
Evaluating Collaborative Autonomy in Opposed Environments using
Maritime Capture-the-Flag Competitions

Jordan Beason1, Michael Novitzky1, John Kliem 2, Tyler Errico1, Zachary Serlin3, Kevin Becker4,
Tyler Paine4,6, Michael Benjamin4, Prithviraj Dasgupta2, Peter Crowley5, Charles O’Donnell1, John James1

Abstract— The objective of this work is to evaluate multi-
agent artificial intelligence methods when deployed on teams
of unmanned surface vehicles (USV) in an adversarial en-
vironment. Autonomous agents were evaluated in real-world
scenarios using the Aquaticus test-bed, which is a Capture-
the-Flag (CTF) style competition involving teams of USV
systems. Cooperative teaming algorithms of various founda-
tions in behavior-based optimization and deep reinforcement
learning (RL) were deployed on these USV systems in two
versus two teams and tested against each other during a
competition period in the fall of 2023. Deep reinforcement
learning applied to USV agents was achieved via the Pyquaticus
test bed, a lightweight gymnasium environment that allows
simulated CTF training in a low-level environment. The results
of the experiment demonstrate that rule-based cooperation for
behavior-based agents outperformed those trained in Deep-
reinforcement learning paradigms as implemented in these
competitions. Further integration of the Pyquaticus gymnasium
environment for RL with MOOS-IvP in terms of configuration
and control schema will allow for more competitive CTF games
in future studies. As the development of experimental deep
RL methods continues, the authors expect that the competitive
gap between behavior-based autonomy and deep RL will be
reduced. As such, this report outlines the overall competition,
methods, and results with an emphasis on future works such as
reward shaping and sim-to-real methodologies and extending
rule-based cooperation among agents to react to safety and
security events in accordance with human experts intent/rules
for executing safety and security processes.

I. INTRODUCTION

Robots and other unmanned vehicles are continuing to
become more widespread in both civilian and military ap-
plications. In recent years, unmanned vehicles have been
deployed in ground, air, surface, and underwater domains,
with the term “UxV” serving as an encapsulating term for
various autonomous agents working within these domains.
Past trends in robotics and unmanned systems have mainly
focused on the deployment of singular, teleoperated UxV’s.
With advances developing in autonomy and distributed sys-
tems, recent focus has been given to the evolution of multi-
agent UxV swarms, which utilize artificial intelligence (AI)
for autonomous operation as opposed to human teleop-
eration. As the use of unmanned swarms becomes more
widespread in the civilian and defense sectors, it is vital to

1United States Military Academy, West Point, NY, Corresponding author:
jordan.beason@westpoint.edu

2Naval Research Laboratory, Washington, D.C
3MIT Lincoln Laboratory, Lexington, MA
4Massachusetts Institute of Technology, Cambridge, MA
5Boston University, Boston, MA
6Woods Hole Oceanographic Institution, Woods Hole, MA

challenge the assumption that AI-based systems will work in
an environment where other autonomous agents are benign
and cooperative [1].

Fig. 1. Sea Robotics Surveyor Class USV’s from field experiments in
October 2023.

The objective of this work is to evaluate multi-agent
artificial intelligence methods deployed on UxV’s in an
adversarial environment. Autonomous agents were evaluated
in real-world scenarios using the Aquaticus [2] test-bed,
which is a Capture-the-Flag (CTF) style competition involv-
ing teams of unmanned surface vehicles (USVs), shown in
1. Cooperative teaming algorithms of various foundations in
hierarchical behavior trees, interval programming [3], and
deep reinforcement learning (RL) [1] were deployed on these
USV systems and tested against each other during a two-
week competition period during the fall of 2023. This paper
describes an overview of the Project Aquaticus test-bed, the
methods with which various artificial intelligence methods
were developed, and their respective results when utilized
in an adverse environment with incomplete information of
the environment state. Implications from the experiment are
discussed from a mostly qualitative perspective, as future
work is required to evolve these cooperative teaming methods
for more competitive algorithms in future Aquaticus experi-
ments.

II. MOTIVATION

Research on cooperative teaming within the context of
a USV CTF competition fills a number of novel research
gaps. The primary motivation of this work is to investigate
and bridge the discrepancies between simulated and field
autonomy. As such, it is important to evaluate AI methods
that are adaptable to non-observable aspects of their environ-
ment, such as constrained sensory perception or adversary

Accepted to the IEEE ICRA Workshop on Field Robotics 2024

ar
X

iv
:2

40
4.

17
03

8v
1 

 [
cs

.R
O

] 
 2

5 
A

pr
 2

02
4



intent. Another important catalyst for this research is the
intention to adapt deep reinforcement learning (RL) tech-
nology commonly used in real-time strategy (RTS) games
and compose similar methods for use within the Aquaticus
test-bed [4], [5]. RTS games have challenges similar to
CTF competition, such as sparse rewards, large state-action
spaces, and limited observability of the game state. Deep
RL within RTS games has achieved better intelligence than
human experts within a number of studies, with various levels
of complexity from 1 vs. 1 checkers to 200 vs. 200 matches
of popular RTS games like StarCraft-II [1]. This research
explores the first initial steps in evaluating Deep RL enabled
agents against traditional behavior and decision tree-based
agents with disputing end goals.

III. THE PROJECT AQUATICUS TEST-BED

The Project Aquaticus test-bed originated on the Charles
River at the Massachusetts Institute of Technology in the
summer of 2015. Until 2019, Project Aquaticus focused pre-
dominantly on human-robot interaction, levels of autonomy,
and trust in zero-sum games such as capture the flag. In those
experiments, a team would consist of two robots and two
humans in motorized kayaks. In 2019, the Project Aquaticus
sandbox was migrated to the United States Military Academy
and incorporated into the multi-domain human-robot teaming
sandbox (MDO-HuRT-S).

A. Game Setup and Rules

Project Aquaticus utilizes capture the flag as the zero-sum
game of choice. In general, the goal of an agent in Project
Aquaticus is to GRAB an opponent’s flag and return it to their
own home location, which is called a CAPTURE. A grab is
given +1 point, and a subsequent capture is given +2 points.
The defending agents are allowed to TAG an opponent if
they themselves are untagged and on their own side of the
field. An agent who leaves the boundaries of the playing
field will be automatically tagged. An agent carrying a flag
that is then tagged will lose the flag as it will be returned
to its own home location. In order for an agent to untag
themselves, they must return to their own home-flag region.
A mission replay of an Aquaticus game illustrating the game
environment is depicted in Figure 2, as well as the coastal
setting for experiments conducted in October 2023.

B. An Introduction to MOOS-IvP

MOOS-IvP includes two components: Mission Oriented
Operating Suite (MOOS) middleware and Interval Program-
ming (IvP) decision-making optimization [6]. MOOS is
an open-source robot publish-subscribe middleware that is
lightweight, only requiring the minimal dependencies. The
general architecture of MOOS is a centralized database
called MOOSDB within a MOOS community. In this work
a MOOS community exists on each robot and the shore-
side computer. MOOS applications on each robot interface
with sensors, communications, and the Searobotics Surveyor
USV front seat computer that controls thrusters, GPS, and
compass. The entire MOOS-IvP ecosystem has the capability

Fig. 2. Above: Playback of an Aquaticus CTF game, red two is tagged
and returning to base, while blue two is returning to base with a ”grabbed”
flag. Below: The ocean gameplay environment

for mission planning, mission execution, and post-mission
tools for autonomous robots. All figures of CTF gameplay
in this report are live playbacks of the experiments using the
alogview application.

Of particular interest in this paper is the MOOS-IvP appli-
cation pHelmIvP. The pHelmIvP includes a behavior-based
optimizer that can solve multiple behaviors simultaneously,
such as the Waypoint, Loiter, and Avoid Collision behaviors.
Concurrent behaviors are grouped into a hierarchy of modes,
which can then be turned on and off based on which mode
is active. For example, a maritime surface robot may be
making way to a point with GoToWaypoint behavior but also
have the AvoidCollision behavior. Once the robot arrives at
the point, it might switch modes to one in which only the
StationKeep behavior is active. Figure 3 shows an overview
of the pHelmIvP architecture.

Entries in the Project Aquaticus competition can leverage
MOOS-IvP for its autonomy as a combination of pHelmIvP
behaviors and modes along with MOOS applications for co-

Accepted to the IEEE ICRA Workshop on Field Robotics 2024



ordination among all agents on a team. All entries, regardless
of using only MOOS-IvP or in combination with PyQuaticus
were required to have two behaviors concurrently running at
all times: OpRegion and AvoidCollision. This was to ensure
overall game safety regardless of errors in competition entries
or unforeseen interactions. The OpRegion behavior ensures
that when a USV leaves the field of the game, it will reenter
the field safely and slowly. This is a layer of safety within the
autonomy to ensure that USVs don’t go off beyond the game
field and the range of the safety remote controls if needed.
The AvoidCollision parameters were set as a last resort if
an entry erroneously got too close to other USVs. In the
Project Aquaticus games, the AvoidCollision was set to halt
all motion such that the safety controllers can de-conflict the
agents and continue the game.

The publicly accessible version of MOOS-IvP Aquaticus
incorporates a set of predefined roles, among which users
can choose:

• Easy Attacker: The USV directly navigates toward the
flag, disregarding the positions of both opponents and
teammates. Upon securing the flag or being tagged, it
returns to its base.

• Easy Defender: The USV orbits its own flag in a
protective maneuver, remaining unresponsive to external
stimuli and focusing only on flag defense.

• Medium Attacker: This behavior involves the USV
advancing towards the flag while concurrently evading
opponents.

• Medium Defender: The USV maintains a central po-
sition within its territory until an adversary approaches.
Subsequently, it engages the opponent, pursuing them
until they are tagged or retreat across the field.

Fig. 3. A visualization of the IvP Helm arcitecture.

IV. ENTRIES

This section describes the two flavors of entries. All entries
leveraged MOOS-IvP as the autonomy stack running on the
SeaRobotics Survyor USVs. The first set of entries lever-
aged MOOS-IvP behaviors that came out of the box. The
Pyquaticus entries leveraged the ability to use reinforcement
learning to learn a behavior that could then be executed
through MOOS-IvP.

Fig. 4. An Example of the default Pav01 behavior, one attacker boat and
a loiter behavior defense agent.

A. Behavior Based Autonomy using MOOS-IvP

These entries used the following two features of the
behavior-based autonomy framework in pHelmIvP: mode se-
lection and multi-objective behavior optimization of multiple
active behaviors.

1) Pav01 - The Default Aquaticus Opponent: The default
baseline opponent in the Aquaticus competition is called
Pav01. In the Pav01 configuration, a human randomly assigns
agents as attackers or defenders before competition, and does
not change roles nor react to the opponents. An agent is
assigned as Easy Attacker, persistently attempts to capture
the opposing flag without avoiding enemy agents. The other
agent is assigned as the Easy Defender, it circles in front
of the flag using a cyclic waypoint and does not go out
of its way to persecute adversary agents in the area. This
basic implementation, which does not take full advantage
of pHelmIvP’s capabilities, serves as a baseline opponent
that will be used to fairly evaluate other entries of the
competition. Figure 4 shows a mission replay of a Pav01
USV team in game.

On each vehicle, the mode selection process selects a
pre-determined role, and in this approach, the role can be
generically classified as either an attacker or a defender. The
mode selection process is a sequence of logic statements
based on the current state of the game. For example, the role
of defender would be to pursue an intruder if an opposing
vehicle has entered the home side of the field. This role
assignment is flexible and can change depending on the
state of the game. Once a mode is selected, a predefined
collection of behaviors corresponding to the role becomes
active. In this work, a combination of standard MOOS-IvP
behaviors: the Waypoint Behavior, the Loiter Behavior, and
the Cut Range Behavior were used in addition to the two
mandatory behaviors of OpBoxRegion and Avoid Collision.
Both agents were configured with the same mission file but
with different triggers. In fact, no code was necessary to
design these strategies because all logic was included as
configuration parameters for behaviors in MOOS-IvP.

These strategies require a baseline of information about the
state of the game. First, it assumes both flag positions are
known. The defender would also need to have the position of

Accepted to the IEEE ICRA Workshop on Field Robotics 2024



any not-tagged intruders to be able to pursue them. Finally,
the attacker would need to know the position of any enemy
defenders to perform evasive maneuvers.

2) Static Roles and Rule-based Switching: The remainder
of this subsection describes a progression of strategies (2-
4) that built upon the (very) basic default strategy, Pav01,
described in Section IV-A.1. These iterations were completed
in the first few days of the real-world competition, and the
final version, strategy 4, remained unchanged through the
end of the competition.

Strategy 2: The attacker for this strategy is the same as for
the baseline PAV01 strategy, Easy Attacker. The defender
is assigned Medium Defender, it circles its flag to defend it
from any enemies. If an enemy enters the defender’s zone,
the defender will chase after the enemy until it is tagged.
The mode tree for this strategy can be seen in Figure 5.
This simple strategy was then expanded to implement more
intelligent behavior.

Strategy 3: The attacker was upgraded to be assigned
Medium Attacker, to avoid any defenders in an effort to stay
out of their tag range while also trying to reach the oppos-
ing flag. This trade-off was managed using multi-objective
optimization in pHelmIvP. This upgrade demonstrated more
intelligent behavior, and improved performance. See Figure
5 for the mode tree. After this, another upgrade was made
to the behavior-based approach.

Strategy 4: By default, attacking agents were assigned
the Medium Attacker and defending agents were assigned
Medium Defender. Another upgrade to the approach was
to use rule-based mode switching for both USVs on the
team. The USVs would start and stay in attack mode until
an enemy entered their zone. Once an intruder was detected,
both USVs returned to tag the opposing agent before going
back on the offensive. This strategy was designed to be
an alternative and more aggressive strategy, allowing higher
scores. It removed the mode in which a defender waited
by encircling its own flag in an effort to better allocate
the vehicle’s time. However, the main advantage is that this
strategy is agnostic to the number of vehicles, making it
easily expandable. The mode tree may be seen in Figure 5.

Fig. 5. Mode tree for Behavior-Based Strategies. The OpRegion and
AvoidCollision behaviors are not shown, but were always active.

3) Rule-based strategy Using Opponent Observation and
Classification: The conditional logic autonomy feature se-

lects among these predetermined behaviors based on specific
field conditions, which include:

• Possession of the flag by a USV
• Positions of USVs
• Heading directions of USVs
• Tagging statuses of USVs
• Locations of the flags

Originally designed for 1-v-1 engagements, this feature was
adapted for 2-v-2 scenarios by assigning each USV a distinct
opposing USV. Despite this adjustment, each USV remains
oblivious to its teammate and the teammate’s opponent,
reacting solely to its designated adversary. The operational
logic unfolds as follows:

1) An assessment is conducted to determine if the oppos-
ing USV adopts an offensive strategy.

• The USV adopts a defensive stance to observe
whether the opponent crosses the midfield line,
indicating an offensive posture, before proceeding
to the next evaluation.

• In the absence of midfield crossing within approx-
imately two minutes, the opponent is classified as
non-offensive.

2) A subsequent assessment ascertains the aggressiveness
of the opponent.

• An offensive opponent prompts the USV to con-
tinue its defensive stance. If the opponent directly
approaches the flag, disregarding defensive ma-
neuvers, it is deemed aggressive. Conversely, if
the opponent attempts to circumvent the defending
USV, it is classified as non-aggressive.

• If the opponent is defensive, the USV crosses
midfield and pauses briefly. An opponent’s pursuit
categorizes them as aggressive; lack of pursuit
signifies a non-aggressive disposition.

3) Strategy execution based on opponent classification:
• Offensive - Aggressive: The USV tags the oppo-

nent, exploiting their inattentiveness to defensive
presence. Post-tagging, the USV advances towards
the opponent’s flag, timing its capture attempt
based on the opponent-flag distance. Combination
of Medium Attacker and Medium Defender.

• Offensive - Non-Aggressive: The USV maneu-
vers to force an evasive opponent out of bounds,
reducing their speed due to safety protocols. This
slowdown allows the USV to capture the oppo-
nent’s flag. A combination of Easy Attacker and
Medium Defender.

• Non-Offensive - Aggressive: This scenario
presents a challenge. The USV probes the de-
fense by entering and then retreating from the
opponent’s territory, aiming to lure the opponent
away from their flag for a strategic advantage. A
combination of Medium Attacker and Medium
Defender.

• Non-Offensive - Non-Aggressive: The USV in-
vades the opponent’s territory, awaiting an oppor-

Accepted to the IEEE ICRA Workshop on Field Robotics 2024



Fig. 6. Pyquaticus rendering in pygame with two agents on each team.
The red team has captured the blue team’s flag, and the blue team is near
the red team’s exposed flag.

tune moment to capture the flag when sufficient
distance between the opponent and their flag is
achieved. Easy Attacker and Medium Defender.

B. Pyquaticus Environment

Pyquaticus [7] is a lightweight gymnasium environment
written in Python intended for training RL agents to play
aquatic CTF in simulation. The Pyquaticus environment has
a few key aspects: (1) matching vehicle dynamics, action
spaces, observation spaces, and game rules with the MOOS-
IvP Aquaticus Test-bed, (2) direct integration with RLLib
[8], PettingZoo [9], and Stable Baselines [10], and (3) a
parallelized structure, allowing it to run many instances
simultaneously. The key to the Pyquaticus environment is
that it can be used within the MOOS-IvP framework as a
behavior to allow velocity- and behavior-based control of ma-
rine vehicles using previously learned policies. This greatly
reduces the overhead of deploying a machine learning-based
control policy on the Aquaticus setup and allows Pyquaticus
agents to also run in pHelmIvP simulations.

1) Formal Game Representation: We extend the formal
game representation of Aquaticus CTF [5] from a 1-v-1
attacker versus defender scenario to a 2-v-2 scenario where
players have to learn both attacking and defending roles.
The environment of the Aquaticus CTF game is represented
by a rectangular, obstacle-free playing area of width W
and depth D bounded by a set of four straight lines,
Lbounds = {Llower, Lupper, Lleft, Lright}. The two team
zones are represented by Zblue and Zred, and, each team’s
respective base regions are represented by B ⊂ Z and
Bred ⊂ Zred, respectively. Flag locations start within the
respective team’s bases and are denoted by xbflg and xrflg.
A game consists of two teams of two players each, denoted
by Tblue and Tred, respectively. Each team has two players,
e.g. xblue

i where i ∈ {0, 1} is the agent-id. For the remainder
of the paper and for the sake of legibility, we have dropped
the team color (blue or red) in the notations and definitions,
assuming that it is understood from context.

An agent’s state set is given by Si = {(xi, θi)}, where
xi = (xi, yi) ∈ Z2 specifies its location in the playing
field. θi ∈ Θ = {θ1, θ2, . . . , θK} is a discretization of the
angular bearing, [0, 360] into K disjoint segments. The state

space of the game is represented as the joint state sets,
S = ×i={0,1}Si×Sred

i . A subset of states, called game event
states, denoted by SEV = {Stag, Sgrb, Scap}, correspond to
the point-scoring game events. The action set of an agent
is specified as Ai = {(ν, θ)}, where ν ∈ {0 ∪ ℜ+} and
θ ∈ Θ are an agent’s velocity and heading, respectively. The
action space of the game, A, is given by the joint actions
of agents on both team’s. The forward dynamics model or
transition function T : S×A×S → [0, 1] gives a probability
distribution for the next game state given the current game
state and current actions taken by the players. An agent
reaching any of the game event states receives a reward,
R : SEV ×Ai → ℜ, as seen in Table I. Rewards at all other
states are 0. Finally, agent i’s policy πi : S → Π(Ai), is a
mapping that takes the current state of the game and returns
a probability distribution over the action set of agent i.

2) Pyquaticus Reward Functions: Each agent starts from
an initial state si,0 located inside its home base. At time-
step t, (si,t, ai,t), and ri,t denote the agent’s state, action
and reward received. The problem facing agent i is to find

an optimal policy π∗
i = max

π
E[

H∑
t=0

γtR(st, ai,t)], where

ai,t) = maxa∈Ai
π(a|st), st+1 = maxs∈Si

T (st, ai,t, s) and
H is the horizon or the number of time steps corresponding
to the duration of the game. We use multiagent reinforcement
learning algorithms to solve each agent’s policy maximiza-
tion problem, as described in the next section.

The default reward function in pyquaticus is given as,

R(st, ai,t) = Sgrb
opp+Scap

opp+Sgrb
own+Scap

own+Stag
own+Stag

opp+Lbounds

(1)
The default values for the reward function are in Table I.

The Deep Reinforcement Learning approaches used modified
versions of the default reward function and event reward
values.

TABLE I
BASELINE SPARSE REWARDS FOR THE AQUATICUS CTF GAME.

Event Description Team Opp. Team
Name Reward Reward
Player Agent gets within 10 m 100 −100

Tag of opposing agent while
(No Flag) in their team’s zone

Player Agent gets within 10 m 50 −100
Tag of opposing agent while

(With Flag) in their team’s zone
Flag Agent grabs opponent’s 50 −50
Grab flag from opponent’s base
Flag Agent returns to their team’s side 100 −100

Capture base with opponent’s flag
Out of Bounds Agent drives out of the game field -100 0

3) Deep Reinforcement Learning using Pyquaticus:
Multiple policies were trained using various reinforcement
learning-based approaches. Fundamentally, all of the ap-
proaches employed fell into three categories: (1) direct on-
policy RL using Proximal Policy Optimization (PPO) [11] or
(2) direct off-policy RL using Twin Delayed DDPG (TD3)
[12] with velocity-based action spaces, and (3) options-based

Accepted to the IEEE ICRA Workshop on Field Robotics 2024



hierarchical RL [13] over RL-trained versions of built-in
Aquaticus behaviors.

The PPO and TD3 implementations relied heavily on
large volumes of training data but often struggled to learn
safety constraints (e.g., the environment boundary) and took
a very long time to develop any reasonable behaviors. These
policies often acted extremely defensively and prioritized
defense of their own flag over taking an opponent’s flag.
This is likely because they were rarely able to acquire an
opponent’s flag, and even more rarely able to capture it.
The reward signals were also not dense enough to motivate
policies to take any risk, and the credit assignment problem
was difficult to solve at the low level. This is because
there were relatively long action traces before an attack-
incentivizing reward signal was discovered.

The options-based framework used a modified options-
critic deep Q-learning approach to train agents to select
a behavior from a set of policy options at each timestep
during the game. These policy options (pickup opponent
flag, guard own flag, tag opponent, avoid opponents, retreat,
shield teammate from opponent tag) were pre-trained with
Deep Double Q-learning [14]. Choosing between behavior
primitives, rather than low-level control inputs, allows the RL
process to more easily attribute specific choices to specific
successful (or unsuccessful) outcomes.

V. RESULTS AND IMPLICATIONS FROM OCTOBER 2023
EXPERIMENTS

A. Overview

The USV CTF competitions resulted in a total of 22 games
played with a total of over 3.5 hours of gameplay. Six teams
from backgrounds in academia and defense participated in
the event, which was facilitated by the United States Military
Academy’s Robotics Research Center with assistance from
the Massachusetts Institute of Technology’s (MIT) Marine
Autonomy Lab (PavLab). Participants such as MIT Lincoln
Laboratory, U. S. Naval Research Laboratory, the UK’s
Defence Science and Technology Laboratory (DSTL) and
Australia’s Defence Science and Technology Group (DSTG),
utilized the Pyquaticus library for implementing Deep RL
within the Aquaticus test-bed, while MIT PavLab utilized
features of the pHelmIvP for hierarchy behavior-based au-
tonomy. The following table shows a breakdown of the
AI methods opposed, their respective teams, and overall
competition results.

TABLE II
CTF METRICS FROM AUSTRALIA USV COMPETITIONS. GREEN AND

RED CELLS INDICATE HIGHEST AND LOWEST AVERAGE TOTALS.

AI Method Default(Pav01) Rule-based Pyquaticus

Games Participated 9 15 20
Mean GRABS per Game 3 4 <1

Mean CAPTURES per Game 1 2 <1
Mean TAGS per Game 2 3 3
Mean Score per Game 5 8 <1

B. Initial Takeaways
Table II shows that algorithms using pHelmIVP behavior-

based autonomy had a significant advantage over both the
default Pav01 entry and the Deep RL autonomy methods that
used Pyquaticus. Interestingly, Pyquaticus Deep RL models
tended to perform in an extremely defensive manner, either
hugging side borders or loitering near their own flag to
prevent it from being taken. While this method did cause the
mean number of captures to significantly decrease for both
pHelmIvP and default opponents, flag grabs still resulted in a
much higher average score for the hierarchy behavior-based
autonomy solutions.

An investigation into which specific pHelmIvP based
algorithms were the most successful revealed that rule-based
cooperation (changing roles) among agents resulted in a
robust game strategy that proved effective versus both the
default entry and the Pyquaticus Deep RL opponents. Unlike
Deep RL where the agents are trained against themselves,
pHelmIvP with rule-based cooperation only uses knowledge
of the opponents’ activities to determine actions. If no
opponents were within friendly bounds, both agents would
switch into attack mode. The agents would return to defense
when an opposed agent attempted to grab their flag. This
hierarchy policy resulted in a teaming-like effect, where the
agents would take immediate advantage of tagging out a
defending opponent by both subsequently attacking the flag
now defended by a lone agent.

Fig. 7. Blue team: Helm-IvP Behavior-Based Strategy 4, attacking a
Pyquaticus-based opponent with two attackers.

Additionally, since the pHelmIvP behavior-based opti-
mizer ability to solve multiple behaviors simultaneously
enables grouping of concurrent behaviors into a hierarchy
of modes, the control of switching between states in a given
mode and the switching between modes in a given hierarchy
of states can be explicitly controlled by rules which can be
learned by agents playing the CTF game.

Pyquaticus policies trained with PPO or TD3 were de-
ployed against one another often guarded their respective
flags and rarely engaged with the opponent. This is inter-
preted to be a result of the long action traces before an attack-
incentivizing reward signal was discovered. Unsurprisingly,
better performance and faster training times were shown
when a curriculum learning scheme was implemented; how-
ever, all of these policies remained greedy and conservative
in their game strategies.

Accepted to the IEEE ICRA Workshop on Field Robotics 2024



Because this options-based approach did not require the
agent to learn vehicle dynamics, it was able to more quickly
learn policies that exhibited meaningful behavior. These
policies were slightly less conservative than the PPO- or
TD3-learned control policies. This stemmed from the benefit
of being much more stable and predictable at the control
level because they are selecting between predetermined be-
havior primitives. However, the options framework would
often over-prioritize defending the flag, or doing nothing as
opposed to navigating into the opponents area. Therefore,
finding a set of reward signals that emphasize more aggres-
sive policies is the focus of near-term future work.

C. Challenges and Future Works

The current findings of the Aquaticus competitions demon-
strate a significant support for hierarchical behaviors. How-
ever, the authors argue that additional work is necessary
to address the challenges faced during the competition and
explore various topics in Deep RL before a definitive conclu-
sion can be drawn. Logistics-related changes to the testing
location caused several difficulties within the Pyquaticus
model configuration files, resulting in a decreased number
of CTF games played and a lack of proper integration with
AvoidCollision pHelmIvP behaviors. Furthermore, external
elements like strong winds and rough sea conditions led
several Pyquaticus USVs to be pushed beyond the boundaries
because of their tendency to stick to the edges of the
playing field during the competition. Further integration of
Pyquaticus with MOOS-IvP in terms of configuration and
control schema of the USVs will allow for more competitive
CTF games in future studies.

In addition to further integration work of Deep RL in the
Aquaticus test bed, a number of novel research concepts can
be explored in future Pyquaticus studies over a number of
research topics such as reward shaping, training optimization,
and further investigation of ”sim-to-real” inconsistencies.
Research will continue on efforts at extending rule-based
cooperation among agents to react to safety and security
violations in accordance with human experts intent/rules for
executing safety and security process behaviors by exploiting
the pHelmIvP behavior-based optimizer ability to solve mul-
tiple behaviors simultaneously to group concurrent safety and
security behaviors into a hierarchy of CTF behavior modes.

VI. CONCLUSION

This work has presented a novel approach to evaluating
cooperative teaming autonomy via the Aquaticus test-bed.
The implemented CTF competition presents a real-time strat-
egy game in which agents benefit from teaming behaviors
and resiliency to opponents from different autonomy back-
grounds. As robotic vehicles working in cooperative teams
become more prevalent in civilian and military contexts,
this research will help identify which methods of multi-
robot autonomy perform best and why. Although the results
in this paper were mostly discussed on a qualitative level
due to ongoing engineering efforts, this work will serve

as a stepping stone for future Aquaticus test-bed experi-
ments. Initial takeaways imply that rule-based cooperative
autonomy works in a robust manner due to MOOS-IvP’s
hierarchical behavior configurations. Rule-based behaviors
are based solely on in-game knowledge to perform, as op-
posed to other methods that specifically train against another
opponent. Deep RL methods such as PyQuaticus have very
promising qualities that have resulted in defensive methods.
These emergent behaviors are predicted to change with more
aggressive reward shaping and the restructuring of specific
configuration challenges related to competition. Future works
in the Aquaticus project are planned with an emphasis on
quantitative metrics to discuss key differences of behavior-
based and Deep RL models.

REFERENCES

[1] A. Gupta, M. Novitzky, and M. Benjamin, “Learning autonomous
marine behaviors in moos-ivp,” 2018, pp. 1–10.

[2] M. Novitzky, P. Robinette, M. R. Benjamin, C. Fitzgerald, and
H. Schmidt, “Aquaticus: Publicly available datasets from a marine
human-robot teaming testbed,” 2019, pp. 392–400.

[3] P. Newman, “Moos-mission oriented operating suite,” 2008.
[4] P. Spencer, P. Dasgupta, M. McCarrick, M. Novitzky,

D. Hubczenko, S. Redfield, J. James, A. Jeffery, and
R. Mittu, “Opposed artificial intelligence: Developing robustness
to adversarial attacks in attacker-defender games via ai-
based strategic game-playing,” 2021, pp. 18:1–18:12. [Online].
Available: https://www.sto.nato.int/publications/STO%20Meeting%
20Proceedings/STO-MP-IST-190/MP-IST-190-18.pdf

[5] J. Kliem and P. Dasgupta, “Reward shaping for improved learning
in real-time strategy game play,” 11 2023. [Online]. Available:
http://arxiv.org/abs/2311.16339

[6] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard,
“Nested autonomy for unmanned marine vehicles with moos-ivp,”
Journal of Field Robotics, vol. 27, pp. 834–875, 11 2010.

[7] M. Mann, P. Crowley, J. Kliem, P. Puma, and Z. Serlin, “Pyquati-
cus.” [Online]. Available: https://github.com/mit-ll-trusted-autonomy/
pyquaticus

[8] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, “RLlib: Abstractions for
distributed reinforcement learning,” in Proceedings of the 35th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.
PMLR, 10–15 Jul 2018, pp. 3053–3062. [Online]. Available:
https://proceedings.mlr.press/v80/liang18b.html

[9] J. K. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan,
L. Santos, R. Perez, C. Horsch, C. Dieffendahl, N. L. Williams,
Y. Lokesh, and P. Ravi, “Pettingzoo: A standard api for multi-agent
reinforcement learning,” Advances in Neural Information Processing
Systems, vol. 18, pp. 15 032–15 043, 2021.

[10] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.
com/hill-a/stable-baselines, 2018.

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[12] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning. PMLR, 2018, pp. 1587–1596.

[13] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[14] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

Accepted to the IEEE ICRA Workshop on Field Robotics 2024

https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-IST-190/MP-IST-190-18.pdf
https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-IST-190/MP-IST-190-18.pdf
http://arxiv.org/abs/2311.16339
https://github.com/mit-ll-trusted-autonomy/pyquaticus
https://github.com/mit-ll-trusted-autonomy/pyquaticus
https://proceedings.mlr.press/v80/liang18b.html
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

	Introduction
	Motivation
	The Project Aquaticus Test-bed
	Game Setup and Rules
	An Introduction to MOOS-IvP

	Entries
	Behavior Based Autonomy using MOOS-IvP
	Pav01 - The Default Aquaticus Opponent
	Static Roles and Rule-based Switching
	Rule-based strategy Using Opponent Observation and Classification

	Pyquaticus Environment
	Formal Game Representation
	Pyquaticus Reward Functions
	Deep Reinforcement Learning using Pyquaticus


	Results and Implications from October 2023 Experiments
	Overview
	Initial Takeaways
	Challenges and Future Works

	Conclusion
	References

