies that (I, Ic) is
an (k − 1)-separation. Therefore, it suffices to show that X :=

∑
XI,S is a.a.s. positive, where the

summation is taken over all (k− 1)-subset of columns of Am and all (n− 1)-dimensional subspaces
of Fn

q .
For each given (I, S), the events in (i) and (ii) are independent. Let v1, . . . , vk−1 be the column

vectors in I. For each 1 ≤ i ≤ k− 1, the probability that vi ∈ ⟨v1, . . . , vi−1⟩ ∪S conditional on that
v1, . . . , vi−1 are linearly independent, and that none of them are in S is{

q−n(qi−1 + qn−1 − qi−2) if i ≥ 2
q−1 if i = 1.

Thus, the probability of event (i) is (provided that k/n < 1 − ε for some ε > 0)

(1 − q−1)

k−1∏
i=2

(1 − q−n(qi−1 + qn−1 − qi−2)) ∼ (1 − q−1)k−1.

Similarly, the probability of events (ii) is asymptotic to q−(m−k+1). Consequently,

EXI,S ∼ µ := (q − 1)k−1q−m and EX ∼
(

m

k − 1

)[
n

1

]
q

µ.
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For part (a), set m = n + (1 − ε)k logq(n/k). For part (b), set m = (1 + α)n where α satisfies (2).
We first verify that logEX = ω(1) in both parts. Suppose that k = o(n) and k = ω(1). Then,
m = n + (1 − ε)k logq(n/k) and hence,

logEX = k log(n/k) + n log q + (k − 1) log(q − 1) −m log q + O(k + log n)

= εk log(n/k) + O(k + log n) → ∞,

implying that EX = ω(1). Suppose that k ∼ tn for some 0 < t < 1. Then, by (2),

logEX =

(
t log

1 + α

t
+ (1 + α− t) log

1 + α

1 + α− t
+ t log(q − 1) − α log q + o(1)

)
n → ∞.

Next, we prove that EX(X − 1) ≤ (1 + o(1))(EX)2. Consider a pair (XIi,Si , XIj ,Sj ). Let
h = |Ii ∩ Ij |. Note that if XIi,SiXIj ,Sj = 1 then Ii ⊆ Sc

i , Ij ⊆ Sc
j , Ici ⊆ Si, Icj ⊆ Sj . It follows that

Ii ∩ Ij ⊆ (Si ∪ Sj)
c, Ii \ Ij ⊆ Sj \ Si, Ij \ Ii ⊆ Si \ Sj and (Ii ∪ Ij)

c ⊆ Si ∩ Sj .
We further consider two cases. If Si ̸= Sj , then dim(Si ∩ Sj) = n− 2, and so |Si ∩ Sj | = qn−2.

Thus,

EXIi,SiXIj ,Sj ≤ P
(
Ii ∩ Ij ⊆ (Si ∪ Sj)

c
)
P
(
Ii \ Ij ⊆ Sj \ Si

)
P
(
Ij \ Ii ⊆ Si \ Sj

)
P
(
(Ii ∪ Ij)

c ⊆ Si ∩ Sj

)
=

(
|(Si ∪ Sj)

c|
qn

)|Ii∩Ij |( |Sj \ Si|
qn

)|Ii\Ij |( |Si \ Sj |
qn

)|Ij\Ii|( |Si ∩ Sj |
qn

)|(Ii∪Ij)c|

= (1 − 2q−1 + q−2)h(q−1 − q−2)k−1−h(q−1 − q−2)k−1−h(q−2)m−2(k−1−h)−h

=

(
q − 1

q

)2h(q − 1

q2

)k−1−h(q − 1

q2

)k−1−h( 1

q2

)m−2(k−1−h)−h

= µ2.

On the other hand, if Si = Sj , then XIi,SiXIj ,Sj = 1 implies that Ii ∩ Ij ⊆ Sc
i , Ii \ Ij ⊆ ∅, Ij \ Ii ⊆

∅, (Ii ∪ Ij)
c ⊆ Si, which implies that Ii = Ij and XIi,Si = 1. Therefore, EXiXj is nonzero only if

i = j, in which case, EXIi,SiXIj ,Sj = µ. Thus,

EX2 =
∑

(Ii,Si),(Ij ,Sj)

XIi,SiXIj ,Sj =
∑

Ii,Ij ,Si ̸=Sj

EXIi,SiXIj ,Sj +
∑

Ii=Ij ,Si=Sj

EXIi,SiXIj ,Sj

=

(
m

k − 1

)[
n

1

](
m

k − 1

)([
n

1

]
− 1

)
µ2 + EX ∼ (EX)2.

By Chebyshev’s inequality, a.a.s. X > 0, and therefore there exists a vertical (k − 1)-separation.
Now Theorem 19 follows by the definition of vertical connectivity and Theorem 16(a).

Proof of Theorem 16(b,c). By Theorem 19, κ(M [Am]) = o(n) if m = n+o(n). On the other hand,
gir(M [Am]) = Θ(n) for all m = n + o(n), by Corollary 11. It is easy to see that a.a.s. for every
step m after the creation of the first circuit, Am is not isomorphic to any uniform matroid. Thus,
part (b) follows now by Proposition 15.

Part (c) follows by Proposition 15, and the fact that a.a.s. κ(M [Am]) is monotonely non-
decreasing by part (a), and that gir(M [Am]) is monotonely non-increasing.

6 Critical number

The following two lemmas follow from well known results in counting subspaces of a vector space
(see e.g. page 162 of [21]). We include proofs for self-containment. Recall that we write an ≍ bn if
an = Θ(bn).
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Lemma 33. For any 0 ≤ k ≤ n, [
n

k

]
q

=

[
n

n− k

]
q

≍ qk(n−k),

which is the number of k-dimensional (and (n− k)-dimensional) subspaces of Fn
q .

Proof. By definition, [
n

k

]
q

=

[
n

n− k

]
q

=

k−1∏
i=0

qn−i − 1

qk−i − 1
≍

k−1∏
i=0

qn−i

qk−i
= qk(n−k).

Lemma 34. Let S be any k-dimensional subspace of Fn
q , and let N(n, k, j, ℓ) be the number of

j-dimensional subspaces of Fn
q that intersect with S in dimension ℓ. Then

N(n, k, j, ℓ) = q(k−ℓ)(j−ℓ)

[
k

ℓ

]
q

[
n− k

j − ℓ

]
q

.

Proof. There are
[
k
ℓ

]
q

ways to choose an ℓ-dimensional subspace U of S.

Given U , there are qn − qk vectors that are not in S. Adding any such vector into U results
an extension of U into an (ℓ + 1)-dimensional subspace U1 such that S ∩ U1 = U . Then, there
are qn − qk+1 vectors that are not in S + U1 whose addition extends U1 to an (ℓ + 2)-dimensional
subspace U2. Repeat this, and we find that there are

j−ℓ−1∏
i=0

(qn − qk+i)

ways to extend U to a j-dimensional subspace W = Uj−ℓ whose intersection with S is U . However,
by the same counting scheme (by considering vectors in W \Ui, 0 ≤ i ≤ j − ℓ− 1 with U0 = U this
time), each such j-dimensional subspace W can be constructed in (qj − qℓ)(qj − qℓ+1) · · · (qj − qj−1)
ways. It follows now that

N(n, k, j, ℓ) =

[
k

ℓ

]
q

j−ℓ−1∏
i=0

qn − qk+i

qj − qℓ+i
= q(k−ℓ)(j−ℓ)

[
k

ℓ

]
q

[
n− k

j − ℓ

]
q

.

By Lemma 34,

N(n, n− k, n− k, n− 2k + h) = q(k−h)2
[

n− k

n− 2k + h

]
q

[
k

k − h

]
q

= q(k−h)2
[
n− k

k − h

]
q

[
k

h

]
q

. (7)

By Lemma 33,

N(n, n− k, n− k, n− 2k + h) ≍ q(k−h)2q(k−h)(n−2k+h)qh(k−h) = q(n−k+h)(k−h).

Lemma 35. Let N,M, k be positive integers such that N ≥ M ≥ k. Then[
N

k

]
q

= q(N−M)k

[
M

k

]
q

(
1 + O(qk−M )

)
.
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Proof.[
N

k

]
q

=
(qN − 1)(qN−1 − 1) · · · (qN−k+1 − 1)

(qk − 1)(qk−1) · · · (q − 1)
=

qNqN−1 · · · qN−k+1

(qk − 1)(qk−1) · · · (q − 1)

(
1 + O(qk−N )

)
= q(N−M)k qMqM−1 · · · qM−k+1

(qk − 1)(qk−1) · · · (q − 1)

(
1 + O(qk−N )

)
= q(N−M)k (qM − 1)(qM−1 − 1) · · · (qM−k+1 − 1)

(qk − 1)(qk−1) · · · (q − 1)

(
1 + O(qk−N + qk−M )

)
= q(N−M)k

[
M

k

]
q

(
1 + O(qk−M )

)
.

Proof of Theorem 20. Fix 0 < ε < 1. Let S1, . . . , Sr, where r =
[
n
k

]
q
, be the set of (n − k)-

dimensional subspaces of Fn
q . Let E be the set of column vectors in Am. For every 1 ≤ i ≤ r, let

Xi be the indicator variable for Si ∩E = ∅, and let X =
∑r

i=1Xi. Hence M [Am] is k-colourable if
and only if X > 0. It is easy to see that

EXi = µ := (1 − q−k)m and EX =

[
n

k

]
q

µ.

By Lemma 33,
logEX = k(n− k) log q + m log(1 − q−k),

which goes to ∞ if m = −(1− ε)k(n− k) log q/ log(1− q−k), and goes to −∞ if m = −(1 + ε)k(n−
k) log q/ log(1 − q−k).

It suffices now to show that EX(X − 1) ∼ (EX)2 if m = −(1 − ε)k(n − k) log q/ log(1 − q−k).
Consider a pair of distinct (n− k)-dimensional subspaces (Si, Sj). Let h = dim(Si ∩Sj)− (n− 2k).
Thus, max{0, 2k − n} ≤ h ≤ k − 1. Note that XiXj = 1 if and only if (Si ∪ Sj) ∩ E = ∅, and

|Si ∪ Sj | = |Si| + |Sj | − |Si ∩ Sj | = 2qn−k − qn−2k+h.

Therefore,

EXiXj =

(
1 − |Si ∪ Sj |

qn

)m

= πh := (1 − 2q−k + q−2k+h)m.

Notice that π0 = µ2. For 0 ≤ h ≤ k, let Nh denote the number of (n − k)-dimensional subspaces
whose intersection with Si is n− 2k + h (notice that this number is independent of Si). Then

EX(X − 1) =
∑
i,j

EXiXj =

r∑
i=1

k−1∑
h=max{0,2k−n}

∑
dim(Si∩Sj)
=n−2k+h

EXiXj =

[
n

k

]
q

k−1∑
h=max{0,2k−n}

Nhπh.

Claim 36. Suppose that (q, k) ̸= (2, 1). Let Λ = 2 log n. If k ≤ n/2 − Λ then
∑k−1

h=0Nhπh ∼ N0π0.

If k ≥ n/2 + Λ then
∑k−1

h=2k−nNhπh ∼ N2k−nπ2k−n. If |k − n/2| ≤ Λ then
∑k−1

h=max{0,2k−n}Nhπh ∼∑2Λ
h=max{0,2k−n}Nhµ

2.

We first consider the case that (q, k) ̸= (2, 1). By (7) and Lemma 35,

N0 = N(n, n− k, n− k, n− 2k) = qk
2

[
n− k

k

]
q

∼
[
n

k

]
q

if n/2 − k = ω(1)

N2k−n = N(n, n− k, n− k, 0) = q(n−k)2
[

k

n− k

]
q

∼
[

n

n− k

]
q

if k − n/2 = ω(1).
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Thus, if n/2 − k ≥ log n then

EX2 ∼
[
n

k

]
q

N0π0 ∼
[
n

k

]2
q

µ2 = (EX)2.

On the other hand, if k − n/2 ≤ log n and n− k ≥ logq n + logq log n + ω(1) then

EX(X − 1) ∼
[
n

k

]
q

N2k−nπ2k−n ∼
[
n

k

]2
q

(
1 − 2q−k + q−n

)m
=

[
n

k

]2
q

(
(1 − q−k)2 + O(q−n)

)m
= (EX)2(1 + O(mq−n)) ∼ (EX)2.

We know that [
n

k

]
q

=
k∑

h=max{0,2k−n}

Nh.

However,
Nh

Nh−1
≍ q−2h+2k−n+1 ≤ 1/q for all max{0, 2k − n} + 1 ≤ h ≤ k.

It follows that [
n

k

]
q

∼
logn∑

h=max{0,2k−n}

Nh.

Thus, EX(X − 1) ∼
[
n
k

]2
q
µ2 = (EX)2. The theorem for the case that (q, k) ̸= (2, 1) follows by

combining all the three ranges of k.
In the case (q, k) = (2, 1) the critical number jumps from one to two when the first even

circuit appears, which occurs in some step n + Op(1) ∼ n. Hence the theorem holds for the case
(q, k) = (2, 1) as well.

The proof of Claim 36 uses the following inequality.

Lemma 37. (1− q−k)2 > kq−k for all positive integers q ≥ 2 and k ≥ 1 except that (q, k) = (2, 1).

Proof. Let fq(x) = (1−q−x)2−xq−x for x ≥ 1. We find that f ′
q(x) = q−x((2−2q−x+x) log q−1) > 0.

Moreover, fq(1) = 1 − 3q−1 + q−2 > 0 except that q = 2, and fq(2) = 1 − 4q−2 + q−4 > 0 for all
q ≥ 2. The first assertion follows. Similarly letting g(x) = (1 − 2−k)2 log 2 − k2−2k+1 the second
assertion follows by g′(x) = 2−2k+1(2k log 2 − 1 + 2k − (log 2)2) > 0 and g(2) > 0.

Proof of Claim 36. Note that

πh ≤ ((1 − q−k)2 + q−2k+h)m ≤ µ2 exp

(
m

q−2k+h

(1 − q−k)2

)
, for all max{0, 2k − n} ≤ h ≤ k.

Note also that and πh ∼ µ2 if k − h ≥ 4 log n.

Nh

N0
≍ q−h(n−2k+h) Nh

N2k−n
≍ q−h(n−2k+h).

It suffices to show that for every h,

Nhπh/N0π0 = Nhπh/N0µ
2 = o(1/k). (8)
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We consider the following cases of k:
In the first case we consider k = O(1). For every 1 ≤ h ≤ k

log
Nhπh
N0π0

= −hn log q + m
q−2k+h

(1 − q−k)2
+ O(1) ≤ −n log q

(
h− k

q−k

(1 − q−k)2
+ o(1)

)
,

where the above inequality used − log(1 − q−k) ≥ q−k. Since h ≥ 1, the above is −Θ(n) by
Lemma 37. Thus, (8) holds when k = O(1).

In the second case we consider k = ω(1) and n/2 − k ≥ log n:

log
Nhπh
N0π0

= −h(n− 2k + h) log q + m
q−2k+h

(1 − q−k)2
+ O(1)

≤ −h(n− 2k + h) log q + (1 + O(q−k))k(n− k)q−k+h log q. (9)

It suffices to prove that
h(n− 2k + h) > (1 + α)k(n− k)q−k+h (10)

for some constant α > 0. Let 0 < ε < 1/8. We further discuss two cases:
(a). h/k ≤ 1 − ε. If n− 2k = Θ(n). Then the left hand side of (10) is Θ(n), whereas the right

hand side above is o(n) since k = ω(1). Thus (10) holds. If n− 2k = o(n). Then, k = Θ(n). Hence
the right hand side above is o(1) whereas the left hand side is Θ(log n). Thus (10) holds.

(b). h/k ≥ 1 − ε. Let c = k − h. Then, 1 ≤ c ≤ εk. The inequality (10) is equivalent to

qc(k(n− k) − c(n− c)) > (1 + α)k(n− k). (11)

Since c ≤ εk and k ≤ n/2, c(n − c) ≤ 2εk(n − k). Hence, the left hand side of (11) is at least
(1− 2ε)qck(n− c) ≥ (3/4)qck(n− k), which is greater than the right hand side as q ≥ 2 and c ≥ 1.

In the third case we consider k − n/2 ≥ log n. As k = ω(1) we have that (9) still holds after
replacing N0π0 by N2k−nπ2k−n, and thus it suffices to prove (10), i.e.

qk−hh(n− 2k + h) > (1 + α)k(n− k) for all 2k − n + 1 ≤ h ≤ k − 1. (12)

Similarly as before, if h/k ≤ 1−ε then we can easily verify (12). Suppose that h ≥ (1−ε)k. Consider
the derivative of f(h) = q−hx(n−2k+h) we find that f ′(h) = q−h((log q)h(2k−n−h)+2h−2k+n).
Taking the derivative of (log q)h(2k − n − h) + 2h − 2k + n we obtain (2k − n − 2h) log q + 2 < 0
for all (1 − ε)k ≤ h ≤ k − 1. Hence, f is concave in the interval (1 − ε)k ≤ h ≤ k − 1. Thus,
to verify (12) it suffices to show that f(h) > k(n − k) for h = (1 − ε)k and for h = k − 1. We
have already argued that (12) holds for h = (1 − ε)k. For h = k − 1, the left hand side of (12) is
q(k − 1)(n − k − 1) which is clearly greater than the right hand side with sufficiently small α as
q ≥ 2, k ≥ n/2 and n− k = ω(1).

In the final case let’s consider the case that k = n/2 + O(Λ). It is easy to see that for k in this
range and for h between max{0, 2k − n} + 1 and 2Λ, πh ∼ µ2. It is thus sufficient to prove that

Nhπh
N∗π∗

= o(1/n), where ∗ = max{0, 2k − n}.

For simplicity we assume that k ≤ n/2 and the case that k ≥ n/2 is symmetric.
We have (9) and want to prove (10) for every 1 ≤ h ≤ 2Λ. The left hand side is at least 1, and

the right hand side is o(1). So the inequality holds.
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Appendix

Proof of Remark 12. Since ga(b(a)) = 0, we have

b(a) log b(a) + a log(q − 1) = a log a + (b(a) − a) log(b(a) − a) + log q for every 0 < a ≤ 1. (13)

Differentiating with respect to a gives

b′
(

log b− log(b− a)
)

= log a− log(q − 1) − log(b− a). (14)

Implicitly differentiating again gives

b′′
(

log b− log(b− a)
)
ab(b− a) = a2(b′)2 − 2abb′ + b2 = (ab′ − b)2 ≥ 0.

Thus, b′′(a) ≥ 0 for every 0 < a ≤ 1, and so b is convex. Moreover, we found that (a, b) = (a∗, 1)
where a∗ = 1 − 1/q satisfies (13), implying that b(a∗) = 1. Moreover, plugging (a, b) = (a∗, 1)
into (14) gives b′(a∗) = 0, which means that a∗ minimizes b(a). Lastly, observe that g1(2) > 0 and
ga(1/a) → − log q as a → 0. Since for every fixed a > 0, ga(y) is an increasing function of y on
y ≥ a, it follows that b(1) < 2 and that for a sufficiently small, b(a) > 1/a. Hence b(a) → ∞ as
a → 0.
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