
ar
X

iv
:2

40
4.

17
10

9v
1 

 [
m

at
h.

O
C

] 
 2

6 
A

pr
 2

02
4

An adaptive linearized alternating direction

multiplier method with a relaxation step for

convex programming

Boran Wang

College of Science, Minzu University of China, Beijing, 100081, China.

Contributing authors: 1932210936@qq.com;

Abstract

Alternating direction multiplication is a powerful technique for solving convex

optimisation problems. When challenging subproblems are encountered in the

real world, it is useful to solve them by introducing neighbourhood terms. When

the neighbourhood matrix is positive definite, the algorithm converges but at

the same time makes the iteration step small. Recent studies have revealed the

potential non-positive definiteness of the neighbourhood matrix. In this paper,

we present an adaptive linearized alternating direction multiplier method with a

relaxation step, combining the relaxation step with an adaptive technique. The

novelty of the method is to use the information of the current iteration point

to dynamically select the neighbourhood matrix, increase the iteration step size,

and speed up the convergence of the algorithm.We prove the global convergence

of the algorithm theoretically and illustrate the effectiveness of the algorithm

using numerical experiments.

Keywords: variational inequality, an adaptive linearized ADMM , a relaxation step ,

global convergence.

1 Introduction

This paper considers the following separable convex optimization problem with
linear constraints:

min {f (x) + g (y) |Ax+By = b, x ∈ X, y ∈ Y } (1)

1

http://arxiv.org/abs/2404.17109v1


where f : Rn1 → R and g : Rn2 → R are convex functions (but not necessarily
smooth), A ∈ Rm×n1 , B ∈ Rm×n2 , b ∈ Rm, X ⊆ Rn1 and Y ⊆ Rn2 are closed con-
vex sets. Problem (1) has recently been widely used in several areas such as image
processing[1, 2], statistical learning[3] and communication networks[4].There exist
numerous effective methods for addressing problem (1), including the primal-dual
method, the augmented Lagrange method, and the alternating direction multiplier
method. Notably, the alternating direction multiplier method has garnered signifi-
cant attention in recent years due to its simplicity and efficiency. Many scholars have
introduced several effective variations of this algorithm tailored to practical challenges.

The alternate direction multiplier approach, which was first put forth by Gabay
and Mercier[5] and Glowinski and Marrocco[6], is widely recognized as an effective
way to solve (1). For the progress of research on the alternating direction multiplier
method, we refer to[7].The method possesses fast convergence speed and strong con-
vergence performance, making it a crucial tool for addressing convex optimization
problems with divisibility. It can decompose a large problem into two or more small-
scale subproblems and then iteratively solve each subproblem to enhance solution
speed. Its direct, adaptable, and practical nature is particularly effective in tackling
convex optimization problems with separability. The alternating direction multiplier
method can be described as follows:



















xk+1 = argmin
x

{

Lβ

(

x, yk, λk
)

|x ∈ X
}

yk+1 = argmin
y

{

Lβ

(

xk+1, y, λk
)

|y ∈ Y
}

λk+1 = λk − β
(

Axk+1 +Byk+1 − b
)

(2)

where Lβ (x, y, λ) is the augmented Lagrangian function of (1)

Lβ (x, y, λ) = f (x) + g (y)− λT (Ax+By − b) +
β

2
‖Ax+By − b‖22 .

where λ ∈ Rm represents the Lagrange multiplier, and β > 0 represents the penalty
parameter. For simplicity, the penalty parameter β is fixed in our discussion.

A significant focus in the diverse research literature concerning the alternating
direction multiplier method is the exploration of efficient strategies for solving its sub-
problems. In certain scenarios, the functions f (x) and g (y), or the coefficient matrices
A and B may exhibit unique properties and structures. Leveraging these character-
istics, researchers can extend the framework presented in (2) to devise algorithms
tailored to specific applications while upholding theoretical convergence guarantees.
This principle underscores the critical role of effectively applying the alternating direc-
tion multiplier method across various fields and applications. To delve deeper into this
concept, let’s examine the y-subproblem outlined in (2). As previously noted, the func-
tion g(y), the matrice B, and the set Y are pivotal in addressing the y-subproblems.
Typically, when these the function, matrice, and set are in a generic form, the solution
to (2) can be obtained using straightforward iterative techniques,we refer to [8–10].
However, in practical scenarios, the functions, matrices, and sets Y associated with the
y-subproblem may possess distinct characteristics, necessitating more efficient solu-
tion methods. When the matrix B is not an identity matrix, the y-subproblem (2) can

2



be reformulated as follows:

yk+1 = argmin
y

{

g (y) +
β

2

∥

∥

∥

∥

By +

(

Axk+1 − b− 1

β
λk

)∥

∥

∥

∥

2

|y ∈ Y

}

(3)

After linearizing the quadratic term
∥

∥

∥By +
(

Axk+1 − b− 1
β
λk
)∥

∥

∥

2

in (3) , it is

obtained:

yk+1 = argmin
y

{

g (y) +
r

2

∥

∥

∥

∥

y −
(

yk +
1

r
qk
)∥

∥

∥

∥

2

|y ∈ Y

}

. (4)

where
qk = BT

(

λk − β
(

Axk+1 +Byk − b
))

. (5)

where r > 0 is a constant, and thus we obtain the linearized alternating direction
multiplier method[11]:



























xk+1 = argmin
x

{

Lβ

(

x, yk, λk
)

|x ∈ X
}

yk+1 = argmin
y

{

Lβ

(

xk+1, y, λk
)

+
r

2

∥

∥

∥

∥

y −
(

yk +
1

r
qk
)∥

∥

∥

∥

2

|y ∈ Y

}

λk+1 = λk − β
(

Axk+1 +Byk+1 − b
)

(6)

Linearized alternating direction multiplier method is widely used with compressed
perception[12], and image processing[13, 14], etc. .

A more general alternating direction multiplier method[15] can be written as
follows:























xk+1 = argmin
x

{

Lβ

(

x, yk, λk
)

|x ∈ X
}

yk+1 = argmin
y

{

Lβ

(

xk+1, y, λk
)

+
1

2

∥

∥y − yk
∥

∥

2

D
|y ∈ Y

}

λk+1 = λk − β
(

Axk+1 + Byk+1 − b
)

(7)

where D ∈ Rn2×n2 is positive definite, and thus, the linearized alternating direction
multiplier method can be viewed as a special case of the general alternating direction
multiplier method, where the positive definite proximal term.

D = rIn2
− βBTB and r > β

∥

∥BTB
∥

∥ (8)

Since in many practical applications, only one subproblem in (6) needs to be linearized,
in this paper, we only need to consider the case of linearizing the y-subproblem in (7).

In order to improve the applicability of the linearized alternating direction
multiplier method, a number of improved linearized alternating direction multiplier
methods[16–20]have been proposed by some scholars.

3



Literature[21] proposes an indefinite proximity alternating direction multiplier
method with the following iteration format:























xk+1 = argmin
x

{

Lβ

(

x, yk, λk
)

|x ∈ X
}

yk+1 = argmin
y

{

Lβ

(

xk+1, y, λk
)

+
1

2

∥

∥y − yk
∥

∥

2

D0
|y ∈ Y

}

λk+1 = λk − β
(

Axk+1 +Byk+1 − b
)

(9)

where
D0 = τrIn2

− βBTB, 0.8 ≤ τ < 1 and r > β
∥

∥BTB
∥

∥ .

He et al. proposed an optimal linearized ADMM in the literature [22] with the
iterative steps:























xk+1 = argmin
x

{

Lβ

(

x, yk, λk
)

|x ∈ X
}

yk+1 = argmin
y

{

Lβ

(

xk+1, y, λk
)

+
1

2

∥

∥y − yk
∥

∥

2

D
|y ∈ Y

}

λk+1 = λk − β
(

Axk+1 +Byk+1 − b
)

(10)

where
D = τrI − βBTB, 0.75 < τ < 1 and ρ > β

∥

∥BTB
∥

∥

It is easy to see that the matrix D is not necessarily semipositive definite. In the paper
the authors prove that 0.75 is an optimal lower bound for τ .

Another important issue for ADMM is to design an accelerated version of the
original ADMM by slightly modifying it through a simple relaxation scheme. Note that
ADMM is closely related to Proximity Point Algorithms[23] (PPA). For the Proximity
Point Algorithm, the convergence rate is improved if an additional over-relaxation
step is added to the basic variables; see Tao[24] for a relaxation variant of the PPA
and proof of its linear convergence result.Gu and Yang[25] further proved the optimal
linear convergence rate of the relaxation PPA under regularity conditions. As Boyd
et al. proved in[3], the execution of ADMM relies on the inputs of

(

yk, λk
)

and does
not require xk at all. Thus, x plays the role of an intermediate variable in (2), while
(

yk, λk
)

is the basic variable. It is therefore natural to ask whether it is possible to

include a relaxation step for the basic variables
(

yk, λk
)

in the ADMM scheme (2) to
obtain a faster ADMM-type method. This idea leads to:



























xk+1 = argmin
x

{

f (x)− xTATλk +
β

2

∥

∥Ax+Byk − b
∥

∥

2
}

ŷk = argmin
y

{

g (y)− yTBTλk +
β

2

∥

∥Axk+1 +By − b
∥

∥

2
}

λ̂k = λk − β
(

Axk+1 +Bŷk − b
)

(11)

(

yk+1

λk+1

)

=

(

yk

λk

)

− σ

(

yk − ŷk

λk − λ̂k

)

(12)

4



where the relaxation factor σ ∈ (0, 2) . Based on the above discussion,In this study,
we introduce an adaptive linearized alternating direction multiplier method with a
relaxation step that incorporates both a relaxation step and an adaptive technique.
Our approach adopts a unified framework of variational inequalities and establishes the
global convergence of this adaptive linearized alternating direction multiplier method
with a relaxation step through theoretical analysis. Through the resolution of the
Lasso problem, we demonstrate the algorithm’s outstanding numerical performance.
These findings will propel advancements in optimization algorithms and offer more
efficient tools and methodologies for addressing practical challenges.

The rest of the paper is organized as follows. Section 2 gives some preliminaries;
Section 3 gives iterative steps and proof of convergence of the algorithm; Section 4
gives the numerical experiments; and Section 5 draws the conclusions.

2 Preliminaries

We present some preliminaries that will be used in convergence analysis.
In this article, the symbol ‖·‖ denotes the two-norm ‖·‖2 . ‖x‖

2
D := xTDx is the matrix

norm, where D ∈ Rn×n is a symmetric positive definite matrix and the vector x ∈ Rn.
When D is not a positive definite matrix, we still use the above notation.

2.1 characterization of variational inequalities

Define the Lagrangian function corresponding to problem (1) as:

L (x, y, λ) = f (x) + g (y)− λT (Ax+By − b) (13)

In (13), (x, y) and λ denote primitive and dual variables, respectively.
If (x∗, y∗, λ∗) ∈ X × Y ×Rm satisfies the following inequality:

L (x∗, y∗, λ) ≤ L (x∗, y∗, λ∗) ≤ L (x, y, λ∗) , ∀ (x, y, λ) ∈ X × Y × Rm = Ω.

then (x∗, y∗, λ∗) is called a saddle point of L (x, y, λ).
The above inequality is equivalent to the following variational inequality form:











x∗ ∈ X, f (x)− f (x∗) + (x− x∗)
(

−ATλ∗
)

≥ 0, ∀x ∈ X.

y∗ ∈ Y, g (y)− g (y∗) + (y − y∗)
(

−ATλ∗
)

≥ 0, ∀y ∈ Y.

λ∗ ∈ Rm, (λ− λ∗)
T
(Ax∗ +By∗ − b) ≥ 0, ∀λ ∈ Rm.

(14)

The above variational inequality can be written in the following form:

V I (Ω, F, θ) : w∗ ∈ Ω, θ (u)− θ (u∗) + (w − w∗)
T
F (w∗) ≥ 0, ∀w ∈ Ω. (15)

5



where

θ (u) = f (x) + g (y) , u =

(

x

y

)

, v =

(

y

λ

)

, w =





x

y

λ



 , F (w) =





−ATλ

−BTλ

Ax+By − b



 (16)

Owing to:
(w1 − w2)

T
(F (w1)− F (w2)) ≥ 0, ∀w1, w2 ∈ Ω.

So, F is a monotone operator.
The problem (1) is reformulated as the variational inequality (15) in this manner. We
denote the set of solutions of the variational inequality V I (Ω, F, θ) as Ω∗ , where Ω∗

represents the set of non-empty solutions.

2.2 some notation

For the convenience of the proof, first define some auxiliary variables and matrices. Let

Qk+1 =

(

τkrβIn2
O

−B 1
β
Im

)

and M =

(

σIn2
O

−σβB σIm

)

. (17)

Hk+1 =
1

σ

(

τkrβIn2
O

O 1
β
Im

)

. (18)

w̃k =





x̃k

ỹk

λ̃k



 =





xk+1

ŷk

λk − β
(

Axk+1 +Byk − b
)



 . (19)

ṽk =

(

ỹk

λ̃k

)

=

(

ŷk

λk − β
(

Axk+1 +Byk − b
)

)

(20)

Lemma 2.1. The Qk+1, Hk+1 and M defined in (17) and (18) satisfy:

Qk+1 = Hk+1M and Hk+1 � 0, (21)

Proof: (21) clearly hold.
Lemma 2.2. (Robbins-Siegmund Theorem[26]) ak, bk, ck and dk are non-negative
sequences and there are :

ak+1 ≤
(

1 + bk
)

ak + ck − dk, ∀k = 0, 1, 2 . . . (22)

if
∑+∞

k=0 b
k < +∞ and

∑+∞
k=0 c

k < +∞, so limk→∞ ak exists and is bounded, while

there are
∑+∞

k=0 d
k < +∞.

Definition 2.1.If a function f (·) is a nonsmooth convex function on a convex set,if
the following inequality holds:

f (u) ≥ f (v) + φT (u− v) , ∀u ∈ Ω.

6



then φ is said to be the subgradient of the function f (·) at v ∈ Ω; The set consisting
of all subgradients is called the subdifferential of the function f (·) at v ∈ Ω, denoted
∂f (v).

2.3 Stopping criterion

In the context of the two-block divisible convex optimization problem (1), we investi-
gate the optimality conditions for each subproblem during the iterative process of the
Alternating Direction Method of Multipliers .
According to the optimality condition theorem, if x∗, y∗ are optimal solutions to the
convex optimisation problem (1) and λ∗ is the corresponding Lagrange multiplier,
then the following conditions are satisfied.

0 ∈ ∂f (x∗)−ATλ∗ (23)

0 ∈ ∂g (y∗)−BTλ∗ (24)

Ax∗ +By∗ = b (25)

In this context, condition (25) is denoted as the original feasibility condition, while
conditions (23) and (24) are labeled as the dual feasibility conditions.
According to the optimality conditions for the y-subproblem in (1), we have:

0 ∈ ∂g
(

yk+1
)

−BTλk + βBT
(

Axk+1 +Byk+1 − b
)

= ∂g
(

yk+1
)

−BTλk+1.
(26)

According to the optimality conditions for the x-subproblem in (1), we have:

0 ∈ ∂f
(

xk+1
)

−ATλk + βAT
(

Axk+1 +Byk − b
)

. (27)

From the definition of λk+1 in (1), the above equation can be equated to:

0 ∈ ∂f
(

xk+1
)

−AT
(

λk − β
(

Axk+1 +Byk+1 − b
)

− βB
(

yk − yk+1
))

= ∂f
(

xk+1
)

−ATλk+1 + βATB
(

yk − yk+1
)

.
(28)

(28) is equivalent to:

βATB
(

yk+1 − yk
)

∈ ∂f
(

xk+1
)

−ATλk+1. (29)

When comparing (29) with condition (23), it is evident that the additional term
is βATB

(

yk+1 − yk
)

.Thus, to verify dual feasibility, it is adequate to examine the

residual βATB
(

yk+1 − yk
)

.

In summary, to ascertain the convergence of the alternating direction multiplier
method, it is necessary to verify if the two residuals pk+1 and dk+1 are sufficiently

7



small.
where

pk+1 =
∥

∥Axk+1 +Byk+1 − b
∥

∥ .

dk =
∥

∥βATB
(

yk+1 − yk
)∥

∥ .

3 Algorithm and convergence analysis

3.1 New algorithms

Suppose that f : Rn → R∪{+∞} and g : Rn → R∪{+∞} are proper, closed, convex
functions.
The main iterative steps of the algorithm are:

Algorithm 1. An adaptive linearized alternating direction multiplier method with a
relaxation step .

Set up: Ω = X × Y × Rm, β > 0, τk > 0, pk ≥ 0, dk ≥ 0, r =
∥

∥BTB
∥

∥ , σ ∈ (0, 2) , ε ∈
(0, 2− σ) ,Υ > 1, ρ > 1, ǫpri > 0, ǫdual > 0. choose parameter sequence {ηk} and {sk}
, where

∑∞
k=0 ηk < +∞ and

∑∞
k=0 sk < +∞.

Step 0. Input: w0 =
(

x0, y0, λ0
)

∈ Ω, β, σ, τ0, τmin, p
0, d0,Υ, ε, r, ρ, ǫpri, ǫdual. set up

k = 0.
Step 1. Calculate: wk+1 =

(

xk+1, yk+1, λk+1
)

∈ X × Y ×Rm.



























xk+1 = argminx

{

f (x)−
(

λk
)T

Ax+ β
2

∥

∥Ax+Byk − b
∥

∥

2
}

ŷk = argminy

{

g (y)−
(

λk
)T

By + β
2

∥

∥Axk+1 +By − b
∥

∥

2

+ 1
2

∥

∥y − yk
∥

∥

2

Dk

}

λ̂k = λk − β
(

Axk+1 +Bŷk − b
)

(30)

where Dk = τkrIn2
− βBTB.

{

yk+1 = yk − σ
(

yk − ŷk
)

λk+1 = λk − σ
(

λk − λ̂k
) (31)

where σ ∈ (0, 2) .
Step 2. If any one of the following conditions holds:

Condition1.Θk
1 > Θk

2 . (32)

Condition2.yk+1 = yk.

where Θk
1 = (2− σ) τkr

∥

∥yk − yk+1
∥

∥

2
, Θk

2 = 1
ε

∥

∥B
(

yk − yk+1
)∥

∥

2
.

then go to step 3. otherwise τk = γ ∗ τk (γ > 1) , turn to step 1.

Step 3. If Θk
1−Θk

2 ≥ ΥΘk
2 . then set tk+1 = max

{

rk
1+ηk+1

, τmin

}

, Otherwise tk+1 = τk.

8



Step 4. If any one of the following conditions holds:

Condition1.pk+1 > (1 + sk) p
k.

Condition2.dk+1 > (1 + sk) d
k.

where pk+1 =
∥

∥Axk+1 +Byk+1 − b
∥

∥ , dk+1 =
∥

∥βATB
(

yk+1 − yk
)∥

∥ .

then set τk+1 = ρ ∗ tk+1 (ρ > 1) , Otherwise τk+1 = tk+1.

Step 5. If the stopping criterion is satisfied, return to step 6.
where, the stopping criterion is:

∥

∥Axk+1 +Byk+1 − b
∥

∥ ≤ ǫpri and
∥

∥βATB
(

yk+1 − yk
)∥

∥ ≤ ǫdual (33)

Otherwise make k = k + 1, and return to step 1.
Step 6. Output: xk+1, yk+1, f

(

xk+1
)

+ g
(

yk+1
)

.

3.2 Global convergence analysis

In this section,we prove the global convergence for the proposed method.Before pro-
ceeding,we need the following lemma.
Lemma 3.1. Let the sequence

{

wk
}

be the iterative sequence generated by Algorithm

1, and
{

w̃k
}

be defined in (19), then, for any w̃k ∈ Ω, there are:

θ (u)− θ
(

ũk
)

+
(

w − w̃k
)T

F
(

w̃k
)

≥
(

v − ṽk
)T

Qk+1

(

vk − ṽk
)

, ∀w ∈ Ω. (34)

Proof: by the optimality condition for the x subproblem in Algorithm 1: for any
x̃k ∈ X ,there are:

f (x)− f
(

x̃k
)

+
(

x− x̃k
)T {−ATλk + βAT

(

Ax̃k +Byk − b
)}

≥ 0, ∀x ∈ X.

Since λ̃k = λk − β
(

Ax̃k +Byk − b
)

in (19), then:

f (x)− f
(

x̃k
)

+
(

x− x̃k
)T
(

−AT λ̃k
)

≥ 0. ∀x ∈ X. (35)

From the optimality conditions for the y-subproblem in Algorithm 1, it follows that
for any ỹk ∈ Y , there are:

g (y)− g
(

ỹk
)

+
(

y − ỹk
)T {−BTλk + βBT

(

Ax̃k +Bỹk − b
)

+
(

τkrIn2
− βBTB

) (

ỹk − yk
)}

≥ 0, ∀y ∈ Y.

Also by the definition of λ̃k, the above equation can be written as:

g (y)− g
(

ỹk
)

+
(

y − ỹk
)T
{

−BT λ̃k + τkrβ
(

ỹk − yk
)

}

≥ 0, ∀y ∈ Y. (36)

9



By the definition of λ̃k in (19), we have:

(

Ax̃+Bỹk − b
)

−B
(

ỹk − yk
)

+
1

β

(

λ̃k − λk
)

= 0.

The above equation can be written as:

λ̃k ∈ Rm,
(

λ− λ̃k
)T
{

Ax̃k +Bỹk − b−B
(

ỹk − yk
)

+
1

β

(

λ̃k − λk
)

}

≥ 0, ∀λ ∈ Rm.

(37)

The lemma can be proven by combining equations (35), (36), and (37) along with the
notation Qk+1.
Lemma 3.2. Let the sequence

{

wk
}

be the iterative sequence generated by Algorithm

1 and
{

w̃k
}

be defined in (19), then:

vk − vk+1 = M
(

vk − ṽk
)

(38)

where M is defined in (17).

Proof: This follows from (31) and the definitions of λ̃k and λ̂k:

λk+1 = λk − σ
(

λk − λ̂k
)

= λk − σβ
(

Ax̃k +Bŷk − b
)

= λk − σ
[

β
(

Ax̃k +Byk − b
)

− βB
(

yk − ŷk
)]

= λk − σ
(

λk − λ̃k
)

+ σβB
(

yk − ỹk
)

.

This can be seen in combination with (31):

(

yk+1

λk+1

)

=

(

yk

λk

)

−
(

σIn2
O

−σβB σIm

)(

yk − ỹk

λk − λ̃k

)

.

Therefore, equation (38) holds.
It is clear from (38) and (21):

(

v − ṽk
)T

Qk+1

(

vk − ṽk
)

=
(

v − ṽk
)T

Hk+1M
(

vk − ṽk
)

=
(

v − ṽk
)T

Hk+1

(

vk − vk+1
)

.

Lemma 3.3.Let the sequence
{

wk
}

be the iterative sequence generated by Algorithm

1 and
{

w̃k
}

be defined in (19), Then, we have:

(

v − ṽk
)T

Hk+1

(

vk − vk+1
)

=
1

2

(

∥

∥v − vk+1
∥

∥

2

Hk+1
−
∥

∥v − vk
∥

∥

2

Hk+1

)

+
1

2

∥

∥vk − ṽk
∥

∥

2

Gk+1
, ∀v ∈ Ω.

(39)

10



where the matrix Gk+1 = QT
k +Qk −MTHk+1M.

Proof: Using the equation:

(a− b)
T
Hk+1 (c− d) =

1

2

(

‖a− d‖2Hk+1
− ‖a− c‖2Hk+1

)

+
1

2

(

‖c− b‖2Hk+1
− ‖d− b‖2Hk+1

)

.

(40)

In (40), let a = v,b = ṽk,c = vk,d = vk+1. We can get:

(

v − ṽk
)T

Hk+1

(

vk − vk+1
)

=
1

2

(

∥

∥v − vk+1
∥

∥

2

Hk+1
−
∥

∥v − vk
∥

∥

2

Hk+1

)

+
1

2

(

∥

∥vk − ṽk
∥

∥

2

Hk+1
−
∥

∥vk+1 − ṽk
∥

∥

2

Hk+1

)

.

(41)

For the last term in (41), we have:

∥

∥vk − ṽk
∥

∥

2

Hk+1
−
∥

∥vk+1 − ṽk
∥

∥

2

Hk+1

=
∥

∥vk − ṽk
∥

∥

2

Hk+1
−
∥

∥

(

vk − ṽk
)

−
(

vk − vk+1
)∥

∥

2

Hk+1

(44)
=
∥

∥vk − ṽk
∥

∥

2

Hk+1
−
∥

∥

(

vk − ṽk
)

−M
(

vk − ṽk
)∥

∥

2

Hk+1

= 2
(

vk − ṽk
)T

Hk+1M
(

vk − ṽk
)

−
(

vk − ṽk
)T

MTHk+1M
(

vk − ṽk
)

=
(

vk − ṽk
)T (

QT
k +Qk −MTHk+1M

) (

vk − ṽk
)

.

(42)

Combining (41) and (42), (39) is proved.
Now, let us examine the properties of the matrix Gk+1. Utilizing (21), we can

derive:

Gk+1 = QT
k+1 +Qk+1 −MTHk+1M

= QT
k+1 +Qk+1 −MTQk+1

=

(

2τkrβIn2
−BT

−B 2
β
Im

)

−
(

σIn2
−σβBT

O σIm

)(

τkrβIn2
O

−B 1
β
Im

)

=

(

2τkrβIn2
−BT

−B 2
β
Im

)

−
(

στkrβIn2
+ σβBTB −σBT

−σB σ
β
Im

)

=

(

(2− σ) τkrβIn2
− σβBTB (σ − 1)BT

(σ − 1)B (2−σ)
β

Im

)

.

(43)

To simplify the proof, we give some properties of the parameters as follows:
From the iterative format of Algorithm 1: 1

1+ηk
τk ≤ τk+1 ≤ (1 + ξk) τk,That is, the

sequence in Algorithm 1 satisfies:τk ⊂ [τmin, τmax] .
Let the (k + 1)th step ultimately satisfy the parameters of Step 4 as τk+1 = ργmkτk,
where mk is an integer.

11



Let ξk := ργmk − 1, that is 1 + ξk = ργmk .

then:

τk+1 ≥ 1 + ξk

1 + ηk
τk ≥ · · · ≥

∏k
i=1 (1 + ξi)

∏k
i=1 (1 + ηi)

τ1 ≥
∏k

i=1 (1 + ξi)
∏∞

i=1 (1 + ηi)
τ0.

By parameter setting
∑∞

k=1 ηk < +∞ know
∏∞

i=1 (1 + ηi) < +∞.

Making k → +∞ gives:
∏∞

i=1 (1 + ξi) < +∞, that is:
∑∞

k=1 ξi < +∞.

Theorem 3.1. Let the sequence
{

wk
}

be the iterative sequence generated by

Algorithm 1 and
{

w̃k
}

be defined in (19). Then, we have:

∥

∥vk+1 − v∗
∥

∥

2

Hk+1
≤ (1 + ξk)

∥

∥vk − v∗
∥

∥

2

Hk
− 1

σ2

{

β
∥

∥yk − yk+1
∥

∥

2

Tk+1

+
(2− σ)− ε

β

∥

∥λk − λk+1
∥

∥

2
}

.

(44)

where ε ∈ (0, 2− σ) and Tk+1 ≻ 0.

Proof: In the following, we will further investigate the
∥

∥vk − ṽk
∥

∥

2

Gk+1
term and show

how it can be bounded.

Due to Gk+1 =

(

(2− σ) τkrβIn2
− σβBTB (σ − 1)BT

(σ − 1)B (2−σ)
β

Im

)

and v =

(

y

λ

)

, We have:

∥

∥vk − ṽk
∥

∥

2

Gk+1
= (2− σ) τkrβ

∥

∥yk − ỹk
∥

∥

2 − σβ
∥

∥B
(

yk − ỹk
)∥

∥

2

+
2− σ

β

∥

∥

∥λk − λ̃k
∥

∥

∥

2

+ 2 (σ − 1)
(

λk − λ̃k
)T

B
(

yk − ỹk
)

= (2− σ) τkrβ
∥

∥yk − ỹk
∥

∥

2
+ (2− σ) β

∥

∥Ax̃k +Bỹk − b
∥

∥

2

+ 2β
(

Ax̃k +Bỹk − b
)T

B
(

yk − ỹk
)

(45)

Also because λ̂k = λk − β
(

Ax̃k +Bỹk − b
)

and yk − ỹk = 1
σ

(

yk − yk+1
)

.

Therefore, we have:

∥

∥vk − ṽk
∥

∥

2

Gk+1
=

(2− σ)

σ2
τkrβ

∥

∥yk − yk+1
∥

∥

2
+

(2− σ)

β

∥

∥

∥λk − λ̂k
∥

∥

∥

2

+
2

σ

(

λk − λ̂k
)T

B
(

yk − yk+1
)

.

(46)

It is clear from (31):

λk − λ̂k =
1

σ

(

λk − λk+1
)

.

Substituting the above equation into (46) gives:

∥

∥vk − ṽk
∥

∥

2

Gk+1
=

(2− σ)

σ2
τkrβ

∥

∥yk − yk+1
∥

∥

2
+

(2− σ)

σ2β

∥

∥λk − λk+1
∥

∥

2

+
2

σ2

(

λk − λk+1
)T

B
(

yk − yk+1
)

.

(47)

12



In the following, we estimate
(

λk − λk+1
)T

B
(

yk − yk+1
)

.
From the Cauchy − Schwarz inequality: for ∀δ > 0, there is :

(

λk − λk+1
)T (

Byk −Byk+1
)

≥ − δ

β

∥

∥λk − λk+1
∥

∥

2 − 1

4δ
β
∥

∥B
(

yk − yk+1
)∥

∥

2
. (48)

Substituting (48) into (47) shows that:

∥

∥vk − ṽk
∥

∥

2

Gk+1
≥ 1

σ2

[

(2− σ) τkrβ
∥

∥yk − yk+1
∥

∥

2 − 1

2δ
β
∥

∥B
(

yk − yk+1
)∥

∥

2

+
(2− σ) − 2δ

β

∥

∥λk − λk+1
∥

∥

2
]

.

(49)

Owing to:
(w1 − w2)

T
(F (w1)− F (w2)) ≥ 0, ∀w1, w2 ∈ Ω. (50)

It follows from (50) and (34):

θ (u)− θ
(

ũk
)

+
(

w − w̃k
)T

F (w) ≥
(

v − ṽk
)T

Qk+1

(

vk − ṽk
)

, ∀w ∈ Ω.

Let the above equation w = w∗ and combine with (15) to show that:

(

ṽk − v∗
)T

Qk+1

(

vk − ṽk
)

≥ 0, ∀w ∈ Ω. (51)

It is clear from (21) and (38):

(

ṽk − v∗
)T

Qk+1

(

vk − ṽk
)

=
(

ṽk − v∗
)T

Hk+1

(

vk − vk+1
)

. (52)

It is clear from (39):

(

ṽk − v∗
)T

Hk+1

(

vk − vk+1
)

=
1

2

(

∥

∥vk − v∗
∥

∥

2

Hk+1
−
∥

∥vk+1 − v∗
∥

∥

2

Hk+1

)

− 1

2

∥

∥vk − ṽk
∥

∥

2

Gk+1
.

(53)

It follows from (51), (52) and (53):

∥

∥vk+1 − v∗
∥

∥

2

Hk+1
≤
∥

∥vk − v∗
∥

∥

2

Hk+1
−
∥

∥vk − ṽk
∥

∥

2

Gk+1
. (54)

13



Substituting (49) into (54) gives:

∥

∥vk+1 − v∗
∥

∥

2

Hk+1
≤
∥

∥vk − v∗
∥

∥

2

Hk+1
− 1

σ2

{

β
∥

∥yk − yk+1
∥

∥

2

Tk+1

+
(2− σ) − 2δ

β

∥

∥λk − λk+1
∥

∥

2
}

≤
∥

∥vk − v∗
∥

∥

2

Hk
+ (τk − τk−1)

rβ

σ

∥

∥yk − y∗
∥

∥

2

− 1

σ2

{

β
∥

∥yk − yk+1
∥

∥

2

Tk+1
+

(2− σ)− 2δ

β

∥

∥λk − λk+1
∥

∥

2
}

≤ (1 + ξk)
∥

∥vk − v∗
∥

∥

2

Hk
− 1

σ2

{

β
∥

∥yk − yk+1
∥

∥

2

Tk+1

+
(2− σ) − 2δ

β

∥

∥λk − λk+1
∥

∥

2
}

(55)

where Tk+1 = (2− σ) τkrIn2
− 1

2δB
TB.

For limk→∞

(

vk − vk+1
)

= 0 to hold, it is sufficient that:δ = ε
2 and Tk+1 ≻ 0.

Tk+1 ≻ 0 is equivalent to (2− σ) rk
∥

∥yk − yk+1
∥

∥

2
> 1

ε

∥

∥B
(

yk − yk+1
)∥

∥

2
.

So (55) can be written as:

∥

∥vk+1 − v∗
∥

∥

2

Hk+1
≤ (1 + ηk)

∥

∥vk − v∗
∥

∥

2

Hk
− 1

σ2

{

β
∥

∥yk − yk+1
∥

∥

2

Dk+1

+
(2− σ)− ε

β

∥

∥λk − λk+1
∥

∥

2
}

.

Therefore, Theorem 3.1 is proved.
Theorem 3.2. Let the sequence

{

wk
}

be the iterative sequence generated by Algo-
rithm 1. Taking any point w∗ in Ω∗, we have:

(a).limk→∞

∥

∥vk+1 − v∗
∥

∥

2

Hk+1
exists and limk→∞

∥

∥vk+1 − v∗
∥

∥

2

Hk+1
< +∞.

(b).limk→∞

∥

∥yk+1 − yk
∥

∥ = 0 and limk→∞

∥

∥λk+1 − λk
∥

∥ = 0.
Proof: Let

ak =
∥

∥vk+1 − v∗
∥

∥

2

Hk+1
, bk = ξk, c

k = 0,

dk = β
∥

∥yk+1 − yk
∥

∥

2

Dk+1
+

1− 2ε

β

∥

∥λk+1 − λk
∥

∥

2
.

By Lemma 2.2, (a) and (b) hold.
Theorem 3.3. Let the sequence

{

wk
}

be the iterative sequence generated by Algo-

rithm 1, then
{

wk
}

converges to a point w∞ ∈ Ω∗.

Proof: It follows from Theorem 3.2: limk→∞

∥

∥vk+1 − vk
∥

∥ = 0.

It follows from combining (38) and the non-singularity of M :limk→∞

∥

∥vk − ṽk
∥

∥ = 0.

Since the sequence
{

∥

∥vk+1 − v∗
∥

∥

2

Hk+1

}

is a bounded sequence,

then for any fixed v∗ ∈ Ω∗, there is a
∥

∥vk+1 − v∗
∥

∥ bounded.

14



That is, the sequence
{

vk
}

is bounded.
because of

∥

∥ṽk − v∗
∥

∥ ≤
∥

∥vk − ṽk
∥

∥+
∥

∥vk − v∗
∥

∥ .

It is known that
∥

∥ṽk − v∗
∥

∥ is bounded.

Clearly the sequence
{

ṽk
}

is also bounded and there must exist a convergence point
v∞,

such that a subsequence
{

ṽkj
}

of the existence sequence
{

ṽk
}

converges to v∞.

From λ̃k = λk − β
(

Ax̃k +Byk − b
)

in (19), we have:

Ax̃kj =
1

β

(

λkj − λ̃kj

)

−
(

Bykj − b
)

.

Since Matrix A is a column full rank matrix, it follows that the sequence
{

x̃kj
}

converges.
Set limkj→∞ x̃kj = x∞, then there exists a subsequence

{

w̃kj
}

converging to w∞.
Let k = kj in (34), we know that w̃kj ∈ Ω,

θ (u)− θ
(

ũkj
)

+
(

w − w̃kj
)T

F
(

w̃kj
)

≥
(

w − w̃kj
)T

Q
(

wkj − w̃kj
)

, ∀w ∈ Ω.

Let the above equation k → ∞, it is clear that:

w∞ ∈ Ω, θ (u)− θ (u∞) + (w − w∞)
T
F (w∞) ≥ 0, ∀w ∈ Ω. (56)

(56) shows that w∞ in Ω∗ is a solution of the variational inequality V I (Ω, F, θ), so
the sequence

{

wk
}

converges to w∞.

4 Numerical experiments

The numerical performance of Algorithm 1 is presented in this paper through
solving the Lasso problem and comparing Algorithm 1 with optimal linearized
ADMM(OLADMM)[22]. All simulation experiments were conducted on a laptop with
4GB of RAM memory using Matlab R2016a.

The LASSO problem[12] in statistics is as follows:

min
x,y

1

2
‖x− b‖22 + ι ‖y‖1 s.t. x = Ay (57)

where A ∈ Rm×n, b ∈ Rm, x ∈ Rn, y ∈ Rn.

Then applying Algorithm 1 to (57), we obtain:
The x-subproblem is an unconstrained convex quadratic minimization problem,

and its unique solution can be expressed as follows:

xk+1 =
1

1 + β

(

b+ λk + βAyk
)

15



The y-subproblem is a l1 + l2 minimization problem that can be solved using the
soft-threshold operator:

ŷk = shrink

{

yk − 1

τkδkβ
AT
[

λk − β
(

xk+1 −Ayk
)]

,
ι

τkδkβ

}

.

yk+1 = yk − σ
(

yk − ŷk
)

.

The solution to the λ-subproblem is:

λ̂k = λk − β
(

xk+1 − Aŷk
)

.

λk+1 = λk − σ
(

λk − λ̂k
)

.

In this paper, numerical experiments are conducted to compare the performance
of the Algorithm 1 with OLADMM .
Set the parameters of each algorithm as follows:
Algorithm 1: r =

∥

∥ATA
∥

∥, ι = 0.1
∥

∥AT b
∥

∥

∞
,τ0 = 0.75,τmin = 0.01,γ = 1.2 ,σ = 0.9,

β = 1,ρ = 3, p0 = 100 , d0 = 100 , ε′ = 1
ε
= 1

2−σ
+0.1, ηk = 0.25min

{

1, 1
(max{1,k−l})2

}

, sk = 2min
{

1, 1
(max{1,k−l})2

}

.

where l= the dimension of λ.
OLADMM: r =

∥

∥ATA
∥

∥ , τ = 0.75, β = 1, ι = 0.1
∥

∥AT b
∥

∥

∞
.

The stopping guidelines are:

∥

∥pk+1
∥

∥ =
∥

∥xk+1 −Ayk+1
∥

∥ < εpri, and
∥

∥dk+1
∥

∥ =
∥

∥βA
(

yk+1 − yk
)∥

∥ < εdual.

where
εpri =

√
nεabs + εrelmax

{∥

∥xk+1
∥

∥ ,
∥

∥Ayk+1
∥

∥

}

and
εdual =

√
nεabs + εrel

∥

∥yk+1
∥

∥ .

with εabs and εrel set to be 10−4 and10−2.

For a matrix A of given dimension m× n,we generate the data randomly as follow:
p = 1

n
, x0 = sprandn (n, 1, p) , A = randn (m,n) , b = A ∗ x0 + sqrt (0.001) ∗

randn (m, 1) .The initial point is
(

y0, λ0
)

= (0, 0).
In order to observe the effect on the experiment caused by different values of σ ,

the choice of the:
σ = {0.1, 0.2, 0.3, · · ·1.7, 1.8, 1.9}

to carry out the experiment, the results of which show that when σ ∈ [0.6, 1.4], the
results are satisfactory.In this paper, we take σ = 0.9.

16



The experimental results of the two algorithms are shown below:
Table 1. Comparsion between Algorithm 1 and OLADMM for (57).
n× n matrix OLADMM Algorithm 1

m n Iter. CPU(s)
∥

∥pk
∥

∥

∥

∥qk
∥

∥ Iter. CPU(s)
∥

∥pk
∥

∥

∥

∥qk
∥

∥

1000 1500 16 3.23 0.0700 0.0701 11 2.38 0.0414 0.0446
1500 1500 13 2.81 0.0650 0.0660 10 2.53 0.0350 0.0500

1500 3000 17 7.03 0.0658 0.0659 10 6.18 0.0448 0.0599
2000 3000 14 7.16 0.0759 0.0764 10 6.57 0.0243 0.0399
3000 3000 13 7.80 0.0572 0.0582 9 7.40 0.0377 0.0695

3000 5000 15 24.96 0.0685 0.0688 10 23.44 0.0312 0.0485
4000 5000 13 25.01 0.0664 0.0674 10 24.69 0.0365 0.0549
5000 5000 12 26.34 0.0614 0.0636 9 25.73 0.0435 0.0739

Table 1 presents the number of iterations and total computation time needed for
OLADMM and Algorithm 1. It is evident that Algorithm 1 consistently outperforms
OLADMM as it demands fewer iteration steps and less time to meet the termination
condition. Consequently, Algorithm 1 demonstrates superior efficiency in contrast to
OLADMM. Furthermore, Algorithm 1 significantly surpasses OLADMM, providing
robust backing for our convergence analysis.

5 Conclusion

In this study, we introduce an adaptive linearized alternating direction multiplier
method with a relaxation step that incorporates both a relaxation step and an adap-
tive technique. Our approach adopts a unified framework of variational inequalities
and establishes the global convergence of this adaptive linearized alternating direction
multiplier method with a relaxation step through theoretical analysis. Through the
resolution of the Lasso problem, we demonstrate the algorithm’s outstanding numeri-
cal performance. These findings will propel advancements in optimization algorithms
and offer more efficient tools and methodologies for addressing practical challenges.

Conflict of Interest:The authors declare that they have no conflict of interest.

References

[1] Tao, M., Yang, J., He, B.: Alternating direction algorithms for total variation
deconvolution in image reconstruction. TR0918, Department of Mathematics,
Nanjing University (2009)

[2] Ng, M.K., Weiss, P., Yuan, X.: Solving constrained total-variation image restora-
tion and reconstruction problems via alternating direction methods. SIAM journal
on Scientific Computing 32(5), 2710–2736 (2010)

[3] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed
optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends® in Machine learning 3(1), 1–122 (2011)

17



[4] Combettes, P.L., Pesquet, J.-C.: A douglas–rachford splitting approach to non-
smooth convex variational signal recovery. IEEE Journal of Selected Topics in
Signal Processing 1(4), 564–574 (2007)

[5] Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear varia-
tional problems via finite element approximation. Computers &Mathematics with
Applications 2(1), 17–40 (1976)

[6] Glowinski, R., Marrocco, A.: Analyse numerique du champ magnetique d’un
alternateur par elements finis et sur-relaxation ponctuelle non lineaire. Computer
Methods in Applied Mechanics & Engineering 3(1), 55–85 (1974)

[7] He, B.: My 20 years research on alternating directions method of multipliers.
Oper. Res. Trans 22(1), 1–31 (2018)

[8] Eckstein, J., Yao, W.: Approximate admm algorithms derived from lagrangian
splitting. Computational Optimization and Applications 68, 363–405 (2017)

[9] He, B., Liao, L.-Z., Han, D., Yang, H.: A new inexact alternating directions
method for monotone variational inequalities. Mathematical Programming 92,
103–118 (2002)

[10] Ng, M.K., Wang, F., Yuan, X.: Inexact alternating direction methods for image
recovery. SIAM Journal on Scientific Computing 33(4), 1643–1668 (2011)

[11] Chan, R.H., Tao, M., Yuan, X.: Linearized alternating direction method of multi-
pliers for constrained linear least-squares problem. East Asian Journal on Applied
Mathematics 2(4), 326–341 (2012)

[12] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996)

[13] Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review 52(3), 471–501
(2010)

[14] Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from
incomplete and noisy observations. SIAM Journal on Optimization 21(1), 57–81
(2011)

[15] Fang, E.X., He, B., Liu, H., Yuan, X.: Generalized alternating direction method of
multipliers: new theoretical insights and applications. Mathematical programming
computation 7(2), 149–187 (2015)

[16] Woo, H., Yun, S.: Proximal linearized alternating direction method for mul-
tiplicative denoising. SIAM Journal on Scientific Computing 35(2), 336–358
(2013)

18



[17] He, B., Yuan, X.: Linearized alternating direction method of multipliers with
gaussianback substitution for separable convex programming. Numerical Algebra,
Control and Optimization 3(2), 247–260 (2013)

[18] Ouyang, Y., Chen, Y., Lan, G., Pasiliao Jr, E.: An accelerated linearized alter-
nating direction method of multipliers. SIAM Journal on Imaging Sciences 8(1),
644–681 (2015)

[19] Chan, R.H., Tao, M., Yuan, X.: Linearized alternating direction method of multi-
pliers for constrained linear least-squares problem. East Asian Journal on Applied
Mathematics 2(4), 326–341 (2012)

[20] Wang, X., Yuan, X.: The linearized alternating direction method of multipliers for
dantzig selector. SIAM Journal on Scientific Computing 34(5), 2792–2811 (2012)

[21] He, B., Ma, F., Yuan, X.: Linearized alternating direction method of multipliers
via positive-indefinite proximal regularization for convex programming. Avaliable
on (2016) https://doi.org/https://optimization-online.org

[22] He, B., Ma, F., Yuan, X.: Optimally linearizing the alternating direction
method of multipliers for convex programming. Computational Optimization and
Applications 75(2), 361–388 (2020)

[23] He, B.: Ppa-like contraction methods for convex optimization: a framework using
variational inequality approach. Journal of the Operations Research Society of
China 3, 391–420 (2015)

[24] Tao, M., Yuan, X.: On the optimal linear convergence rate of a generalized
proximal point algorithm. Journal of Scientific Computing 74, 826–850 (2018)

[25] Gu, G., Yang, J.: On the optimal linear convergence factor of the relaxed
proximal point algorithm for monotone inclusion problems. arXiv preprint
arXiv:1905.04537 (2019)

[26] Robbins H, S.D.: A convergence theorem for non negative almost supermartin-
gales and some applications. Optimizing Methods in Statistics, 233–257 (1971)

19

https://doi.org/https://optimization-online.org



	Introduction
	Preliminaries
	characterization of variational inequalities
	some notation
	Stopping criterion

	Algorithm and convergence analysis
	New algorithms
	Global convergence analysis

	Numerical experiments
	Conclusion

