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ABSTRACT
Performing optimization with event-based asynchronous neuro-
morphic systems presents significant challenges. Intel’s neuromor-
phic computing framework, Lava, offers an abstract application
programming interface designed for constructing event-based com-
putational graphs. In this study, we introduce a novel framework
tailored for asynchronous Bayesian optimization that is also com-
patible with Loihi 2. We showcase the capability of our asynchro-
nous optimization framework by connecting it with a graph-based
satellite scheduling problem running on physical Loihi 2 hardware.
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1 INTRODUCTION
True neuromorphic systems operate using an event-driven architec-
ture that is radically different from traditional von-Neumann based
systems. Transitioning to event-based communication requires a
drastic shift in programmatic design and theoretic analysis. Similar
to modern networking systems that need to operate when packets
get lost or corrupted [1], resilient neuromorphic systems should
properly handle when spikes, or other forms of information, do not
arrive at the pre-specified interval.

Intel’s neuromorphic computing framework, Lava [2], bridges
the gap between existing sequential computational graphs and
translates them into heterogeneous, asynchronous structures. A
variety of algorithms have been implemented within Lava such
as Gaussian process regression in Lava Bayesian Optimization
(Lava BO) [3] and Quadratic Unconstrained Binary Optimization [2].
However, these solvers and optimization algorithms do not have
the infrastructure to support event-based communication when
problems are being executed on separate compute nodes or archi-
tectures. This causes deadlocking issues and wasted CPU clock
cycles as processes wait until information is received.

In this study, we introduce a novel framework tailored for asyn-
chronous Bayesian optimization within Lava. Our framework seam-
lessly integrates with Loihi 2 and is scalable to any other optimiza-
tion or search algorithm that will be implemented within future
versions of the Lava software framework. We showcase ability of
our system to asynchronously communicatewith a quadratic uncon-
strained binary solver applied to a graph-based satellite scheduling
problem running on Loihi 2.

2 SYSTEM ARCHITECTURE
Individual computational elements in Lava [2] are represented as
(Processes) that provide an abstract blueprint for input ports, output

ports, internal variables, and variable reference ports. Taking a spe-
cific Process and implementing the underlying behavior for specific
computing architectures are Process Models. Therefore, Process Mod-
els allow a single type of process, such as a Leaky-Integrate-and-Fire
neuron, to be executed on different compute platforms1. For exam-
ple, it could be running on a central processing unit with floating
point precision or a Loihi 2 neurocore with integer precision.

Different processes are coupled by connecting the output port
of one process to the input port of another process. For example,
the output port of a cluster of LIF neurons is connected to the input
port of a dense layer. In more complicated process graphs, such
as iterative optimization and search algorithms, port connections
can span between different hardware elements such as a neuro-
core sending output spikes to the embedded CPU or super host.
This cross device communication presents numerous challenges
where the determinism of synchronous architectures is lost. Having
multiple processes communicate while running on different archi-
tectures leads to issues with deadlocking and excess computation.
Deadlocking occurs when a port is trying to receive information
but there is no data available. This will cause the process to freeze
indefinitely and waste processor clock cycles by not allowing other
threads to execute. A visual demonstration of synchronous and
asynchronous communication between the optimizer and black-
box function is shown in Figure 1. Herein, the cause of deadlocking
within synchronous communication is highlighted along with the
corresponding alleviation of this issue with the transition to an
asynchronous paradigm.

As shown in Figure 2, our framework introduces an intermediate
step between the optimizer and the black-fox function. This step
serves multiple functions. (1) It checks for Stop or Pause commands
from the Lava runtime. This serves as a fail-safe to keep the opti-
mizer from running indefinitely. (2) When the optimization process
is complete, it will change a boolean flag within the process that can
be read through a reference port accessible by the parent process.
This handshake operation allows the main thread to know when
the asynchronous search process is complete. (3) When a given
input port does not have any information, it will put the process to
sleep for a specified period of time before probing the port again.
If data is available on the port, it will be transmitted to the search
algorithm and proceed as expected.

3 RESULTS & DISCUSSION
We evaluate the performance implications of our asynchronous op-
timization framework by connecting Lava Bayesian Optimization
(Lava BO) [3] with a Quadratic Unconstrained Binary Optimization
(QUBO) solver applied to a satellite scheduling problem. With Lava
BO running on the CPU along with the QUBO solver running on

1See http://lava-nc.org for details about Lava concepts like Process and Process Models
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Figure 1: State diagrams comparing optimizer to black-box function communication with synchronous and asynchronous
operation. (A) Synchronous communication where the optimizer transmits a single hyperparameter value 𝑋 ′. The black-box
function receives 𝑋 ′ and calculates 𝑌 via 𝑌 = 𝐹 (𝑋 ′) before returning the tuple (𝑋,𝑌 ). (B) The same scenario as A but where the
black-box function takes multiple steps to calculate the result 𝑌 . This causes a programmatic deadlock where the optimizer
is receiving data that isn’t available. (C) Using a probe, the optimizer will determine if the result is fully processed from the
black-box function. If the data isn’t available, the process will proceed to the next timestep.

Figure 2: The communication loop between our asynchro-
nous optimization framework in Lava and the satellite sched-
uling problem. 𝑋 ′ is an unknown set of parameters from the
search algorithm where the Satellite Scheduling Runtime
evaluates 𝑋 ′ and returns the number of scheduled satellites
𝑌 . The resulting tuple (𝑋,𝑌 ) will arrive asynchronously with
respect to the configuration, compilation, scheduling, and
execution of the satellite scheduler on Loihi.

Loihi 2, each time a new set of unknown hyperparameters is gen-
eration, it must be transferred to a runtime process. Known as the
Satellite Scheduling Runtime, this process has multiple functions
to fully evaluate each given set of parameters. (1) The scheduling
problem must be initialized with the specification of multiple pa-
rameters: the number of satellites, the number of requests, the view
height and maximum turning speed of each satellite, the random
seed, and the QUBO weights. (2) The solver must be compiled and
submitted to the scheduler for allocation and execution on one of
the Loihi 2 boards. This process is where synchrony introduces
issues within the process graph where the number of time steps
required to compile, schedule, and execute the model is a stochastic
process. (3) With the results calculated, the parameters and the

resulting score are returned to Lava BO where the search process
will continue as expected. A visualization of this experiment is
shown in Figure 2 along with the asynchronous elements. This
test scenario highlights the capability of our asynchronous frame-
work to support communicating between multiple processes on
different computing architectures where synchrony and runtime
determinism are not guaranteed.

4 CONCLUSION
In this work, we present a novel asynchronous optimization and
search system within the Lava software framework. With this tech-
nology, users can safely interact with processes being executed on
different hardware architectures with different operating frequen-
cies. Our system checks whether the input-port has received any
spikes. In the case where spikes are not received, the process will
go to sleep for a given period of time before probing the port again.
This process avoids excess computation where deadlocks will not
occur and CPU clock cycles will not be wasted probing ports at full
operating frequency.

In future works, we would like to expand the breath of our
optimization framework by incorporating multiple agents commu-
nicating with a single optimizer. Moreover, we would also like to
employ this framework to support lifelong, on-chip learning for
robotics and signal processing applications.
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