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Abstract

Counterfactual explanations (CFEs) are sets of actions that an agent with a negative classi-
fication could take to achieve a (desired) positive classification, for consequential decisions such
as loan applications, hiring, admissions, etc. In this work, we consider settings where optimal
CFEs correspond to solutions of weighted set cover problems. In particular, there is a collection
of actions that agents can perform that each have their own cost and each provide the agent
with different sets of capabilities. The agent wants to perform the cheapest subset of actions
that together provide all the needed capabilities to achieve a positive classification. Since this is
an NP-hard optimization problem, we are interested in the question: can we, from training data
(instances of agents and their optimal CFEs) learn a CFE generator that will quickly provide
optimal sets of actions for new agents?

In this work, we provide a deep-network learning procedure that we show experimentally
is able to achieve strong performance at this task. We consider several problem formulations,
including formulations in which the underlying “capabilities” and effects of actions are not ex-
plicitly provided, and so there is an informational challenge in addition to the computational
challenge. Our problem can also be viewed as one of learning an optimal policy in a family of
large but deterministic Markov Decision Processes (MDPs).

1 Introduction

Machine learning models are increasingly being used to guide consequential decision-making, e.g., for
hiring and school admissions. Since these decisions can significantly impact people’s lives, society
demands the right to explanation, as stated in Articles 13–15 of the European Parliament and
Council of the EU [9] General Data Protection Regulation. One of the most needed explanations is
of how people (agents) can modify their input features (i.e., their state) to get a (desired) positive
classification from these models. Counterfactual explanations (CFEs) provide insights into which
input features to change and to what extent to achieve a desirable model outcome [26, 6, 19]. CFEs
are transformed into actionable feedback to make it easy for agents to act on the insights, that is to
say, negatively classified agents receive recommendations as to how to optimally act to get desirable
model outcomes [23, 13, 12, 14].

We consider settings where an optimal CFE corresponds to the solution of weighted set cover
problem. Specifically, given a set of actions with known costs and known effects on state features,
the problem is to find the lowest-cost subset of actions that achieve all capabilities (state features
greater than or equal to a given threshold) needed to be positively classified. This formulation
is, in principle, similar to search-based optimization CFE generation frameworks [21], user-specific
integer linear program recourse approaches [23, 5, 11], and logic and answer-set programs based
counterfactual generation [4, 17, 18]. For example, a bank loan officer with access to a binary
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CFE
name

Action(s)
name

Action(s)
cost

Action(s)
effects

Classifier
query-access

Weighted set cover problem × ✓ ✓ ✓ ✓
Named-action × ✓ × × ×
Full-action × ✓ × ✓ ×
Named ✓ × × × ×

Table 1: We propose three kinds of data-driven CFE generators: named-action, full-action and
named CFE generators, each with a specific set of informational challenges it works with.

classifier that determines loan eligibility and a set of actions, their underlying effect on the agent
features, and their costs can use the solution of the weighted set cover problem to suggest the least
expensive subset of actions that can help an ineligible borrower become eligible for a loan.

However, this formulation, like similar contemporary approaches to CFE generation heavily relies
on information access assumptions, for example, at the very least, query access to the classifier and
knowledge of the actions, their costs, and underlying effects on agent features. These assumptions
rarely hold in practice which limits the usage of the CFE generators. We are, therefore interested
in generating CFEs for settings where different information challenges might exist (see Table 1).

Consider, for example, unlike the previous setup, the loan officer assistant only knows the name
of actions but not their costs and underlying effects on agent state features or even query access
to the loan eligibility classifier. In this setting, the assistant recommends a named-action CFE,
an optimal set of named-actions to the agent, e.g., increase bank credit (named-action), without
information on the cost of the named-actions, or how the actions might affect the agent’s state, but
only relying on how agents that had a similar profile (current agent state) became loan eligible after
increasing their bank credit.

In another setting, the loan officer, even with knowledge of the actions and their underlying
effects on the agent’s state, might not know the cost of those actions. Relying on the history
of which CFEs worked well for agents with a similar state, they then recommend a full-action
CFE, an optimal set of full-actions, to help a new agent in a similar state become loan-worthy, e.g.,
increase credit score by 20% (full-action). This setting would preclude the use of contemporary CFE
generators that require knowledge of the action costs and at least query access to the classifier.

Alternatively, there are instances where there is very limited information access, where the
decision-makers have no query access to the classifier and the actions, their costs, and underlying
effects on the features is unknown. In this case, the decision-maker might have access to named
CFEs, where the name of a CFE holds significant implicit information, and there is an expectation
the agent taking the CFE possesses some domain expertise. For example, a mortgage broker without
query access to the bank loan eligibility classifier, actions, their costs, and underlying effects on the
agent features might recommend that an agent wanting to take out a mortgage first takes a personal
loan x years prior (named CFE), without specifying what sub-actions the agent needs to take.

Other than the aforementioned informational challenges to CFE generation, generating an op-
timal CFE as a solution of weighted set cover problem is an NP-hard optimization problem [15].
Additionally, like other similar CFE generation methods, this CFE generator requires solving an
optimization problem for each new agent which is not scalable and is significantly expensive. Given
all these informational and computational challenges, we are interested in the question: can we,
from training data (instances of agents and their optimal CFEs), learn a CFE generator that will
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Input: x ∈ {0, 1}𝑛 Output: I

CFE generator

Named-action CFE

Full-action CFE

Named CFE

Figure 1: Data-driven CFE generators trained on agent-CFE data generate information specific
CFEs (I) for new agents given their state (x) without re-optimizing the CFE generator.

quickly provide optimal sets of actions for most new agents?
In this work, we provide a neural network learning procedures (see Figure 1) that we experimen-

tally show to achieve strong performance on this task. We consider several problem formulations,
including those in which the classifier and grouped access to actions are not explicitly known, and
the underlying effects of the actions are not explicitly provided.

1.1 Related Work

Closest to our work is that of Naumann and Ntoutsi [20] and Verma et al. [25]. While our formulation
is synonymous with learning an optimal policy in a family of large but deterministic Markov decision
processes (MDPs), Verma et al. [25] learns an optimal policy in stochastic, but relatively small MDP
settings. While Naumann and Ntoutsi [20] optimizes their CFE generation method for each agent
to find an optimal ordered sequence of actions to recommend, in our generalized CFE generation
approach, we assume that the train-set CFE is optimal, and we don’t re-optimize the model to
generate a CFE for each new agent.

Our approach to generating CFEs is similar to that of CFE generation tools that use rein-
forcement learning [7, 22]. However, due to computational complexity, these tools only provide
approximate solutions, while our generators produce exact solutions.

Our main contribution is CFE generators that are computationally efficient and work under var-
ied information settings, thus providing a solution to the informational and computational challenges
of CFE generation in settings where actions correspond to solving a weighted set cover problem.
Unlike other methods that need, at the very least, query access to the classifier as well as knowledge
of the cost of each action and its effect on state features [20, 7, 22, 25], our formulation effectively
generates CFEs in the absence of explicit access to this information.

Lastly, our work is also related to data-driven algorithm design [10, 3, 2] in which models
trained on training data instances perform well on the training data and generalize to the testing
data. Specifically, given testing data: instances of agents and their optimal CFEs (of varying
information), we train neural-network models that we empirically show achieve strong performance
at generating optimal CFEs for new instances.

2 Motivation

Consider a binary classifier t = {𝑡1, 𝑡2, · · · , 𝑡𝑛} over 𝑛 features that classifies an agent as positive if its
state x satisfies the condition: 𝑥 𝑗 ≥ 𝑡 𝑗 , ∀ 𝑗 ∈ [𝑛], and negative otherwise. We consider scenarios in
which agents that are classified as negative can take a set of actions to acquire capabilities required
to receive a positive classification.
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An action a ∈ A provides the agent with different sets of capabilities to transform features of
the agent’s state. An action transforms the feature 𝑗 of the agent state, x, if after performing the
action, the new agent state x + a = x′, is such that 𝑥′

𝑗
> 𝑥 𝑗 and 𝑥′

𝑗
≥ 𝑡 𝑗 .

An action provides a negatively classified agent with all necessary capabilities, if after performing
the action, the state of the agent changes from the initial state x to a counterfactual state x★, such
that 𝑥★

𝑗
≥ 𝑡 𝑗 ,∀ 𝑗 ∈ [𝑛], where x★ results in a positive classification. A counterfactual state is the

final state with which the agent has all the needed capabilities. If the agent requires more than
one action to achieve these capabilities, actions are performed sequentially to transform the agent’s
initial state to the counterfactual state.

2.1 Weighted Set Cover Problem

Let there be a collection of actions A that an agent can perform, where associated with each
action 𝑎𝑖 ∈ A is its cost 𝑐𝑖 ∈ c and a specific set of effects that that action has on the agent’s
state. A negatively classified agent, x, wants to perform the cheapest subset of actions 𝐼 ⊆ A that
together provide all the needed capabilities to achieve a positive classification, i.e., x + 𝐼 = x★, s.t.
𝑥★
𝑗
≥ 𝑡 𝑗 ,∀ 𝑗 ∈ [𝑛].

Example Given an agent x = [0, 0, 0, 0, 1], a binary classifier t = [1, 1, 1, 1, 1], and actions
A = {[0, 0, 1, 0, 1], [1, 0, 0, 0, 1], [0, 0, 1, 1, 0], [0, 0, 0, 0, 1], [0, 1, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, 0],
[1, 0, 0, 0, 0], [0, 1, 1, 0, 0]} with their associated costs c = [6, 5, 9, 2, 1, 15, 0, 3, 5], the goal is to find
the lowest-cost subset of actions that together provide the agent all the needed capabilities.

Formulating this as a weighted set cover problem, we find the best (lowest-cost) subset of actions
for the agent to take as 𝐼 = {[0, 0, 1, 1, 0], [0, 1, 0, 0, 0], [1, 0, 0, 0, 0]}, at a total cost of 13.0. Sequen-
tially performing the actions in 𝐼 changes the agent state from the initial state x = [0, 0, 0, 0, 1] to
the counterfactual state x★ = [1, 1, 1, 1, 1].

Integer Linear Program (ILP) We mathematically formulate the weighted set cover problem
as an integer linear program [24].

Given a set of actions A ∈ {0, 1}𝐴×𝑛 and their costs c ⊆ R𝐴, and a negatively classified agent
with initial state x ∈ {0, 1}𝑛, the problem is to find the lowest-cost subset of actions 𝐼 ⊆ A that the
agent can take to reach the counterfactual state.

Let the binary matrix D ∈ {0, 1}𝐴×𝑛 denote the relationship between the features to transform
and actions the agent can take, where 𝑑𝑖 𝑗 ∈ D = 1 if action 𝑖 transforms feature 𝑗 , and 0 otherwise.
Therefore, we define {𝑖 ∈ A : 𝑑𝑖 𝑗 = 1}, 𝑗 ∈ [𝑛] as the number of actions that can transform feature
𝑗 , and { 𝑗 ∈ [𝑛] : 𝑑𝑖 𝑗 = 1}, 𝑖 ∈ A as the number of features action 𝑖 can transform. If we choose
action 𝑖, then 𝑎𝑖 = 1 and 0 otherwise. Formally, we define the integer linear program as follows:

minimize
∑︁
𝑖∈A

𝑐𝑖𝑎𝑖

subject to
∑︁
𝑖∈A

𝑑𝑖 𝑗𝑎𝑖 ≥ 𝑡 𝑗 , ∀ 𝑗 ∈ [𝑛],

𝑎𝑖 ∈ {0, 1}, 𝑑𝑖 𝑗 ∈ {0, 1}

Therefore, for each agent with a negative classification, the lowest-cost (optimal) CFE required to
achieve the capabilities needed for a positive classification is given by 𝐼 = {𝑖 : 𝑎𝑖 = 1}. The cost of
the optimal CFE is given by the total cost of the actions in the CFE,

∑
𝑖∈𝐼 𝑐𝑖 .
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Challenges of using the weighted set cover problem CFE generator In principle, as
described above, the weighted set cover problem can be solved by exhaustive search over all the
combinations of the actions. In our empirical experiments, an agent can use one action or a set
of two/three actions to get all the necessary capabilities needed to achieve a positive classification.
It’s inexpensive to try all the (𝐴/3) ways of finding the most optimal combination (set) of actions.
However, in the worst-case scenario, a search through all the combinations of actions, 2𝐴−1 is needed
to find the optimal set of actions the agent needs to acquire all the needed capabilities. Therefore,
exhaustive search would have an exponential time complexity 𝑂 (𝑛2𝐴). Although removing already
covered/satisfied features of an agent could reduce the complexity by a factor, the CFE generator
would still be computationally expensive.

In addition to being computationally expensive, this nature of CFE generation requires solving
an optimization problem for each new agent, and needs access to the classifier. Also, given real-
world settings, like health care, especially counterfactual explanations in medical settings, where
health professionals recommend interventional actions based on the current state of the patient and
similarity to other patients who were in a similar state, CFE generation as a solution to the weighted
set cover problem doesn’t adequately leverage advantages of historical counterfactual explanations.

3 CFE Generation as a Learning Problem

Due to computational and informational challenges of CFE generation in settings where actions
correspond to solving a weighted set cover problem, we propose various CFE generators based on
the limited and specific information accessible to the decision-maker, and without having CFE
generation as an optimization problem for every single agent. Below are three kinds of proposed
data-driven CFE generators.

3.1 Named-action CFE Generators

The named-action (NA) CFE generator addresses the informational challenge where only the names
of the actions in the CFE are known. Explicit information regarding the cost of actions or their
explicit effects on features is unknown, and decision-makers have no query access to the classifier.
The named-action CFE generator is considerably cheaper than the weighted set cover problem CFE
generator, and the number of CFEs is upper bounded by the number of training examples.

The named-action CFE generator is trained on instances of agents and their optimal CFEs for
which the names of the actions in the CFE are known, but not their effects on features. Each action
in the collection of actions Aname is represented by its name. Each negatively classified train-set
agent x𝑖 ∈ X𝑇 has an optimal named-action CFE that is a subset of the actions, 𝐼𝑖 ⊆ Aname. The
CFE 𝐼𝑖 is represented by a binary vector, where 𝐼 (𝑎)

𝑖
= 1 if the 𝑎th action is in the optimal CFE

vector 𝐼𝑖 and 0 otherwise. For each agent x𝑖, the named-action CFE generator computes a vector
score for each action using a linear combination of the input features and CFE generator weights
z𝑖 = x𝑖𝑊 . The probability that a generated action, 𝐼 (𝑎)

𝑖
is among the actions in the optimal CFE

for the agent x𝑖 is given by the sigmoid function:

𝐼
(𝑎)
𝑖

= 𝜎(z(𝑎)
𝑖
)

To ensure that the named-action CFE generator performs well on the train-set, X𝑇 ∈ {0, 1}𝑚×𝑛 and
generalizes to the test-set, we optimize the binary cross entropy loss function given by:

LNA = − 1

𝑚

𝑚∑︁
𝑖=1

[
𝐼𝑖 log(𝐼𝑖) + (1 − 𝐼𝑖) log(1 − 𝐼𝑖)

]
5



Input: x ∈ {0, 1}𝑛 Output: I ∈ {0, 1}𝑠×𝑛

Encoder

Internal state

Decoder

Figure 2: An encoder-decoder full-action CFE generator.

The binary vectored named-action CFEs were sparse because agents had either 1, 2, or 3 named-
actions in their CFEs, and there were at most 100 possible named-actions. As a result, the named-
action CFE generator was susceptible to overfitting. Additionally, some named-actions were more
common than others especially the second and third named-actions in three-action CFEs were less
common than those in one-action CFEs.

To address named-action imbalance and overfitting, we weight and regularize the loss function,
LNA, as follows:

L𝑤NA = 𝑝𝑤LNA + 𝛼
1

𝑚

𝑚∑︁
𝑖=1

��𝐼𝑖 − 𝐼𝑖 ��
The weighting factor 𝑝𝑤 weights the loss function LNA to help with named-action imbalance by
scaling the contribution of each sample to the loss function. The sparsity term 𝛼 1

𝑚

∑𝑚
𝑖=1

��𝐼𝑖 − 𝐼𝑖 ��
regularizes the model, thus preventing overfitting, where 1

𝑚

∑𝑚
𝑖=1

��𝐼𝑖 − 𝐼𝑖 �� encourages the model to
produce named-action CFEs closer to 𝐼𝑖’s distribution.

3.2 Full-action CFE Generators

The full-action (FA) CFE generator addresses the informational challenge where all the exhaustive
space of actions is unknown and the decision-maker has no query access to the classifier. Only
actions in the CFE, their effects on features are known.

Given instances of agents x𝑖 ∈ X𝑇 and their optimal CFEs 𝐼𝑖 ∈ {0, 1}𝑠×𝑛 for which the underlying
and effects of the 𝑠 full-actions on the agent features are explicitly provided, the goal is to learn a
full-action CFE generator that will quickly provide optimal CFEs for new agents. We model the
generator using two kinds of neural networks: a sequential encoder-decoder network (see Figure 2)
and a multi-label classifier. In the case of the multi-label classifier, we convert the CFEs into padded
binary vectors and apply the same loss function as described in the named-action CFE generators
in Section 3.1.
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3.3 Named CFE Generators

The named CFE generator addresses the informational challenge where only the CFE names and
costs are known. Explicit information about the actions in each CFE, including actions’ costs and
explicit effects on features is unknown, and decision-makers have no query access to the classifier.

In this setting, the decision-maker generates CFEs with only the names and costs of the CFEs
at hand. Each negatively classified train-set agent x𝑖 ∈ X𝑇 has an optimal CFE 𝐼𝑖 ∈ I𝑇 , where 𝐼𝑖 is
the optimal CFE name. To generate the optimal CFE for a test-set agent, we use a named CFE
generator trained on the train-set to learn the patterns between agents and their optimal named
CFEs. Following are the two proposed named CFE generators.

Hamming distance As a baseline, we consider the hamming distance named CFE generator. In
this case, given a negatively classified test-set agent x𝑣, we compute the Hamming distance (see
Figure 3) between it and each of the train-set agents x𝑖 ,∀𝑖 ∈ [𝑚]. Based on the computed distances,
we choose the 𝑘 nearest train-set agents and their associated optimal CFEs. We then use the most
common CFE as the CFE for the test-set agent x𝑣.

x𝑖

x𝑣

1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0

Hamming Distance: (x𝑖, x𝑣) = 6

Figure 3: Hamming distance between the train-set agent x𝑖 and test-set agent x𝑣.

Multi-class classification We consider a more sophisticated model, a neural network-based
named CFE generator, i.e., a multi-class classification (MC) named CFE generator. First, we
one-hot encode the CFE names to I𝑇 ⊆ {0, 1}𝐾 , where 𝐾 is number of unique named CFEs. For
each agent x𝑖 ∈ X𝑇 , the CFE generator computes a vector score for each CFE using a linear combi-
nation of the input features and CFE generator weights z𝑖 = x𝑖𝑊 . The probability that a generated
CFE 𝐼

(𝑘 )
𝑖

is the lowest-cost CFE for the agent x𝑖 is given by the softmax function:

𝐼
(𝑘 )
𝑖

=
𝑒z
(𝑘)
𝑖∑𝐾

𝑗=1 𝑒
z
( 𝑗)
𝑖

To ensure that the CFE generator performs well on the train-set, X𝑇 ∈ {0, 1}𝑚×𝑛 and generalizes
to the test-set, we optimize the cross entropy loss:

LMC = − 1

𝑚

𝑚∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝐼
(𝑘 )
𝑖

log(𝐼 (𝑘 )
𝑖
)

4 Experimental Setup

In this section, we describe the setup used to empirically demonstrate the strong performance with
which our method generates optimal CFEs for new instances of negatively classified agents.

7



4.1 Data generation

We generate the agents by activating each feature with probability 𝑝 𝑓 . We then create a collection
of actions A ∈ {0, 1}𝐴×𝑛 by setting each action a ∈ A to 1 with probability 𝑝𝑎. Each action
coordinate has its own pre-generated cost, and the cost of active action coordinates (those with
capabilities) determines the cost of the action. Using solutions of the weighted set cover problem
based on the generated actions and the agent datasets, we create datasets of instances of agents
and their associated optimal CFEs. We generate three kinds of agent-CFE datasets that exhibit
variations in their dimension, binary classifier sparsity, and actions access:

• Varied data dimensions We created three datasets, varying the number of features (𝑛 = 20,
50, 100) and keeping 𝑝 𝑓 = 0.68 the same for all datasets. In all three cases, the binary classifier
was a unit vector of length 𝑛. We created the actions dataset with 𝑝𝑎 = 0.5. Each action
coordinate cost was randomly assigned in the range 𝑛. The cost of each action equaled the
sum of the cost of action coordinates.

• Varied binary classifiers sparsity We generated five, 𝑛 = 20 datasets with varied binary
classifier sparsity. The first dataset (Last5) has all zeros except for the last five features.
The second dataset (First5) has all zeros except for the first five features. The third dataset
(First10) has all zeros except for the first ten features. The fourth dataset (Last10) has all
zeros except for the last ten features. Finally, the fifth dataset (Mid5) has a binary classifier
for which the five middle features are one and the rest are zero.

• Varied access to actions We also consider a setting where grouped agents have restricted
access to a set of actions. We consider two main settings: 1) actions generated with the same
probability 𝑝𝑎 = 0.5 and agents are randomly assigned a subset of actions; and 2) agents
assigned to groups and each group has its own actions generated by different probabilities
𝑝𝑎 = [0.4, 0.5, 0.6, 0.7, 0.8] . In what follows, we refer to the first setting as manual groups and
the second as probabilistic groups. See Figure 4a and Figure 4 for the statistics of the
datasets.

Group 0 Group 1 Group 2 Group 3 Group 4101

102

103

104

Nu
m

be
r o

f A
ge

nt
s

2558 2337 3061 2600 2924

10926 12028 11338 10989 11372

1138

327 358

1135

393

1-action CFEs 2-action CFEs 3-action CFEs

(a) Manual groups

Group 0 Group 1 Group 2 Group 3 Group 4101

102

103

104

Nu
m

be
r o

f A
ge

nt
s

1253

4721

10564
14252 13871

7146 8990

3893

227

4783

522

1-action CFEs 2-action CFEs 3-action CFEs

(b) Probabilistic groups

Figure 4: Statistics of the varied actions access datasets for Manual groups and Probabilistic
groups. For the Probabilistic groups, group 0 is 𝑝𝑎 = 0.4, group 1 is 𝑝𝑎 = 0.5, group 2 is
𝑝𝑎 = 0.6, group 3 is 𝑝𝑎 = 0.7, and group 4 is 𝑝𝑎 = 0.8.

Each agent had exactly one optimal CFE, i.e., there were no equally cheap alternate CFEs. We
excluded four-action CFE agents because they were very limited in number (e.g., only 4 agents of
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the 20-feature dataset), and even after the data split, they were in train-set. In the case of varied
binary classifiers sparsity datasets, due to reduced thresholds required for validity, some agents did
not need CFEs and were therefore excluded.

For each dataset of agents and their associated optimal CFEs, we created three datasets: all
where all data is included, >10 where a frequency of more than 10 agents per CFE is ensured, and
>40 where a frequency of more than 40 agents per CFE is ensured. We then encode the CFEs into
named-action, full-action and named CFEs, fit for training and testing each specific proposed CFE
generator. We create 80%/20% train-set/test-set splits for each of the datasets. In the case of the
>40 dataset, each CFE has a frequency of at least 20 in the train-set. We generate a different data
split for every experiment and all methods use the same data split.

4.2 Data observations

Although most actions have effects on multiple features of the agent state, most agents require more
than one action to achieve all the capabilities needed for a positive classification, which increases
with the data dimension, 𝑛. Additionally, the uniqueness of CFEs increases with the data dimension.
The average frequency of the CFEs for the all train-set for the 20, 50, and 100 feature datasets
is 46.64%, 21.75%, and 8.09%, respectively. Additionally, 18.115%, 20.797%, and 31.072% of the
CFEs of the train-sets of the 20, 50, and 100 feature datasets, respectively have a frequency of one.

In Manual groups datasets, agents are more balanced with respect to the number of actions
needed (see Figure 4a) because the agents have access to the same distribution of agents, i.e.,
although agents in each group have access to only a selected group of actions, all actions for all
groups were generated with the same probability, 𝑝𝑎 = 0.5. However, for the Probabilistic groups
datasets, as seen from Figure 4b, the lower the probability of action capabilities 𝑝𝑎, the more actions
agents need to acquire all the capabilities needed for a positive classification. In other words, some
agents in some groups only have access to more expensive and limited capability actions compared
to agents in other groups. Agents in group 0 of Probabilistic groups have a harder time (limited
capability and more expensive actions), getting positively classified than those in group 4.

4.3 CFE generator architectures

The Hamming distance named CFE generator had varied the nearest neighbors: 5, 10, and 15, for
the 20-, 50-, and 100-dimensional datasets, respectively.

We mainly based the architectures for the multi-class classification (MC) named CFE generator
on neural network models. Typically, each model has two hidden layers, each consisting of 2000
neurons, ℓ2 regularization, dropout, and batch normalization. The model architecture was optimal
for the 20-, 50-, and 100-dimensional datasets. We used the Adam optimizer [16] for all datasets
and implemented early stopping with the restoration of the best weights after a patience level of
360. On average, we set the batch size to 2000, and the number of epochs set to 3000.

The named-action (NA) CFE generator, like the MC CFE generator, relied on neural network
models. The model has three hidden layers, each with 2000 neurons, ℓ2 regularization, dropout,
and batch normalization. We used the Adam optimizer [16] and implemented early stopping with
best weights restored after a patience level of 300. We, on average, set the batch size to 6000 and
the number of epochs to 5000. We choose the values of 𝛼 from the set {0.05, 0.1, 0.07} and 𝑝𝑤 from
{0.05, 0.1, 0.07}.

We utilized two kinds of neural network models for the full-action CFE generator: sequen-
tial encoder-decoder and NA CFE generator-like networks. To fit the NA model setting for the
latter model, we added padding to the CFE vectors. The architecture and hyperparameters for

9



both networks varied greatly depending on the context. In general, the models were shallow and
implemented on CPU machines.

4.4 Evaluation of generated CFEs

For all the CFE generators, we evaluate the generated CFEs with the zero-one loss that compares
the generated CFE 𝐼𝑖 to the true CFE 𝐼𝑖.

Leval(𝐼𝑖 , 𝐼𝑖) =
{
0 if 𝐼𝑖 = 𝐼𝑖
1 if 𝐼𝑖 ≠ 𝐼𝑖

5 Experimental Results

In this section, we empirically demonstrate the strong performance with which our method generates
optimal CFEs for new instances of negatively classified agents.
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Figure 5: Accuracy of various CFE generators on varied datasets. Accuracy of the named (a),
named-action (b), and full-action (c) CFE generators on 20-dimensional, all dataset. The named
CFE generator is the most accurate, and in all cases, single CFEs were the most accurately gener-
ated.

5.1 Accuracy and Confidence of CFE Generators

CFE generators generally performed well on new agents. On the 20-dimensional dataset, the named-
action CFE generator generated CFEs for new agents at an accuracy of 96.9% on all, 98.4% on
>10, and 99.3% on >40 datasets (see Table 2). Similarly, as shown in Figure 5, the named and
full-action CFE generators, do equally well.

The CFE generators are confident when they are correct. As seen from Figure 7a, the confidence
scores are close to 1 when the named-action CFE generator correctly generates CFEs for the test-
set agents. Additionally, the accuracy of CFE generators has very small margin of error, therefore
results are precise and reproducible (see Table 2).
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Figure 6: Accuracy of named action CFEs generators on the 20-dimensional, >40 dataset.

CFE Generators on 20-dimensional Datasets

all >10 >40

MC 0.969 ± 0.00284 0.984 ± 0.00208 0.993 ± 0.00141
NA 0.854 ± 0.00581 0.886 ± 0.00531 0.940 ± 0.00411
FA 0.839 ± 0.00605 0.892 ± 0.00518 0.937 ± 0.00420

Table 2: Accuracy of CFE generators: named (MC), named-action (NA) and full-action (FA), on
20 feature: all, >10, and >40 datasets.
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of CFEs in train-set on named-action CFE generator on 100 and 50 feature datasets increases the
generator accuracy
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5.2 Effect of Data Dimension and CFEs Frequency

Due to the uniqueness of CFEs, after data partitioning, some CFEs appeared in one data split and
not the other. For example, for the 20, 50, and 100 features: all datasets, some CFEs appeared
in the test-set but not the train-set. There were 52, 154 and 708 unique CFEs in the test-set that
were not seen before in the train-set for 20, 50, and 100 features: all datasets, respectively.

The CFE generators become less accurate as the frequency of CFEs in the train set decreases.
In Table 2, the accuracy of all CFE generators for the 20 feature dataset was highest when CFEs
had a frequency of at least 20 in the train-set (>40) and lowest for all data (all), in which case,
some CFEs appeared in the test-set but not the train-set. For example, the accuracy of the named
CFE generator decreased from an accuracy of 99.3% on 20-dimensional >40 dataset to 96.9% on
20-dimensional all dataset.

Since the frequency of CFEs in train-set decreases with increases in data dimension, the gen-
eralization of CFE generators decreases with dimension. As seen in Table 3 (top), the named
CFE generator had the lowest accuracy on the 100-dimensional dataset and the highest on the
20-dimensional dataset. For example, while the named CFE generator had an accuracy of 74.4%
on the 50-dimensional all dataset, it had an accuracy of 96.9% on the 20-dimensional all dataset.

Additionally, the minimum frequency of CFEs required for a generalizable CFE generator in-
creases with information in the CFE and the number of features in the agent state. While the
frequency of 20 is sufficient for all 20 features CFE generators (see Table 2), a frequency of at least
20 CFEs in the train-set is sufficient for named CFE generators for the 50 and 100 feature datasets,
and a higher CFE frequency is needed for named-action CFE generators (see Figure 7b).

CFE Generators on 20-, 50-, and 100-dimensional Datasets

all >10 >40

MC 20-dim 0.969 ± 0.00284 0.984 ± 0.00208 0.993 ± 0.00141
NA 50-dim 0.744 ± 0.00608 0.838 ± 0.00534 0.915 ± 0.00458
FA 100-dim 0.354 ± 0.00664 0.630 ± 0.00778 0.856 ± 0.00772

Before & After Augmentation

20 features 50 features 100 features

B4A 0.969 ± 0.00284 0.744 ± 0.00608 0.354 ± 0.00664
AG1 0.965 ± 0.00303 0.760 ± 0.00595 0.505 ± 0.00694
AG2 0.982 ± 0.00218 0.845 ± 0.00504 0.790 ± 0.00565

Table 3: On the top, accuracy of the named-action (NA), full-action (FA), and named (MC) CFE
generators for 20 (20-dim), 50 (50-dim) and 100 (100-dim) feature: all, >10, and >40 datasets.
The bottom table shows that data augmentation improves accuracy of CFE generators, as seen for
named CFE generators on 20, 50, and 100 features: all datasets.

Data augmentation To increase the frequency of CFEs, we employ two kinds of data augmen-
tation using Algorithm 1. The principle we follow for Algorithm 1 is to make the agent worse
enough, such that the current CFE is still the best CFE for the worse-off agent. Worse-off agents
are those such that the features where the CFE is doing more than required are made worse, i.e.,
for 𝑗 such that 𝑥★

𝑖 𝑗
> 𝑡 𝑗 , 𝑎𝑢𝑔 𝑗 < 𝑥𝑖 𝑗 . A CFE is doing more than required to feature 𝑗 of x𝑖, if by
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Algorithm 1: Data Augmentation
Input: agent: x𝑖, its CFE: 𝐼𝑖, and binary classifier: t
Output: valid derived augments of x𝑖: X𝑖augs
Data: features where CFE is doing more than required: 𝑖𝑑𝑠, length of 𝑖𝑑𝑠: 𝑛𝑢𝑚

1 augs← 2𝑛𝑢𝑚 derived worse-off agents;
2 for aug in augs do
3 if aug is valid then
4 X𝑖augs ∪ aug;

applying it to 𝑥𝑖 𝑗 , 𝑥★𝑖 𝑗 > 𝑡 𝑗 . A derived worse-off augment aug is valid if x𝑖’s CFE is the best CFE
for it, aug★

𝑗
≥ 𝑡 𝑗 ,∀ 𝑗 ∈ [𝑛].

With Algorithm 1, we augmented the train-set to ensure that more CFEs are included and
representation of CFEs is balanced (AG1). As seen from Table 3 (bottom), applying AG1 improves
the accuracy of the CFE generators. For the 100 feature dataset with the named CFE generator,
accuracy increases from 35.37% before data augmentation to 50.54% after AG1.

After applying AG1, we apply another level of data augmentation, AG2, aimed at increasing the
number of frequency of CFEs in the train-set whose current frequency is less than 20. We reduce
the number of CFEs with less than 20 agents from 813 to 638, 2676 to 2005, and 9043 to 7144
for the 20- 50- and 100-dimensional datasets, respectively. AG2 improves the accuracy of the CFE
generators as shown in Table 3 (bottom). For example, for the 100-dimensional dataset with named
CFE generator, accuracy increases from 35.37% to 78.99%.

5.3 Differential Validity & Grouped Actions Access

In addition to the action-specific and classifier access informational challenges, we also examine
cases where grouped information about agents is unknown. We examine two additional information
challenges: agents verified by different thresholds (differential validity) and agents having restricted
access to a group of actions (manual groups and probabilistic groups ). Refer to Section 4.1
for information on how we created these groups for the experimental setup.

Without explicit knowledge of the differential validity, when given test-set agents, the CFE
generators successfully generate the right CFEs. The full-action CFE generator achieves an accuracy
of 99.683% on First10, 99.496% on Last10, 100% on First5, 100% on Mid5, and 100% on Last5,
varied validity groups. Similar to differential validity, we study the case in which the agents in a
group only have access to a selected set of actions. Without explicit knowledge of groups and the
actions available to the agents in each group, the CFE generators correctly generate the CFEs for
test-set agents in both manual groups and probabilistic groups (see Table 4).

Since agents in the Manual groups had more balanced access to actions (Figure 4a), CFE
generators had almost similar accuracy (∼87%) in the generation of CFEs across all agents in
different groups (as shown in Table 4 (left)). On the other hand, agents in the Probabilistic
groups had access to varied actions (see Table 4 (right))), which led to varied accuracy in generating
their CFEs. For instance, as expected, the CFEs for Probabilistic groups 4 agents with one-
action CFEs were more accurately generated with an accuracy of 93.06% as compared to group 0
and 1 agents, generated at an accuracy of 88.04% and 77.09%, respectively.
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Manual Groups Probabilistic Groups

Group Accuracy Group Accuracy

group 0 0.881 ± 0.01200 group 0 (0.4) 0.880 ± 0.04400
group 1 0.871 ± 0.01260 group 1 (0.5) 0.771 ± 0.02081
group 2 0.875 ± 0.01249 group 2 (0.6) 0.802 ± 0.01571
group 3 0.847 ± 0.01359 group 3 (0.7) 0.873 ± 0.01241
group 4 0.886 ± 0.01212 group 4 (0.8) 0.931 ± 0.00947

Table 4: Group-wise accuracy of the CFE generator on manual groups & probabilistic groups.

5.4 Single-action CFEs vs. Multiple-action CFEs

In general, all CFE generators, regardless of information entailed in the CFEs, generate single-action
CFEs more accurately than multiple-action CFEs. As can be seen in Figure 5a, one-action CFEs
were generated at higher accuracy of 99.4%, compared to 96.2% for two-action CFEs and 87.1% for
three-action CFEs. Similarly, as seen in Figure 5c, full-action CFE generators generated one-action
CFEs at an accuracy of 94.4%, compared to 79.6% for two-action CFEs and 60.0% for three-action
CFEs. This might be partly because each CFE regardless of length has the first action, therefore
there is more data on the first action than any other action, so in cases of single action, they are
more accurately generated.

5.5 Comparison of CFE Generators

Figure 5a to 5c and Table 2 show that named CFE generators are more accurate and need less
CFE frequency in the train-set, than named-action and full-action CFE generators. As can be seen
in Table 2, the named CFE generators consistently generated CFEs at a higher accuracy than the
named-action and full-action CFE generators. For the 20 feature, all dataset, MC had an accuracy
of 96.9%, compared to 85.4% with NA and 83.9% with FA. Additionally, as shown in Figure 5a and
5b, the multi-class classification named CFE generator performs better than the baseline Hamming
distance CFE generator.
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Figure 8: Distribution of costs of generated and true CFEs for infeasible (a) and feasible (b) mistakes
the named CFE generator on 20 feature, all dataset.
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5.6 Feasibility of CFE Generators’ Mistakes

A generated CFE is a mistake when it doesn’t match the true CFE. A CFE mistake is said to be
feasible if transforms the agent’s initial state to a counterfactual state but is not the lowest-cost
CFE. CFE mistakes are labeled as infeasible if they do not transform the agent to a counterfactual
state. Feasible CFE mistakes are by definition, more expensive than the true CFEs, while infeasible
CFE mistakes are cheaper than the true CFEs (see Figure 8).

Of the 1.58%, 16.23% and 37.00% mistakes the named CFE generator makes on the 20-, 50-, and
100-dimensional >10 datasets, 100%, 99.23%, and 87.29%, respectively, were feasible. Similarly, the
majority of the mistakes of the full-action CFE generators were feasible, e.g., for the 20-dimensional
>10 dataset, of the 10.8% of the mistakes, 63.10% were feasible.

Additionally, the percentage of feasible mistakes decreases with the frequency of CFEs in the
train-set, e.g., the percentage of feasible mistakes decreases from 87.29% on the 100-dimensional,
>10 dataset to 57.83% on 100-dimensional, >all dataset.

6 Conclusion

In this work, we provide a solution to the informational and computational challenges of CFE
generation in settings where selecting a set of actions corresponds to solving a weighted set cover
problem. We propose three CFE generators: named-action, full-action, and named CFE generators.
The CFE generators are computationally cheaper than the single agent optimization-based ILP CFE
generator, and each addresses a unique informational challenge specific to the CFE, its action, and
its costs. We empirically show that the CFE generators generate CFEs for new agents at high
accuracy, which increases with the frequency of CFEs in the training set. Lastly, we explore two
other potential informational challenges: agents with varied access to actions and different agents
classified by different classification thresholds. Without explicit information on which agents were
classified by which threshold or which agents had access to which actions, given the mappings of
agents to CFEs, the CFE generator accurately generates CFEs for new agents.

Limitations We focus on learning to generate CFEs in settings where actions provide agents with
various “capabilities” and a CFE is a solution to a weighted set cover problem. This limits CFEs
to being characterized as a set of actions to perform. More generally, one could consider settings
where the order of actions matters, such as where a CFE corresponds to an optimal policy for an
agent in a deterministic Markov decision process (MDP). Even more generally, one could consider
actions whose effects are stochastic, and a CFE then corresponds to an optimal policy for the agent
in a general MDP.

In our work, we investigate two grouped agent settings. These settings involve agents having
different access to different actions and agents classified by different thresholds. Promising future
works could extend these settings to more complex scenarios and explore potential issues such as
survivorship bias and its effect on generating CFEs. Additionally, future research could investigate
the ethical implications of generating CFEs using data-driven algorithms.

Lastly, it is important to note that our approach to generating CFEs is subject to certain
assumptions. We assume that variables are discrete, that generalized CFE generators have access
to labeled historical agent-CFE data and that agents have only one optimal CFE. These are all
potential directions for future work.

Ethical statement Our proposed approaches to CFE generation are closely related to data-driven
algorithm design. As a result, ethical concerns related to data-driven algorithms, for example,
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potentially propagating and exacerbating biases in historical agent-CFE data, might apply to our
proposed CFE generators. Additionally, our CFE generators are not 100% accurate, and the CFE
generator mistakes could lead to the wastage of the agent’s effort and other undesirable downstream
effects like wrong allocation of resources. The experimentation code is at this link.
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A Supplemental Data

We created agent-CFE datasets using solutions of the weighted set cover problem, implemented
with CVXPY Python package [8, 1]. Below, we provide information on missing dataset statistics on
varied binary classifier sparsity and action access.

dataset dataset size one-action CFEs two-action CFEs three-action CFEs

20-dimensional dataset 71125 23687 44858 2576
50-dimensional dataset 98966 1262 96770 934
100-dimensional dataset 99728 0 45515 54213
Manual groups 73484 13480 56653 3351
Probabilistic groups 70226 44661 20258 5307
First10 74524 61794 12046 39
First5 74594 60656 6005 0
Last10 74401 53822 19952 1
Last5 74565 66068 644 0
Mid5 74594 63530 3010 0

Table 5: Statistics of the datasets used in the experiments.
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