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The pursuit of a comprehensive theory of gravity has led to the exploration of various alternative
models, necessitating a model-independent framework. The Konoplya-Rezzolla-Zhidenko (KRZ)
parameterization offers a robust method for approximating stationary axisymmetric black hole
spacetimes, characterized by a rapidly converging continued-fraction expansion. However, while
analytical metrics benefit from this approach, numerical metrics derived from complex gravitational
theories remain presenting computational challenges. Bridging this gap, we propose a method for a
numerical KRZ parameterization, tested and demonstrated on pseudo-numerical Kerr and Kerr-Sen
spacetimes. Our approach involves constructing numerical grids to represent metric coefficients and
using the grids for fitting the parameters up to an arbitrary order. We analyze the accuracy of
our method across different orders of approximation, considering deviations in the metric functions
and shadow images. In both Kerr and Kerr-Sen cases, we observe rapid convergence of errors with
increasing orders of continued fractions, albeit with variations influenced by spin and charge. Our
results underscore the potential of the proposed algorithm for parameterizing numerical metrics,
offering a pathway for further investigations across diverse gravity theories.

I. INTRODUCTION

Since its proposal over a century ago [1], Einstein’s the-
ory of gravity has found applications across a multitude
of astrophysical phenomena in our Universe. Through
the years, it has solidified its position as the standard
model for describing spacetime in the presence of gravi-
tational fields. While predominantly successful in weak-
field tests [2], only recently have the strong-field predic-
tions of Einstein’s gravity, also known as the general the-
ory of relativity (GR), become subject to various testable
methods [3–5]. The proliferation of alternative gravity
theories, which aim to address deficiencies of GR con-
cerning observations such as dark matter and dark en-
ergy, or extend GR to resolve issues like the quantization
of gravity and the curvature singularity, underscores the
importance of scrutinizing GR’s strong-field predictions
using the latest techniques and technologies.

Black holes (BHs), found abundantly throughout our
Universe, serve as ideal testing grounds for theories of
gravity due to the intense gravitational fields surround-
ing them. In the framework of GR, under typical astro-
physical conditions, BHs are characterized by a few key
parameters, their mass and spin, rendering them Kerr
black holes [6]. The Kerr hypothesis posits that astro-
physical BHs adhere to the Kerr metric, an assumption
that defines their simplicity in GR (for detailed condi-
tions and assumptions, see Ref. [7]). Alternative gravity
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theories often introduce additional parameters, causing
deviations from the Kerr solution.

Exploring the effects of BHs through observations has
been a notable pursuit in physics, offering the potential
for uncovering fascinating phenomena. Various methods
employed include X-ray spectroscopy (leading to the first
measurements of BH spin [8, 9]), gravitational wave in-
terferometry (resulting in the first observation of BH co-
alescence [10]), and BH imaging (providing the inaugural
capture of an image near the BH horizon [11]).

In light of the vast variety of alternative gravity theo-
ries and the ongoing quest for a definitive theory, there is
a compelling need to develop a model-independent frame-
work. Several models have been suggested in the past
[12–14]. In particular, the Konoplya-Rezzolla-Zhidenko
(KRZ) approach introduces a robust and generic parame-
terization to approximate stationary axisymmetric black
hole spacetimes. Their methodology involves a rapidly
converging continued-fraction expansion in a compacti-
fied radial coordinate allowing for approximations of high
accuracy with only few parameters.

However, complex gravitational theories that extend
beyond General Relativity, lacking simple or exact solu-
tions, often can only be described via numerical metrics
that cannot be parameterized directly. Contrasting with
analytical metrics, numerical metrics are crafted via com-
putational simulations. By discretizing spacetime into a
mesh or grid and applying numerical methods, one can
approximate the values of the metric tensor across differ-
ent points in spacetime. Although numerical metrics play
an important role in exploring complex situations devoid
of exact solutions, they fall short in computational effi-
ciency when compared to their analytical counterparts,
which demand less extensive resources. Therefore, a pa-
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rameterization technique compatible with numerical met-
rics would combine the complexity of numerical space-
times with the operational efficiency of analytical solu-
tions.

In this paper, we present a way to perform the nu-
merical KRZ parameterization. We test how the ap-
proach works on pseudo-numerical Kerr and Kerr-Sen
spacetimes and study the accuracy for different orders
of approximation.

This paper is structured as follows: Section II re-
views the Konoplya-Rezzolla-Zhidenko parameterization
approach; Section III discusses how the parameteriza-
tion can be done numerically; Section IV illustrates the
accuracy of Kerr and Kerr-Sen black hole shadows con-
structed with the numerically parameterized metrics as
compared to the analytical metrics; Section V presents

conclusions and discusses potential areas for improve-
ment and applications of the work.

II. KONOPLYA-REZZOLLA-ZHIDENKO
PARAMETERIZATION

We employ the Konoplya-Rezzolla-Zhidenko approach
to parameterize stationary, axisymmetric black holes in
a general framework. For the sake of completeness, we
give a brief review of the parameterization scheme. The
line element for an axisymmetric spacetime possesses a
timelike and a spacelike Killing vector, permitting the
selection of coordinates t and ϕ aligned with these vec-
tors. A general BH metric tensor with a normalized mass
M = 1 is given by

ds2 = −f(ρ, ϑ)− ω2(ρ, ϑ) sin2 ϑ

κ2(ρ, ϑ)
dt2−2ω(ρ, ϑ)ρ sin2 ϑdtdϕ+κ2(ρ, ϑ)ρ2 sin2 ϑdϕ2+σ(ρ, ϑ)

(
β2(ρ, ϑ)

f(ρ, ϑ)
dρ2 + ρ2dϑ2

)
, (1)

where f(ρ, ϑ), β(ρ, ϑ), σ(ρ, ϑ), κ(ρ, ϑ), and ω(ρ, ϑ) are
dimensionless functions dependent solely on the coordi-
nates ρ and ϑ.

By the principle of general covariance, we can always
select a different pair of coordinates, ρ and ϑ, that would

describe the same spacetime. To resolve the ambigu-
ity and achieve a distinctive parameterization, we choose
such coordinates (r, θ), following [14], that the line ele-
ment takes on the following form:

ds2 = −N2(r, θ)−W 2(r, θ) sin2 θ

K2(r, θ)
dt2 − 2W (r, θ)r sin2 θdtdϕ+K2(r, θ)r2 sin2 θdϕ2 +Σ(r, θ)

(
B2(r, θ)

N2(r, θ)
dr2 + r2dθ2

)
,

(2)

where N(r, θ), W (r, θ), K(r, θ), B(r, θ) are arbitrary
functions and

Σ(r, θ) ≡ r2 + a2 cos2 θ, (3)

with a being a spin parameter. The conversion between
the coordinates is done by solving the set of equations:

N2(r, θ)r2 sin2 θ = f(ρ, ϑ)ρ2 sin2 ϑ, (4a)

W (r, θ)r sin2 θ = ω(ρ, ϑ)ρ sin2 ϑ, (4b)

K2(r, θ)r2 sin2 θ = κ2(ρ, ϑ)ρ2 sin2 ϑ, (4c)

N2(r, θ)

Σ(r, θ)B2(r, θ)
=

1

σ(ρ, ϑ)

(
f(ρ, ϑ)

β2(ρ, ϑ)

∂r

∂ρ

∂r

∂ρ
+

1

ρ2
∂r

∂ϑ

∂r

∂ϑ

)
,

(4d)

1

Σ(r, θ)r2
=

1

σ(ρ, ϑ)

(
f(ρ, ϑ)

β2(ρ, ϑ)

∂θ

∂ρ

∂θ

∂ρ
+

1

ρ2
∂θ

∂ϑ

∂θ

∂ϑ

)
,

(4e)

0 =
f(ρ, ϑ)

β2(ρ, ϑ)

∂r

∂ρ

∂θ

∂ρ
+

1

ρ2
∂θ

∂ϑ

∂r

∂ϑ
. (4f)

For further convenience, we compactify the radial and

angular coordinates:

x ≡ 1− r0
r
, y ≡ cos θ, (5)

where r0 denotes the horizon radius within the equatorial
plane. Here, x spans from 0 at the horizon to 1 at spatial
infinity. Consequently, we express the metric functions
in terms of x:

Σ = 1 +
a2

r20
(1− x)2y2, (6a)

W =

∞∑
i=0

Wi(x)y
i

Σ
, (6b)

K2 − aW

r
= 1 +

∞∑
i=0

Ki(x)y
i

Σ
, (6c)

N2 = xA0(x) +

∞∑
i=1

Ai(x)y
i, (6d)

B = 1 +

∞∑
i=0

Bi(x)y
i, (6e)
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where

Wi(x) = wi0(1− x)2 + W̃i(x)(1− x)3, (7a)

Ki(x) = ki0(1− x)2 + K̃i(x)(1− x)3, (7b)

A0(x) = 1− ϵ0(1− x) + (a00 − ϵ0 + k00)(1− x)2

+ Ã0(x)(1− x)3, (7c)

Ai>0(x) = Ki(x) + ϵi(1− x)2 + ai0(1− x)3

+ Ãi(x)(1− x)4, (7d)

Bi(x) = bi0(1− x) + B̃i(x)(1− x)2. (7e)

The tilded functions W̃i(x), K̃i(x), Ãi(x), and B̃i(x) de-
scribe the black hole metric near its horizon via Padé
approximants which are given as:

W̃i(x) =
wi1

1 +
wi2x

1 +
wi3x

1 + ...

, (8a)

K̃i(x) =
ki1

1 +
ki2x

1 +
ki3x

1 + ...

, (8b)

Ãi(x) =
ai1

1 +
ai2x

1 +
ai3x

1 + ...

, (8c)

B̃i(x) =
bi1

1 +
bi2x

1 +
bi3x

1 + ...

. (8d)

III. NUMERICAL PARAMETERIZATION

The functions described in Eqs. (6) and (8) are, in prin-
ciple, expanded indefinitely. For numerical purposes, we
truncate the y-expansion at power m and the continued
fractions at the nth term.

We normalize the black hole’s mass to 1 and construct
numerical metrics as two-dimensional grids spanning Nr

points along the r dimension and Nθ points along the θ
dimension. Each grid point is associated with four met-
ric coefficients: gtt, gtϕ, grr, and gϕϕ expressed in the
coordinates (r, θ) that ensure

gθθ = r2 + a2 cos2 θ, (9)

thereby removing the necessity for a coordinate trans-
formation. Then, Eqs. (6) can be rewritten in terms of
metric tensor coefficients as:

m∑
i

Wi(x)y
i = − gtϕ

r sin2 θ
Σ, (10a)

m∑
i

Ki(x)y
i =

(
gϕϕ + agtϕ

r2 sin2 θ
− 1

)
Σ, (10b)
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FIG. 1: Numerical grid with two dimensions: compact-
ified radial coordinate x (unitless) and angular θ (de-
grees). The red points are used to fit the Padé approx-
imants near the horizon. The blue points are used to
determine the asymptotic parameters.

xA0(x) +

m∑
i=1

Ai(x)y
i =

g2tϕ − gttgϕϕ

r2 sin2 θ
, (10c)

m∑
i=0

Bi(x)y
i =

1

r sin θ

√
grr(g2tϕ − gttgϕϕ)

Σ
− 1,

(10d)

The value of m corresponds to the highest power of
cos θ in the expansion, with higher orders being trun-
cated. Additionally, assuming the spacetime’s reflection
symmetry across the equatorial plane, we consider only
even powers of y in the fit.
The fitting parameters are divided into two groups:

asymptotic parameters and strong-field (Padé) parame-
ters. The former category includes parameters wi0, ki0,
ai0, bi0, and ϵi, i.e., all parameters that are outside the
continued fractions. Consequently, the strong-field pa-
rameters include all the Padé terms. This division ne-
cessitates the construction of a numerical grid that effec-
tively spans both distant and proximal regions with re-
spect to the black hole. An illustrative example of such
a grid is presented in Figure 1.
The initial phase in the fitting process involves identi-

fying the values of Wi(xj), Ki(xj), Ai(xj), and Bi(xj),
where j ranges across all radial points Nr on the grid
with dimensions (Nr, Nθ). This identification involves
performing a polynomial fit in the angular direction, us-
ing y2 = cos2 θ as the polynomial variable. Each radial
coordinate xj is associated with Nθ points on the grid,
which are used in the fitting process. Increasing the value
of Nθ can reduce the error in computing Wi(xj), Ki(xj),
Ai(xj), and Bi(xj).
After computingWi(xj),Ki(xj), Ai(xj), and Bi(xj) at

all radii of the grid, the next step is determining asymp-
totic and Padé parameters. As seen from Eqs. (7), the
vicinity of the black hole features both groups of param-
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eters, while the far region depends predominantly on the
asymptotic ones. Therefore, determining the asymptotic
parameters in the far region first proves to be more prac-
tical. At substantial radii (x → 1), the continued frac-
tions effectively become constants and can be approxi-
mated as:

W̃i(x → 1) ≈ wi1

1 +
wi2

1 +
wi3

1 + ...

, (11a)

K̃i(x → 1) ≈ ki1

1 +
ki2

1 +
ki3

1 + ...

, (11b)

Ãi(x → 1) ≈ ai1

1 +
ai2

1 +
ai3

1 + ...

, (11c)

B̃i(x → 1) ≈ bi1

1 +
bi2

1 +
bi3

1 + ...

. (11d)

Subsequently, Eqs. (7) can be approximated as ordinary
polynomials of 1− x:

Wi(x → 1) ≈ wi0(1− x)2 + W̃i(1)(1− x)3, (12a)

Ki(x → 1) ≈ ki0(1− x)2 + K̃i(1)(1− x)3, (12b)

A0(x → 1) ≈ 1− ϵ0(1− x)

+ (a00 − ϵ0 + k00)(1− x)2 (12c)

+ Ã0(1)(1− x)3,

Ai>0(x → 1) ≈ Ki(x) + ϵi(1− x)2 + ai0(1− x)3

+ Ãi(1)(1− x)4, (12d)

Bi(x → 1) ≈ bi0(1− x) + B̃i(1)(1− x)2. (12e)

Since these functions are, effectively, polynomials in
terms of 1−x, it is now possible to perform a polynomial
fit in the same manner as it was done in the angular direc-
tion. The previously computed values of Wi(xj), Ki(xj),
Ai(xj), and Bi(xj) are used as fitting data points, where
j spans only the large radii in the asymptotic region of
the grid, as visually represented by the blue region in
Figure 1. The fitting process yields numerical estimates
for the parameters wi0, ki0, ai0, ϵi, and bi0.

From Eqs. (7), combined with the knowledge of the
asymptotic parameters, we can deduce the values of the
tilded functions W̃i(xj), K̃i(xj), Ãi(xj), and B̃i(xj) in
the black hole’s vicinity, where j ranges across small radii

depicted in red on Figure 1.

W̃i(x)(1− x)3 = Wi(x)− wi0(1− x)2, (13a)

K̃i(x)(1− x)3 = Ki(x)− ki0(1− x)2, (13b)

Ã0(x)(1− x)3 = A0(x)− 1 + ϵ0(1− x)

− (a− 00− ϵ0 + k00)(1− x)2, (13c)

Ãi>0(x)(1− x)4 = Ai(x)−Ki(x)− ϵi(1− x)2

− ai0(1− x)3, (13d)

B̃i(x)(1− x)2 = Bi(x)− bi0(1− x). (13e)

From Eqs. (8) and (13), we determine the Padé param-
eters. The tilded functions are not polynomials in their
explicit form. Nevertheless, it is possible to rearrange the
continued fractions into a polynomial form, enabling the
construction of a set of linear equations, which can then
be subjected to a polynomial fitting procedure. The com-
plexity of the equations significantly increases with the
Padé order n. Alternatively, in this paper we utilized nu-
merical solving algorithms to determine the strong-field
parameters.

IV. RESULTS

In this work, the Kerr and Kerr-Sen metric values
are expressed on a grid and are constructed as pseudo-
numerical metrics for testing purposes. We compare the
levels of accuracy for different orders n of the continued
fractions in both spacetimes. In all tests, we fix the high-
est cosine term in the polar expansion as cos2 θ, since
both metrics do not require higher-order cosine terms.
Additionally, we are not interested in analyzing the pa-
rameterization accuracy in the polar direction for differ-
ent orders m, since the polar parameterization is rather
trivial and does not require an in-depth analysis. Thus,
we only consider m = 2 in our tests.

After computing the parameters, we construct param-
eterized metric coefficients gnµν and compare them to the
analytical coefficients gaµν . The relative error is computed
as

εmetric
µν =

∣∣∣∣1− gnµν
gaµν

∣∣∣∣ . (14)

Apart from the metric values, we compare shadows which
are constructed by ”backlit” photons revolving multiple
times around the black hole before reaching the observer
screen. The screen is divided into 360 degrees and the
shadow error is computed as:

εsh =

√∑
i(r

n
i − rai )

2∑
i (r

a
i )

2 , (15)

where rni and rai are numerical and analytical shadow
radii on the screen at every degree.
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A. Kerr Parameterization

The Kerr spacetime serves as a foundational example
where the metric is precisely parameterized using a min-
imal set of parameters [14]. The line element in Boyer-
Lindquist (BL) coordinates requires parameters only up
to cos2 θ (m = 2) and up to the third Padé order (n = 3).
Additionally, the BL coordinates coincide with the coor-
dinates of choice in the KRZ parameterization, since

gKerr
θθ = r2 + a2 cos2 θ. (16)

Therefore, no transformations are necessary for the con-
struction of the numerical grid.

For testing purposes, following the procedure detailed
in Section III, we numerically compute continued frac-
tions with orders n = 1, 2, 3. We do not consider pa-
rameters corresponding to terms higher than cos2 θ and
n = 3, since higher orders do not provide non-vanishing
values.

After computing the parameters, we construct param-
eterized metric coefficients gnµν and compare them to the
analytical coefficients gaµν . Regions closer to the horizon
are associated with higher deviations. Additionally, the
relative error blows up at the ergosphere where gtt = 0.
To avoid such numerical singularities, we consider the
error over the region x ∈ (0.3, 1), where x = 0.3 corre-
sponds to r ≈ 1.4r0. This radius excludes the ergosphere
but includes the shadow and ISCO radii for all the consid-
ered spins. Figure 2 depicts the maximum relative error
in the region for the metric functions grr, gtt, and gϕϕ.
The error for gtϕ is universally zero since the Kerr metric
does not require any continued fractions to describe this
function. The error for gθθ is zero by construction, as we
define it to be gθθ = r2 + a2 cos2 θ.

The upward trend in error versus spin is evident from
Figure 2. The reason is as follows: as the spin increases,
the horizon radius r0 shrinks and becomes exposed to
stronger gravitational fields, rendering numerical approx-
imations less accurate. Additionally, since the case n = 3
is supposed to describe the Kerr spacetime exactly, its
error trend illustrated on the figure is contributed by nu-
merical errors of the algorithm that are not associated
with the KRZ parameterization technique. Additionally,
these small errors may occasionally manifest as spikes be-
low 10−4, which are visible on the plot. The maximum
errors at a∗ = 0.9 for n = 1 and n = 2 remain below 10%
and 1%, respectively.

The shadow error behavior versus spin a∗ is depicted
on Figure 3. As expected, the trend is upward and devi-
ations significantly decrease with every subsequent order
of continued fractions. In particular, at n = 3, the error
accumulates due to numerical imprecision in the param-
eter calculations and the raytracing routines.

Figure 4 illustrates how the error depends on the incli-
nation angle ι. In the equatorial plane, where cos θ = 0,
the deviations are minimal. In the Kerr case specifically,
the equatorial plane can be parameterized without the

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
a

14

12

10

8

6

4

2

m
ax

(lo
g|

1
gn

/g
a

|)

n = 1
n = 2
n = 3

grr

gtt

g

grr

gtt

g

FIG. 2: Maximum relative error of the numerically pa-
rameterized Kerr metric functions versus spin a∗ for dif-
ferent orders of continued fractions n. The order of polar
expansion is m = 2. The maximum is taken over the
range from rmin = 1.4r0 to infinity. The minimum radius
rmin is taken in such a way that avoids gtt = 0 while still
including shadow and ISCO radii. The errors for gtϕ and
gθθ are universally zero and not included in the plot.

0.0 0.2 0.4 0.6 0.8
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1.5
lo

g(
sh

)
n = 1
n = 2
n = 3

FIG. 3: Logarithm of Kerr shadow error versus spin a∗
for different orders of continued fractions n. The order
of polar expansion is m = 2. The inclination angle is
ι = 30◦.

need for continued fractions, resulting in the exact ISCO
radius for all values of n.

B. Kerr-Sen Parameterization

Sen’s work [15] introduced a solution for a rotating
charged black hole by adapting the Kerr solution within
the context of string theory’s action in four dimensions.
This adaptation leverages the intrinsic characteristics of
string theory to extend the classical Kerr solution to in-
clude electrical charge, thus leading to the formulation of
the Kerr-Sen (KS) metric.
In the Boyer-Lindquist-like coordinates, the term gKS

θθ
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sh
)

n = 1
n = 2
n = 3

FIG. 4: Logarithm of Kerr shadow error versus incli-
nation angle ι for different orders of continued fractions
n. The order of polar expansion is m = 2. The spin is
a∗ = 0.9.

is expressed as:

gKS
θθ = ρ(ρ+Q2) + a2 cos2 θ, (17)

where Q is the dilaton charge and a is the spin. Since gKS
θθ

does not follow the conventions outlined in Section II,
a transformation of the radial coordinate is required.
Specifically, we modify the radial coordinate as follows:

r =
Q2

2

√(
1 +

2ρ

Q2

)2

− 1, (18a)

ρ =
Q2

2

(√
1 +

4r2

Q4
− 1

)
. (18b)

The event horizon radius is expressed as:

r0 =

√√√√√1 +

√(
1− Q4

4

)2

− a2

2

− Q4

4
. (19)

This relation highlights how the horizon is influenced by
both the black hole’s spin and charge. Figure 5 graphi-
cally delineates the configurations of spin and charge that
admit either black hole or naked singularity solutions in
the theory.

The Kerr-Sen black hole cannot be parameterized ex-
actly with a finite number of parameters [14]. However,
a truncated form can approximate the spacetime with
an arbitrary level of accuracy that converges fast with
subsequent orders of Padé approximants.

On the other hand, similarly to the Kerr scenario, the
Kerr-Sen metric is exactly expanded in the polar direc-
tion up to the second cosine order, m = 2.
In our tests, we parameterize the Kerr-Sen spacetime

up to the second order of cos θ (m = 2) and consider
four different orders of continued fractions, n = 1, 2, 3, 4.
Analogously to the Kerr case, we observe the maximum

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Q

0.0

0.2

0.4

0.6

0.8

1.0

a

Naked singularity

FIG. 5: The shaded region includes all configurations of
spin and charge that correspond to a black hole solution.
In the unshaded region, the spacetime admits a naked
singularity.

deviations in the parameterized metric coefficients over
the range x ∈ (0.3, 1), where x = 0 corresponds to
r ≈ 1.4r0. Figure 6 depicts the errors for the metric co-
efficients grr, gtt, and gϕϕ. We observe the spiky nature

for errors below 10−4 resulting from numerical errors of
the algorithm. As spin approaches extreme values, the
errors start to diverge. This behavior is not observed in
the Kerr case depicted in Figure 2, because the horizon
remains relatively distant from the singularity. Figure 5
shows that the configuration with a = 0.9 and Q = 0.4 is
much closer to the naked singularity than the Kerr BH
with the same spin. Additionally, gtϕ is no longer trivial
in the presence of a charge Q. Figure 7 illustrates how
accurate gtϕ is for different charges.
Shadow accuracy is shown on Figure 8. The sub-

figure 8a illustrates a clear trend, which is also observed
in the Kerr case. On the other hand, the sub-figure 8b
shows that parameterization with n = 3 and n = 4 pro-
duces similar results, where we reach the limit of numer-
ical accuracy and obtain curves with no particular trend.
The errors remain consistent across the entire range of

the inclination angle ι, as depicted on Figure 9. Higher
charges at a fixed spin correspond to a smaller horizon
radius, yielding greater deviations from the expected im-
ages. At the order n = 3 and below, the errors decrease
to the limit of numerical precision, where no clear trend
exists. The improvement at n = 4 is marginal.

V. CONCLUSION

We have developed an algorithm to perform the
Konoplya-Rezzolla-Zhidenko parameterization on nu-
merical stationary axisymmetric metrics and tested the
technique on pseudo-numerical Kerr and Kerr-Sen space-
times. The test metric is constructed as a two-
dimensional grid, where the radial and polar dimensions
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different orders of continued fractions n. The order of
polar expansion is m = 2. The maximum is taken over
the range from rmin = 1.4r0 to infinity. The minimum
radius rmin is taken in such a way that avoids gtt = 0
while still including shadow and ISCO radii. The error
for gθθ is universally zero and not included in the plot.
The charge is Q = 0.4.
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rameterized Kerr-Sen metric function gntϕ compared to
the analytical counterpart gatϕ versus charge Q for differ-
ent orders of continued fractions n. The order of polar
expansion is m = 2. The maximum is taken over the
range of all spins.

range from the horizon to the spatial infinity and from
the pole to the equatorial plane, respectively. We an-
alyzed numerical deviations from the analytical metric
functions and compared shadow images.

The errors of metric functions and shadows rapidly
converge as the order of Padé approximants increases.
As the horizon shrinks due to higher spin and/or higher
charge, it becomes exposed to stronger gravitational cur-
vature, necessitating a greater number of parameters for
an accurate expansion at the horizon. However, even the
most extreme cases require a small number of terms in
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FIG. 8: Kerr-Sen shadow error versus spin a∗ for different
orders of continued fractions, and different charges Q.
The order of polar expansion is m = 2. The inclination
angle is ι = 30◦. The trend is clear for n = 1 and n = 2.
In the case of n = 3 and n = 4, errors reach the limit of
numerical precision, where no clear trend is observed.

the continued fractions.

The numerical grid used in this paper describes the
metrics in the conventional coordinates, (r, θ), that en-
sure gθθ = r2+a2 cos2 θ. In principle, a numerical metric
can be given in an arbitrary system of coordinates and
the basis can be always switched. In future work, enhanc-
ing the algorithm’s flexibility by incorporating an option
for numerical coordinate transformations would stream-
line the process of metric preparation and enable analysis
in alternative coordinate systems.

Apart from working solely with pseudo-numerical Kerr
and Kerr-Sen spacetimes, it is important to conduct
tests on a broader range of spacetimes derived from
various gravity theories, such as EDGB [16, 17], Horn-
deski/Galileon [18–20], or Nonlinear Electrodynamics
theories [21, 22].

Additionally, beyond evaluating the parameteriza-
tion’s accuracy for black hole shadows, there is potential
to broaden the scope of our tests to encompass other ob-
servational phenomena, such as X-ray data [23–26] and
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FIG. 9: Kerr-Sen shadow error versus inclination angle ι
for different orders of continued fractions n and different
charges Q. The order of polar expansion is m = 2. The
spin is a∗ = 0.9.

gravitational waves. Establishing a framework for com-

puting Quasi-Normal Modes (QNMs) for a KRZ metric
could significantly expand the range of metrics suitable
for QNM studies [27, 28].
Ultimately, the main motivation of this project is to

approximate actual numerical metrics with an analyti-
cal form. Hence, conducting experiments on spacetimes
with unknown exact expressions is essential. Without
having expected results to compare errors against, it is
possible to compare different orders of approximation in-
stead, given the rapid and guaranteed convergence of the
Konoplya-Rezzolla-Zhidenko parameterization. Compu-
tationally intensive projects like GRMHD simulations
would be perfect testing grounds for the algorithm [29].
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