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ABSTRACT  

This study presents a novel, ultralow-power single-sensor-based electronic nose (e-nose) system 

for real-time gas identification, distinguishing itself from conventional sensor-array-based e-nose 

systems whose power consumption and cost increase with the number of sensors. Our system 

employs a single metal oxide semiconductor (MOS) sensor built on a suspended 1D nanoheater, 

driven by duty cycling—characterized by repeated pulsed power inputs. The sensor's ultrafast 

thermal response, enabled by its small size, effectively decouples the effects of temperature and 

surface charge exchange on the MOS nanomaterial’s conductivity. This provides distinct sensing 

signals that alternate between responses coupled with and decoupled from the thermally enhanced 

conductivity, all within a single time domain during duty cycling. The magnitude and ratio of these 

dual responses vary depending on the gas type and concentration, facilitating the early-stage gas 

identification of five gas types within 30 s via a convolutional neural network (classification 

accuracy = 93.9%, concentration regression error = 19.8%). Additionally, the duty-cycling mode 

significantly reduces power consumption by up to 90%, lowering it to 160 μW to heat the sensor 

to 250 °C. Manufactured using only wafer-level batch microfabrication processes, this innovative 

e-nose system promises the facile implementation of battery-driven, long-term, and cost-effective 

IoT monitoring systems. 
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INTRODUCTION 

The growing demand for cost-effective and low-power gas sensors is fueled by the rapid 

expansion of wireless applications in various monitoring platforms, such as stationary, drone-

based, and wearable gas monitoring systems. More recently, their applications have expanded to 

include areas such as home indoor air quality monitoring, early disease diagnosis through 

exhalation analysis, and food spoilage monitoring.1,2 Among various sensing materials, metal-

oxide semiconductors (MOS) have been chosen as the most prominent choice for gas sensors in 

wireless sensor networks owing to their cost-effective synthesis, material design compliance, high 

sensitivity, and suitability for sensor miniaturization.3,4 MOS gas sensors detect the target gas 

simply by measuring the change in electrical resistance upon exposure to the target gas. The major 

challenges encountered by MOS-based gas sensors, such as their inherent high power consumption 

and poor selectivity, have restricted their real-time wireless applications.5,6 The primary 

contributor to high power consumption in MOS-based gas sensors is the need for activation energy, 

which is required for promoting surface molecular adsorption and desorption of the target gases 

on the metal oxide surface. Various techniques have been developed to minimize power 

consumption in these sensors, including sensor operation with a miniaturized joule heater, using 

room-temperature sensing materials, or through photoactivation.7–10 Despite significant power 

reduction, room temperature sensing suffers from poor recovery rates.8 This issue arises because 

its thermal energy is insufficient to effectively desorb the target gases from the sensing sites. 

Meanwhile, Joule-heating methods promote gas desorption by heating the sensing material to 

temperatures between 100 and 400 °C.11 Furthermore, the MOS sensor output is influenced by two 

main factors: the change in the MOS conductivity due to temperature variation and the surface 

charge exchange caused by the target gas; the latter is known as chemisorption. Consequently, 
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these two factors result in a coupled sensor output signal. Therefore, to ensure stable detection 

through uniform heating of MOS materials at low power consumption, miniaturized heater 

structures are designed as long aspect-ratio suspended bridges, providing effective thermal 

insulation from the substrate.12–15  

In addition, from the viewpoint of sensor operation, duty cycling has been rigorously explored 

as an alternative power-saving strategy for heater-driven MOS gas sensors.16–19 As indicated by 

the yellow curve illustrated in Figure 1a, the heater is periodically toggled between power-on and 

low-power (or power-off) states in the duty-cycling mode, minimizing the active operation time 

of the heater. Therefore, the average power consumption is effectively reduced in proportion to 

the power-off time (s, or sleep time) compared to that in the constant power supply mode. Hence, 

reducing the duty cycle—defined as the ratio of the wake-up period (w) to the total cycle period 

()—is the key to power saving in duty-cycling mode. However, the switching kinetics of the 

sensor’s heater are typically not immediate, as indicated by the black dotted curve shown in Figure 

1a. This means that sensors require a certain duration for thermal stabilization (or thermal time 

constant) in both the heating and cooling periods. Thus, the actual sensor operation time is reduced 

compared to heater-on time, leading to wasted energy. Therefore, rapidly responsive heaters are 

required to minimize the duty cycle. The thermal time constant (T), defined as the time required 

for the change in the heater temperature to reach 63.2% of the difference between the initial and 

final stabilized temperatures during a sudden power input, is given by 

𝜏𝑇 =
𝜌𝑉𝐶

ℎ𝐴𝑠
         (1) 

where ρ is the density, V is the volume, C is the specific heat, h is the heat transfer coefficient, 

and As is the surface area of the body. In this regard, the thermal time constant decreases as the 
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body size decreases, accelerating the development of MOS gas sensors built on miniaturized 

heaters.20,21 However, the reduction to micrometer-sized heaters is not sufficient for achieving 

duty cycles below 20%.16–21 Their thermal time constants are tens of milliseconds range in most 

cases. 

Another major challenge faced by MOS-based gas sensors is their gas cross-sensitivity or poor 

selectivity. For instance, MOS sensors typically respond to multiple gas types, hindering accurate 

gas identification. Various approaches have been employed to overcome the poor selectivity of 

MOS-based sensors. These include combining sensors into arrays,22–24 improving sensor response 

through temperature and power modulation,25–28 extracting and analyzing complex features from 

sensor data,29–31 and employing broad-range impedance spectroscopy.32 These approaches expand 

the dimensionality of sensor response, thereby enhancing the selectivity of sensors. For example, 

an array of S different sensors operating in M different selection modes yields P = MS parameters 

or data channels.33 Nonetheless, they often require complex data acquisition processes and 

multiple sensors for accurate prediction, limiting real-time recognition. For further enhancing 

selectivity, electronic nose (e-nose) systems have emerged as a promising solution. These systems 

identify gases by analyzing characteristic gas responses from multiple sensors through advanced 

machine learning (ML) algorithms.23,31 Electronic nose (e-nose) systems, employing a gas sensor 

array, to enhance selectivity for accurate gas identification, paradoxically lead to increased power 

consumption and costs proportionate to the number of sensors used. Thus, researchers grapple with 

a persistent trade-off: enhancing prediction accuracy while managing practical limitations such as 

energy efficiency and system scalability. 
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Figure 1. (a) Schematic of sensor temperature change under the duty-cycling mode [yellow curve: 

power input; black dotted curve: current signal during the temperature transition; red curve: current 

signal at high temperature (HT); blue curve: current signal at room temperature (RT)]. (b–d) 

Schematic of a MOS gas sensor based on a suspended 1D nanoheater: (b) suspended 1D 

nanoheater; (c) gas sensor constructed by regioselectively growing a MOS nanowire network in 

the central region of the 1D nanoheater; (d) cross-sectional view of the MOS NW network grown 

circumferentially around the 1D nanoheater; schematic representation of (e) the repeated pulsed 

power and (f) the corresponding transient current change of the MOS sensing site under duty 
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cycling. (g) Schematic chart of dual gas responses at HT and RT under duty-cycling mode. (h) 

Schematic of machine-learning-based gas identification using dual-response signals from a single 

sensor. 

 

In this study, we demonstrate a significant breakthrough in the field of MOS-based gas sensors 

by addressing both their high power consumption and limited selectivity, which is achieved 

through the operation of a single nanoheater-based MOS gas sensor in duty-cycling mode. Our 

sensors, featuring a MOS nanowire (NW) network radially grown on a suspended 1D nanoheater 

(Figures 1b–d), were manufactured through wafer-level microfabrication processes, as reported 

in our previous studies.34,35 The heater's nano-sized body and high aspect ratio (width ~300 nm, 

thickness ~500 nm, length = 130 μm), regioselectively grown MOS NWs in the central region of 

the heater, and robust thermal insulation (due to the suspended high-aspect-ratio architecture) 

enabled instantaneous heating of the MOS sensing site at less than 2 mW. The remarkably small 

thermal time constant of the nanoheater, clocking less than 10 s, dramatically accelerates the 

wake-up of the sensor in a power duty. This enabled a significant reduction in the duty cycle, 

diminishing power consumption to less than 160 W, which translates to 90% energy savings 

compared to consumption under the constant power mode. Furthermore, we introduce the gas 

identification capability implemented by a ‘single’ sensor, owing to its unique attribute of ‘dual 

gas responses’ induced by duty cycling. In addition to gas response at high temperature (HT) under 

the heater power-on state, distinct and transient gas sensing behavior, decoupled from the 

thermally enhanced electrical conductivity of the MOS, was also observed even in the room 

temperature (RT) mode (power-off mode) in a cycled power input (Figures 1e and f). This is due 

to a significantly faster thermal response compared to gas adsorption/desorption at the MOS 
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surface. Therefore, a single sensor can generate dual responses without requiring complex multi-

sensor setups and the corresponding increased power demands (Figure 1g). These responses, both 

coupled with and decoupled from the thermally enhanced conductivity, were measured along a 

single time domain and analyzed by a convolutional neural network (CNN), leading to real-time 

gas identification (Figure 1h). After rigorous training and validation, the ML model demonstrated 

high accuracy in predicting gas types and concentrations. With an accuracy rate surpassing 90%, 

the CNN model effectively distinguished between five types of gases (air, NO2, SO2, CO, and H2) 

based on their distinct responses at HT and RT. In addition, the mean absolute percentage error 

(MAPE) of the concentration predicted through the regression model was calculated as only 

approximately 20%. This single-sensor-based gas identification method will contribute to 

advancing energy-efficient and cost-effective e-nose systems with excellent discriminatory 

capabilities. 
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Figure 2. Morphological, microstructural, and thermal characteristics of a MOS gas sensor based 

on a suspended 1D nanoheater: (a) Top view (SEM image) of a ZnO NW network grown in the 

central region of the 1D nanoheater; (b, c) bird’s eye view (SEM images) of the ZnO NW network 

circumferentially grown on the nanoheater (inset scale bars: (b) 3 μm, (c) 300 nm), along with 

corresponding EDS mapping images; (d) XPS spectra of a ZnO NW network for an overall 

composition, Zn 2p region, O 1s region, and the C 1s region, listed from the left to right; (e) 

simulated temperature profile of the suspended 1D nanoheater coated with a MOS NW network 

(heater power = 2 mW); (f) Experimentally measured temperature and power consumption of the 

suspended 1D nanoheater-based MOS gas sensor according to the applied voltage to the 

nanoheater in continuous heating mode. 

 

RESULTS AND DISCUSSION 

Fabrication of a Gas Sensor Platform Based on a MOS NW Network Built on a Suspended 

1D Nanoheater. The presented sensor comprises a MOS NW network in the central region of a 

suspended 1D nanoheater, as illustrated in Figure 2a. In this study, the suspended 1D nanoheater-

based gas sensors were fabricated following the previously reported method.34 As shown by the 

schematic fabrication steps in Figure S1, the 1D nanoheater in a suspended architecture was 

fabricated via selective metal coating on a suspended carbon NW backbone. Subsequently, a MOS 

NW network was grown radially along the nanoheater’s central region (Figure S2), where the 

heater temperature rises uniformly. Despite the complex 3D mixed-scale architecture of the sensor 

platforms, all the fabrication steps were based on wafer-level batch microfabrication processes, 

ensuring cost-effective manufacturing. A more detailed description of the fabrication steps is 

presented in the Methods section. As the nanoheater backbone, a suspended carbon nanowire was 
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fabricated using the carbon-microelectromechanical system (C-MEMS) technology, which 

enables the facile fabrication of micro/nano carbon structures by pyrolyzing pre-patterned polymer 

structures. In this study, a suspended polymer micro-sized wire (width ~1.3 μm, thickness ~2.5 

μm, length ~130 μm, wire-to-substrate separation ~20 μm) was fabricated via two successive 

photolithography steps (first, UV exposure at high energy for the polymer post structures; second, 

UV exposure at low energy for the suspended polymer wire). Subsequently, the polymer wire was 

carbonized through a pyrolysis process in a vacuum. Most elements, except carbon, escape from 

the polymer during pyrolysis, resulting in a volume reduction of up to 90%. This volume reduction 

is facilitated by smaller structure sizes and more efficient mass transfer, leading to a greater 

reduction in volume for smaller suspended structures.36 Consequently, the suspended micrometer-

sized polymer wire was converted into a nanoscale carbon wire (width ~250 nm, thickness ~300 

nm). The resultant pyrolyzed carbon shows superior mechanical properties, sufficient to withstand 

wet microfabrication processes.37 In this study, to make the suspended carbon nanowire work as 

the backbone of the nanoheater, its conductivity was tuned sufficiently low so that most of the 

current flowed through the metal heater layer coated on the carbon wire. This conductivity control 

was facilitated by adjusting the pyrolysis temperature.38 After forming the carbon backbone, a 50-

nm-thick Au layer, a heater electrode material, was deposited selectively at the 1D nanoscale 

backbone using microscale patterning processes. This was enabled by a unique built-in shadow 

mask structure consisting of SiO2 eaves protruding from the top edges of an isotopically etched Si 

trench, as shown in the inset of Figure S2f. When a metal layer is deposited on top of the built-in 

shadow mask using highly directional deposition methods such as evaporation, the metal layer is 

disconnected at the undercut below the eaves. Consequently, a continuous metal coating between 

two carbon posts is made solely along the suspended carbon backbone as long as the photoresist 
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mask width is smaller than the built-in shadow mask, allowing nanopatterning using conventional 

photolithography, as illustrated in Figure S3. The built-in shadow mask was formed prior to the 

C-MEMS process. The detailed working principle of the built-in shadow mask was reported 

elsewhere.34,35 Subsequently, an insulation layer was deposited on the entire substrate and then 

etched for the electrical connection to the nanoheater. The MOS NWs (ZnO NWs in this study) 

were grown using the hydrothermal method, which grows nanostructures from a seed layer in a 

heated growth bath. In this study, the MOS NWs were locally grown in the heater’s central region 

by heating the entire substrate. This was enabled by patterning a seed layer in the heater’s central 

region via conventional photolithography and coating processes. The suspended 1D nanoheater 

maintained physical integrity during the NW patterning processes due to the excellent mechanical 

robustness of the carbon backbone, as mentioned earlier. 

Characterization of the Gas Sensing Material. Figures S2b and c show scanning electron 

microscopy (SEM) and the corresponding energy dispersive spectroscopy (EDS) mapping images 

of ZnO NWs (diameter: ~100 nm, length: 0.5–1 μm) grown in the central region of the 1D 

nanoheater. The nanoheater was fractured at its center, revealing the prominent morphology of the 

NW network distributed circumferentially around the nanoheater. The EDS mapping results help 

clearly identify the mass distributions of the sensor and heater materials, such as pyrolyzed carbon, 

Au, HfO2, and ZnO. In the magnified views (Figure 2c),Au and Hf elements are mainly observed 

on the carbon nanowire surface, whereas Zn and O are predominantly distributed at the MOS NW 

network. The composition and chemical states of ZnO NWs were analyzed using X-ray 

photoelectron spectroscopy (XPS) (Figure 2d). The ZnO NW sample for the XPS test was 

prepared on top of a pyrolyzed carbon film through the same process used for the gas sensor. The 

high-resolution Zn 2p spectrum shows two peaks at 1022.28 and 1045.18 eV, corresponding to Zn 
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2p3/2 and Zn 2p1/2, respectively. In addition, the energy difference of approximately 23 eV between 

these two peaks confirms that Zn exists primarily in the Zn2+ chemical state. The C1s spectrum 

comprises three peaks at 284.5, 285.1, and 287.5 eV. The peak at 284.5 eV corresponds to aromatic 

and aliphatic carbons (C–C), and the peaks at 285.1 and 287.5 eV represent carbon bound to 

oxygen (C–O and C=O, respectively). 

Evaluation of 1D Nanoheater Operation. Suspended 1D nanostructures can be heated using 

ultralow power because of their small size and excellent thermal insulation. However, a 1D 

nanoheater is mostly heated in the central region because of its high aspect ratio, resulting in a 

parabolic temperature distribution along its longitudinal direction. This uneven heating hinders the 

gas detection capabilities of the MOS-based gas sensor because its gas sensitivity varies 

significantly depending on the working temperature. To address this issue, we selectively grew a 

MOS NW network in the central region of a suspended 1D nanoheater, where the temperature rises 

the most. This regioselective localization ensured uniform heating of the sensing site, with a 

temperature variance of less than 2% compared to the average temperature, as indicated by the 

simulated temperature profile shown in Figure 2e. This uniform heating capability was 

experimentally confirmed by comparing the changes in resistance of the ZnO NW network upon 

exposure to a gas analyte when heating the entire sensor chip using a hotplate and when locally 

heating the ZnO NWs using the nanoheater, as described in our previous study.34 Owing to the 

small size and suspended architecture, this sensor platform featured superior power efficiency 

(138.8 K mW-1), expressed by temperature rise according to the heater power (i.e., a 225 °C rise 

by 1.62 mW, as shown in Figure 2f). This experimental result was in good agreement with the 

simulation result. The power consumption in the continuous power mode of this nanoheater-based 

sensor platform is just ~4% of the total power required for Bluetooth communication typically 
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used in wireless monitoring systems. Moreover, further power reduction can be achieved by 

implementing a duty-cycling mode enabled by the fast thermal response of the proposed sensor. 

Experimental results on the effect of the duty-cycling mode on sensor performance are discussed 

in the subsequent section. 

 

 

Figure 3. Switching kinetics of the 1D nanoheater-embedded MOS gas sensor in duty-cycling 

mode: (a) Real-time current signal in dry air from the MOS NW network under varying duty cycles 
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(100%, 50%, 10%, and 5% at 1 Hz) (dots inside the red oval: data points in the power-on state; 

dots inside the green oval: data points in the power-off state; blue arrow: initiation of heater 

operation). (b) Measurement of the MOS NW’s thermal time constants during heating and cooling 

of the duty-cycled 1D nanoheater (top diagram: current signal through the ZnO NW network, 

bottom diagram: voltage input to the nanoheater). 

 

Characterization of the Duty-Cycling Effect on Sensor Signals. In duty-cycling mode, power 

consumption is determined either by the increase in heater temperature or by the duration of the 

power-on state (or duty). Therefore, power saving can be achieved by reducing the duty at a fixed 

heater temperature. However, there are limits to reducing the duty cycle because the amount of 

data that can be obtained in a short period of time is limited by the measurement equipment. As 

the duty cycle is reduced, the number of readout data points in the power-on state decreases, as 

demonstrated in Figure S4. When the duty cycle is minimized to its limit, despite actual heating 

occurring, the data acquisition speed cannot keep pace with the duty-cycling speed, rendering it 

unmeasurable. In this study, the heating frequency was adjusted sufficiently large (1 Hz) to ensure 

a data acquisition time of 60 ms, allowing the equipment to obtain at least one data point in the 

heated state, even at the smallest duty cycle (0.06%). Figure 3 shows the current signal from a 

ZnO NW network under nanoheater operation in duty-cycling mode in dry air. Effective duty 

cycling-based sensor operation requires rapid response and long-term durability of the heater 

because the sensor's response depends on the nanoheater temperature. Immediately after the onset 

of heating, a fivefold increase in the conductivity of the metal oxide was observed, as indicated by 

the blue arrow in Figure 3a. This is attributed to the negative temperature coefficient of resistance 

of the semiconductor material. Figure 3b shows an enlarged view of the rapid current-signal 
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changes during heating and cooling, indicating thermal time constants of approximately 5 and 10 

s for heating (τT-Heating) and cooling (τT-Cooling), respectively. These rapid thermal responses ensure 

stable sensor operation in duty-cycling mode at small duties and high frequencies, enabling real-

time monitoring while simultaneously saving power. After the current surge, the current signal 

gradually stabilized in constant power mode (duty cycle = 100%), as shown in Figure 3a. This 

stabilization is attributed to the relatively slow chemisorption of O2—the phenomenon where 

oxygen ions adhere to the MOS surface through the reduction of O2(gas) (O2(gas) + e– → O2
–

(ads)), 

increasing the resistance of n-type MOS. This chemisorption was sustained even under duty-cycled 

power modes (duty cycle = 50%, 10%, and 5%), as indicated by the data dots in the heating state 

(or power-on state) in Figure 3a. Furthermore, when the heater power was switched to a power-

off state in duty-cycling mode, the sensor’s resistance was slightly higher than that measured 

before the heater operation. This indicates the persistence of the chemisorbed oxygen ions even in 

the power-off state. In addition, the recurring stabilized resistance signals at both the power-on 

and power-off states suggest that the temperature changes in duty-cycling mode are sufficiently 

rapid to prevent the desorption of oxygen ions from the MOS surface. These persistent reactive 

oxygen species on the MOS surface facilitate the measurement of changes in resistance, which are 

decoupled from the thermally-coupled changes in electrical conductivity of the semiconducting 

material. The related gas-sensing results will be discussed in the next section. 
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Figure 4. Transient current signal upon recurrent exposure to NO2 (0.4–1 ppm) in duty-cycling 

mode (duty cycle = 60%, frequency = 2 Hz, heater power = 840 W): (a) All data points (inset: 

magnified data set); (b, c) current data at (b) HT (red dots) and (c) RT (blue dots); (d) comparative 

graph of the sensor's responses at HT and RT. The red and blue dots represent data at the 90% and 

10% percentiles in a single duty cycle, respectively. The purple-shaded regions in the graph in 

Figure (a) represent the gas injection periods. 

 

Evaluation of Effect of Duty Cycling on Gas Response. The chemisorbed oxygen ions (O2
–

(ads)) bound to the MOS surface react with the oxidizing and reducing gas analytes, leading to 

changes in the electrical resistance of the sensing material. To investigate the sensor's 

responsiveness and conductive behavior for different gas environments in duty-cycling mode, a 

comprehensive analysis was conducted. First, the gas response to NO2 of the proposed 1D 
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nanoheater-embedded gas sensor was tested in duty-cycling mode, as shown in Figure 4. Upon 

exposure of the n-type metal oxide surface (e.g., ZnO) to an oxidizing gas such as NO2, electrons 

at the MOS are extracted through gas chemisorption, causing a decrease in the conductivity of the 

MOS. In this event, NO2 mainly contributes to the increase in MOS resistance owing to its higher 

electron affinity compared to that of O2. The gas response for oxidizing gases (NO2) is defined as 

Ia/Ig (where Ia and Ig represent the sensor resistance in air and upon exposure to oxidizing gas, 

respectively). Conversely, the response pattern is reversed when the n-type semiconductor-based 

sensor interacts with reducing gases such as CO, SO2, and H2. Therefore, in this case, the gas 

response is defined as Ig/Ia. In chemisorption, the target analytes require sufficient energy to 

activate the process, which is typically provided by heating the MOS materials. Consequently, the 

change in MOS conductivity upon exposure to gas analytes is coupled with the thermally enhanced 

conductivity. However, in duty-cycling mode, these chemisorption-based gas responses are 

observed not only in the power-on state but also in the power-off state, as shown in Figure 4a. 
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Figure 5. Schematic of the mechanism for physisorption/chemisorption of gas analytes onto 

circumferentially grown MOS NWs in duty-cycling mode. (‘ad’: adsorption, ‘ds’: desorption, 

‘chem-ad’: chemisorbed species, ‘phys-ad’: physisorbed species) 

 

To gain insight into the gas response in the power-off state in duty-cycling mode, it is crucial to 

consider the impacts of duty-cycle-induced temperature modulation on the adsorption, redox, 

chemisorption, and desorption of gas analytes. In this study, ZnO NWs grown circumferentially 

on the 1D nanoheater render the MOS surfaces more accessible to gas molecules, and the 

suspended architecture facilitates efficient gas transfer from the bulk. As shown in the diagram in 

Figure 5, the target gas molecules diffuse and condense on the MOS surface during the power-off 

state (RT: States 1 and 3) and react with the adsorbed oxygen molecules during the power-on state 

(HT: State 2).17 In detail, before initiating duty cycling (State 1), the MOS surfaces are 

predominantly covered by a thick pre-adsorbed air layer (consisting of a thin chemisorbed layer 

and a thick physisorbed layer).39 This layer hampers the direct interaction between the analyte 

molecules and the MOS surface, leading to negligible electrical responses.17, When the MOS is 

heated via duty-cycling (State 2), this process facilitates the chemisorption of the analyte and 

oxygen by providing sufficient activation energy.17,19,40 During the chemical adsorption of the gas 

analytes, electrons are supplied to oxidizing analytes or withdrawn from reducing species, 

resulting in changes in the MOS conductivity. Meanwhile, this process is accompanied by the 

partial desorption of the analytes. When the temperature of the MOS is modulated down 

intermittently via duty cycling (State 3), most of the pre-chemisorbed molecules are trapped within 

a potential well.40 This entrapment occurs because their desorption requires a relatively high 

activation energy.41 Therefore, this intermittent cooling fosters the accumulation of chemisorption. 
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Thus, the duty-cycling-driven gas sensor enables gas detection in the RT state by measuring the 

changes in resistance that are primarily due to chemisorption rather than the thermally induced 

changes in conductivity. Additionally, while both reactions at HT and RT were recorded through 

a single time domain, they exhibited different magnitudes of change, as shown in Figures 4b–d. 

In the RT state, both the current signal and the signal-to-noise ratio were smaller than those in the 

HT state, yet the sensor response was higher. This result can be attributed to (1) the entrapment of 

pre-chemisorbed gas analytes and reactive oxygen species in the potential well, and (2) the 

influence of temperature on both surface charge exchange and the electrical properties of the 

sensing channel. However, quantitatively describing temperature-dependent resistance is difficult 

due to diverse factors such as surface defect states, the nature and concentration range of the 

measured gas, sensing material characteristics (grain size, surface-to-volume ratio), dopants, 

interconnects between grains, and the geometry and material of sensing element electrodes.32,42–44 

Consequently, distinctive temperature-dependent dual sensing responses are exhibited even within 

a single gas detection, as indicated by the red (HT data or coupled data) and blue (RT data or 

decoupled data) dots in Figure 4. In this study, the HT and RT data sets were collected by filtering 

the top 90% and bottom 10% of all data in a single thermal cycle, respectively. These dual data 

patterns were consistently maintained during the duty-cycling process, resulting in a unique 

sensing response.  
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Figure 6. Gas responses of the 1D nanoheater-embedded sensor to 200 ppb NO2 under various 

duty-cycling conditions: (a) Transient HT current signals at various duty cycles (0.06%–100%) 

(inset: magnified view); (b) gas responses and recovery times in the HT state corresponding to 

duty cycles (0.06%–100%); (c) comparison of the heater size, thermal time constant, duty cycle, 

and power consumption of the presented sensor in the HT state with other heater-integrated 
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sensors;14,16,17,45,46 (d) gas responses at a 5% duty cycle under various NO2 concentrations and 

power conditions in the HT state; (e) transient RT gas responses obtained under various duty-cycle 

conditions (60%, 20%, 5%, 3%, 1%, 0.3%, and 0.06%); (f) comparison between the RT (blue) and 

HT (red) responses under various duty cycles (inset: enlarged view of data points inside the black 

oval). 

 

Based on the aforementioned feasibility test for the duty-cycling-based sensor operation, the 

effect of the duty cycle on the gas sensing performance was investigated. The gas responses at HT 

decreased with a reduction in the duty cycle despite the power savings achieved in duty-cycling 

mode, as shown in Figures 6a and b. Concurrently, the recovery time was extended with the 

reduction in the duty cycle. These adverse effects are attributed to the significantly slower kinetics 

of gas chemisorption/desorption on the MOS surfaces compared to the nanoheater’s thermal 

response, as demonstrated by the gas response at RT state in duty-cycling mode in Figure 4. Thus, 

with a reduction in the duty cycle, the net time for the chemical reaction diminishes while 

desorption time increases, leading to a decrease in the gas response. This also applies to the 

desorption of the gas analyte from the MOS surfaces during the recovery period, where activation 

energy for desorption is required. These findings emphasize the importance of optimizing the duty 

cycle for the sensor's efficiency and responsiveness. As shown in Figure 6b, no substantial 

increase in the recovery time was found at a duty cycle of 5% compared to the greater duty cycles, 

whereas its response reached approximately 82.4% of the response obtained with a constant power 

mode (duty cycle = 100%). As the duty cycle was reduced to below 1%, the system encountered 

a stark 50% decrease in response, paired with a doubling of the recovery time. Despite this 

deterioration of the sensor capabilities, significant energy savings of up to 99% were achieved. 
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This suggests that the proposed sensor platform can continue monitoring by adjusting its duty 

cycle in power-restricted situations without substantially compromising detection performance. 

The power-saving excellence of the proposed sensor was evaluated by comparing its duty, 

thermal time constant, and power consumption with those of other heater-integrated gas sensors. 

The presented sensor demonstrated superior heating efficiency, requiring 90 μW to heat the sensor 

to 250 °C at a duty cycle of 5%. This efficiency is the highest among recently published works, as 

presented in Figure 6c and Table S1.14,16,17,45,46 This superior performance is attributed to the 

suspended 1D nano-sized heater and regioselective MOS NW integration, which enable ultralow 

power operation and ultra-fast power-switching capability (switching time of only 10 μs). 

The sensitivity of the MOS-based sensors is closely correlated with their operating temperature. 

We assessed the temperature dependency of the proposed sensor’s response in duty-cycling mode. 

The temperature of the sensing material was controlled by adjusting the amplitude of the current 

supplied to the heater at a duty cycle of 5%, a duty cycle that demonstrated a response comparable 

to that of continuous heating. The temperature of the MOS NW network was evaluated by 

comparing the changes in resistance observed when the entire sensor chip was heated using a hot 

plate with those observed when the 1D nanoheater was operated in constant power mode. As 

shown in Figure 6d, the duty-cycled operation also demonstrated an increase in the gas response 

at HT with increasing temperature. To achieve sensitivity enhancement through a temperature 

increase of 50 °C in constant power mode, a significant power increment of 550 μW was required. 

Conversely, the same performance enhancement could be achieved in duty-cycling mode with a 

power increase of less than 30 μW. This reduction in power demand implies that, through careful 

power and temperature control, sensing capabilities can be improved without significantly 
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increasing energy consumption. This also indicates the potential of this technology in developing 

energy-efficient environmental monitoring systems. 

Figure 6e shows the gas responses to NO2 in the RT state in duty-cycling mode, providing a 

comparative perspective with the HT state. Similar to the HT responses, the responses at RT also 

decrease with the reduction in the duty cycle. Figure 6f offers a direct comparison between the 

results obtained at HT (shown in Figure 6a) and RT (shown in Figure 6e). The responses at RT 

consistently outperform those at HT across the entire range of duty cycles. This is attributed to the 

fact that, under an intermittent RT state, the electrical resistivity of the MOS material increases 

instantaneously while NO2 continues to adsorb on the MOS surface. Additionally, the RT state 

shows distinct changes in the gas response at a higher duty (20% vs. 5%) compared to the HT 

responses, as shown in Figure 6f. Concurrently, the ratio of RT and HT responses decreases with 

the reduction in the duty cycle (e.g., 1.47 at 5% and 1.04 at 0.3% duty cycle, respectively). This is 

because gas desorption in the RT state lasts longer as the duty is reduced. 
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Figure 7. (a) Gas responses at HT and RT states and (b) their ratio (RT response/HT response) for 

four gases (NO2, SO2, CO, and H2) under various gas concentrations and power conditions [body 

color of bars: gas species, bar outline color: power state (blue: RT, red: HT)]. 

 

Figures 7 and S5 show, respectively, the ratio of RT to HT responses and the transient current 

signals, which vary according to gas species (oxidizing gas: NO2; reducing gases: SO2, CO, H2), 

their concentrations, and heater power. The charge exchange between gas analytes and MOS varies 

depending on the gas type. For instance, NO2, an oxidizing gas, possesses a significantly higher 

electron affinity compared to O2 (2.3 eV for NO2
47,48 and 0.45 eV for O2

49), leading to direct 

chemisorption of the gas on the surface of the sensing material, as seen in reaction 3.40 In other 

words, the reaction is more favored than those involving adsorbed reactive oxygen species (such 

as O2
– and O–), as indicated in reactions 5 and 6.  

NO2(gas)  ↔ NO2(ads)        (2) 

NO2(ads) + e−
(CB of MOS) ↔ NO2

−
(ads)

     (3) 

O2(gas) ↔ O2(ads)         (4) 

O2(ads) + e−
(CB of MOS) ↔ O2

− (ads)   (RT to 150 °C)  (5) 

O2
−

(ads)
+ e−

(CB of MOS) ↔ 2O−
(ads)  (~150 to ~ 500 °C)  (6) 

Conversely, reducing species such as SO2, CO, and H2 are oxidized through reactions with 

reactive oxygen species (reactions 8, 10, and 12).50–52 Consequently, the conductivity of the MOS 

channel increases, as shown in Figure S5. 

SO2(gas)  ↔ SO2(ads)        (7) 

SO2(ads) + O−
(ads) ↔ SO3(ads) + e−      (8) 
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CO(gas)  ↔ CO(ads)        (9) 

CO(ads) + O−
(ads) ↔ CO2(ads) + e−      (10) 

H2(gas)  ↔ H2(ads)        (11) 

H2(ads) + O−
(ads) ↔ H2O(ads) + e−      (12) 

Therefore, the patterns of gas adsorption/desorption and electron transport can vary depending 

on the gas type, influenced by the disparity in electron affinity values between gases (2.3 eV for 

NO2, 1.1 eV for SO2,
53–55 1.3 eV for CO,56 2.0 eV for H2,

57 and 0.45 eV for O2). This results in 

subtle differences in sensing kinetics. Additionally, the rate of adsorption and desorption, as well 

as the activation energy required for these reactions, can all be influenced by temperature 

changes.19,40 Thus, the ratio of RT to HT responses varies according to gas species, concentration, 

and heater temperature. These unique traits suggest the potential of analyzing duty-cycling-driven 

gas responses as a novel strategy for enhancing gas selectivity.  
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Figure 8. Principal component analysis (PCA) plots of gas responses for four gases, including 

NO2, SO2, CO, and H2 (PC1: first principal component, PC2: second principal component, PC3: 

third principal component): (a) 3D pot of PCA; (b–d) corresponding 2D projections on the (b) 

PC1  PC2, (c) PC1  PC3, and (d) PC2  PC3 planes. PCA was performed using the complete 

set of variables, including responses at HT and RT, power, and concentration. 

 

Building upon this, the gas categorization capability of duty-cycling-driven sensor operation was 

evaluated using 3D plots of gas responses at RT and HT and the response ratio according to gas 

types and their concentrations, as shown in Figure S6. Despite the distinct response behaviors 

among gas species, these plots were not sufficiently characteristic to identify gas species and 

concentrations through simple correlation. Instead, the single sensor-driven gas responses were 

analyzed using principal component analysis (PCA), resulting in the primary components of PC1 

(57.19%), PC2 (32.83%), and PC3 (4.60%). In the PCA plots, shown in Figure 8, data points are 

distributed according to gas categories. However, identification of gas types and concentrations 

remains challenging with merely PCA analysis results. In addition, this method does not meet the 

need for real-time gas identification, as it requires waiting until the gas reaction has completely 

saturated. To overcome this, we employed a CNN, a deep learning model for image recognition 

and pattern analysis, which will be described in the following section. 
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Figure 9. Single sensor-based gas identification for five gases (air, NO2, SO2, CO, H2) through a 

CNN algorithm using a duty-cycling-driven gas sensor (duty cycle = 10%, duty frequency = 1 Hz, 

power = NO2: 90 W; SO2, CO, H2: 160 W): (a) Conceptual architecture of the CNN-based gas 

classification and concentration regression. Comparisons of (b) gas type classification accuracy, 

(c) classification loss, and (d) regression loss results between the RT response (blue), HT response 

(red), a single combined response (HT+RT response; green), and balanced RT response, the data 

amount of which matches that of the HT+RT response. 

 

CNN-based gas identification using dual responses derived from a single sensor. As 

mentioned earlier, the distinctive dual responses derived from a duty-cycling-driven MOS gas 

sensor have shown considerable promise in the accurate identification of gas types and 

concentrations through ML. In addition to PCA, various ML algorithms, such as the K-nearest 

neighbor (KNN)58 and the support vector machine (SVM)59, have been widely utilized for gas 

identification. However, these methods have limitations in their application to real-time gas 
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identification and concentration prediction. This is because they use the gas responses measured 

after the gas reactions have been completed as training data, which requires waiting until the gas 

response has reached saturation. In addition, for the same reason, gas sensors with relatively long 

response times are unsuitable for these methods. Instead, the spiking neural network (SNN)60 and 

CNN61–63 have been actively studied as real-time gas identification tools. Among them, the CNN 

algorithm converts the gas responses into 2D spectrogram images and analyzes them in real time 

by identifying the gas within the sliding time window. This method is renowned for robust image 

recognition and pattern analysis, as explained in detail in Supplementary Note 1. Recently, 

studies on CNN-based real-time gas identification using a micro-LED-integrated MOS sensor 

array were reported.61,62 Owing to the energy-efficient photoactivation by the LED, this approach 

achieved significant power savings despite utilizing a multi-sensor array for accurate gas 

prediction. Nonetheless, sensor arrays necessitate extra costs for the sensor system's fabrication, 

packaging, and operation. The same research group also reported a single-sensor-based e-nose 

system, enabling gas identification through the application of a fast-changing pseudorandom 

voltage input to the LED.63 Despite using a single sensor, the power consumption was greater than 

that of multi-sensor systems because the fast time-variant illumination increased the total energy 

usage. 

In this study, gas classification and concentration regression were conducted by analyzing the 

duty-cycling-derived dual responses of a single MOS sensor using the CNN algorithm. 

Additionally, the duty-cycling mode (duty = 10%, power = 62.5–160 W) offers the crucial 

advantage of reducing power consumption to a level comparable to that of the LED-driven MOS 

sensor array. Figure 9a shows a schematic of the CNN-based gas analysis process. First, the gas 

sensing data collected from a single sensor was preprocessed before training the CNN model to 
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enhance learning efficiency and accuracy. This involved data collection balancing the amount of 

acquired data between gases such as air, SO2, CO, H2, and NO2 to ensure fair learning of each gas. 

Additionally, the training gas response data were normalized to Log10 (gas response) [e.g., 

Log10(Ia/Ig) for oxidizing gases and Log10(Ig/Ia) for reducing gases] to prevent the overestimation 

of the signal of highly responsive gases, such as NO2. Subsequently, the normalized response data 

were captured by sliding a time window and converted into an input matrix for the training. Data 

were acquired within a unit time window (e.g., 10, 15, 20, 30, 60, or 120 s) and were renewed 

every 1 s (stride interval = 1 s). The matrix row was filled with data representing 10 samples per 

second. This sampling rate (10 Hz) was set to match the duty-cycling frequency for real-time 

monitoring. The composition of the matrix was determined according to the duty cycles and sliding 

time windows. For example, in the case of 10% duty cycle and a time window of 30 s with a 

sampling rate of 10 Hz, the row is composed of 1 HT and 9 RT data points because the ratio of the 

HT data and RT data is 1:9, and the number of columns is set to 30 (s), resulting in a 10  30 

matrix. The time window size was optimized by evaluating the classification and regression 

accuracies according to the time window size, as described in the following paragraph. For training 

and validation, 70% and 30% of the time series input matrices were used, respectively. For gas 

classification training, air, SO2, CO, H2, and NO2 were labeled 0, 1, 2, 3, and 4, respectively. For 

the gas concentration regression, the concentrations of each gas type were normalized using min-

max normalization, adjusting the concentration range to a uniform scale. Subsequently, these 

adjusted concentration levels were used as concentration labels, such that the concentration values 

across different gas types were comparable and standardized, facilitating a more accurate 

regression analysis. After the pre-processing steps, the input data were processed by the 

convolution kernels and average pooling layers to retain prominent features and reduce data 
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volume. The first layer of the CNN used ten 10 × 10 kernels, and the second layer utilized ten 1 × 

3 kernels. For chemical reactions that vary over time, convolution layers are more suitable for 

extracting temporal characteristics.64 The output data processed through these convolutional layers 

were then amalgamated and forwarded to fully connected (FC) layers of 32, 16, and 8 nodes. Each 

hidden layer of the CNN and FC layers employed batch normalization (BN) and the Leaky-ReLU 

activation function to improve the model’s learning stability and performance. The output layer of 

our model was configured to consist of six nodes: five for classifying the gas types and an 

additional one for determining the gas concentration. This setup allowed us to observe and analyze 

the model's effectiveness in both gas type classification and concentration determination. The 

classification of gas types was facilitated by the softmax function, which identifies the gas type 

with the highest probability of presence. A cross-entropy loss function was utilized to effectively 

measure the difference between the model’s predicted probability distribution and the actual labels. 

The regression node used the MAPE loss function to evaluate the accuracy of the regression 

model's predictions. This loss function measures the average absolute difference between the 

predicted and actual gas concentrations. Model training was executed using an Adam optimizer 

(initial learning rate η = 0.0001) while adjusting the learning rate and managing sparse gradients 

with the goal of minimizing the total loss. The CNN model evaluation factors, such as 

classification accuracy, classification loss (cross-entropy loss), and regression loss (MAPE loss), 

converged at an epoch of 1000 without a significant divergence between training and validation 

data, as shown in Figure S7. This indicates that the CNN model was well-constructed (with, e.g., 

a balanced loss weighting and the Adam optimizer set at a low learning rate) and effectively 

generated such that it adapted and responded accurately to new and unseen data.65 The gas 

classification and concentration prediction were determined simultaneously through the forward 
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propagation of one cycle of gas test data set into the pre-trained CNN model. In the regression, the 

gas concentration was set to 0 if the gas type was identified as air. The regression efficiency 

(measured as MAPE loss) was calculated only for data points where gas responses were detected, 

excluding air data. 

The efficiency of gas identification based on dual-response signals (denoted as HT+RT signals) 

derived from a single sensor was assessed by comparing it with identification results obtained from 

either the HT signal or the RT signal. It is important to note that due to the duty-cycling operations, 

the amount of data differed among RT, HT, and HT+RT data. For instance, for a duty cycle of 

10%, the data ratios for HT, RT, and HT+RT are 1:9:10. Thus, to ensure a fair comparison of the 

CNN results from HT+RT and RT data, the amount of data for the RT state was adjusted to match 

that of the HT+RT data, and this adjusted data was denoted as “balanced RT.” However, at HT, 

the amount of data is limited for small duties, so HT data was not adjusted. All datasets exhibit 

enhancements in gas identification in terms of classification accuracy, classification loss, and 

regression loss with increases in the size of the time window, as shown in Figures 9b–d. Notably, 

RT data showed a significant enhancement in gas identification over HT data because the amount 

of the former is nine times greater than that of the latter. More importantly, the dual-response 

signal (HT+RT data) showed better gas identification capabilities compared to the other datasets, 

even with a slight enhancement of the balanced RT results over the RT data results. The CNN 

model based on HT+RT data falsely predicted SO2 and CO, whereas it could accurately distinguish 

air, H2, and NO2, as shown in the confusion matrices of Figure S8. This is due to the similarity in 

electron affinities of those two gases (SO2: 1.1 eV, CO: 1.3 eV).53–56 In particular, the dual-

response signal (HT+RT) showed superior concentration prediction capability compared to other 

datasets. This excellence in gas identification using the HT+RT data is attributed to the unique 
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features, such as differences in response patterns (e.g., response magnitude, response speed, noise) 

between the HT and RT data according to gas type and concentration, as indicated in Figures S5 

and 7. As shown in Figures 9b–d and S8, gas classification and concentration prediction 

accuracies deteriorate as the time window decreases. Thus, a reduced time window size diminishes 

the overall prediction time but yields lower accuracy. Conversely, a larger time window size 

enhances accuracy by conducting supervised learning with a richer transient sensor signal dataset, 

yet it escalates the risk of overfitting and extends the prediction time. Therefore, the size of the 

sliding time window should be determined based on the target applications. In situations where 

rapid gas prediction is required, such as for toxic or explosive gases, a smaller time window is 

recommended. Conversely, if accurate gas identification is required, a larger time window can be 

used. When HT and balanced RT were used separately, the classification accuracies were only 

81.7% and 89.4%, respectively, with a time window of 30 s. In contrast, the HT+RT model 

achieved gas classification accuracy over 93% with a 14.1% loss in addition to less than 20% 

regression loss, highlighting its effectiveness, especially for early diagnosis scenarios where 

shorter time windows are crucial. 
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Figure 10. Real-time prediction of gas type and concentration for five gases [air, (a) SO2, (b) CO, 

(c) H2, (d) NO2] using dual-response signals (time window = 30 s, duty cycle = 10%, duty 

frequency = 1 Hz). 
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 Figure 10 shows the real-time prediction of gas types and the corresponding concentrations for 

five gases (air, SO2, CO, H2, and NO2) using dual-response signals. In the classification and 

regression graphs, the true value is depicted by a black line, whereas a colored dot represents the 

CNN prediction results. The CNN model exhibited the capability for real-time prediction of gas 

type and concentration, even though the gas response required extended time for signal saturation 

with changes in gas conditions, as shown in the transient current signal graphs in Figure 10. This 

highlights that CNN-based gas prediction, in conjunction with a duty-cycling-driven single sensor, 

can effectively address the slow response and recovery times typically associated with MOS-based 

gas sensors. 

Table 1 compares the proposed single-sensor-based e-nose system with recently reported ML-

based e-nose systems.58–63 These studies employed miniaturized heaters or micro-LEDs to save 

power while ensuring accurate prediction mainly through multi-sensor operation. Regarding 

power consumption, micro-LED technology significantly outperformed microheaters, being 

approximately 100 times more efficient. Additionally, the micro-LED-based approaches achieved 

gas identification using a considerably smaller number of sensors. Furthermore, SNN and CNN 

have been actively utilized for real-time identification while achieving high accuracy. In this study, 

we demonstrated an ultralow power e-nose system by duty cycling a single nanoheater-embedded 

MOS sensor whose power efficiency is comparable to that of state-of-the-art micro-LED-based 

systems. Moreover, the distinctive signals generated by duty cycling, combined with CNN-based 

ML techniques, enable real-time gas identification using just a single sensor. Additionally, this 

single-sensor operation allows for cost-effective implementation of e-nose systems, in addition to 

saving power. 
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Table 1. Comparison of the proposed system with other machine-learning-based e-nose systems. 

 Li et al.58 Thai et al.59 Kwon et al.60 Kang et al.61 Lee et al.62 Cho et al.63 This work 

Sensor type 
Microheater 

+MOS 

Microheater 

+MOS 

Microheater 

+MOS 

Microheater 

+MOS 

Micro-LED 

+MOS 

Micro-LED 

+MOS 

Nanoheater 

+ MOS 

# of sensors 2 8 12 8 2 1 1 

*# of target 

gases 
4 6 3 6 5 4 5 

Total sensor 

power 
34 mW 340 mW ~12 mW 88 mW 380 μW 526 μW 

160 μW 

(duty cycle = 10%) 

Analysis 

method 
KNN SVM SNN CNN CNN D-CNN CNN 

Classification 

accuracy [%] 
99.86 100 - 98.1 99.32 96.53 93.9 

Regression 

error 

(MAPE, %) 

2.08–5.44 8–28 3 10.15 13.82 31.99 19.8 

Real-time 

prediction 
X X O O O O O 

aMOS: metal oxide semiconductor; KNN: k-nearest neighbor; SVM: support vector machine; SNN, spiking neural network; CNN: 

convolutional neural network; D-CNN: deep convolutional neural network; MAE: mean absolute error; MAPE: mean absolute 

percentage error. *Air is included in the target gases.
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METHODS 

Simulation of the Temperature Profile of the Sensor. The temperature profile of the suspended 

1D nanoheater coated with a MOS NW network was simulated using a commercial software 

(COMSOL Multiphysics 5.4, COMSOL, Stockholm, Sweden). In this study, the heat transfer and 

electric current modules in the software were coupled for the simulation. Convection and radiation 

effects were ignored owing to the relatively low heater temperature and the low Rayleigh number 

resulting from the small heater size, respectively. The simulated model consisted of a suspended 

carbon nanowire backbone (width = 220 nm, thickness = 350 nm, length = 175 μm, separation 

from the substrate = 6 μm), a 50 nm-thick Au heater layer, a 50 nm-thick HfO2 insulation layer, 

100 nm-thick Au sensor electrode leads, and a ZnO NW network [simplified as a hollow cylinder 

(outer diameter = 1.4 μm)]. The simulation was performed under atmospheric conditions of 1 atm 

air and 293 K. 

Fabrication of the 1D Nanoheater-Embedded MOS Gas Sensor Platform. As illustrated in 

Figure S1, the sensor platform was manufactured through three main wafer-level nanofabrication 

steps: forming a suspended carbon nanowire backbone, integrating a nanoheater layer, and 

growing an MOS NW network. All the patterning processes were performed using a conventional 

microscale mask aligner (MA/BA6-8, SUSS MicroTec. Inc., Germany). Initially, a built-in shadow 

mask was fabricated to facilitate the selective heater layer coating on it (Figure S1a). A 1 μm-

thick SiO2 insulation layer was grown on a 6-inch Si wafer using wet oxidation. Subsequently, a 

SiO2 etch mask was patterned through buffered oxide etching (BOE, Baker Chemical Co., Ltd., 

USA) under a positive photoresist (AZ-5214E, AZ Electronic Materials, USA) mask. The Si 

substrate was then etched in an isotropic manner under a SiO2 mask using deep reactive ion etching 

(Tegal 200 SE DRIE, Tegal Corp., USA), forming a built-in shadow mask comprising SiO2 eaves 
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and Si undercut structures (Figure S2f inset). Above this built-in shadow mask, a suspended 1D 

carbon backbone was fabricated using C-MEMS, involving two successive photolithography steps 

and a single pyrolysis process (Figure S1b). A 23 μm-thick negative photoresist (SU-8 2025, 

MicroChem Corp., USA) was spin-coated onto the substrate and soft-baked. This negative 

photoresist layer was UV-exposed (250 mJ cm-2) entirely from top to bottom to produce polymer 

post structures. A subsequent second UV exposure with a lower dose (10 mJ cm-2) was performed 

between the pre-exposed post structures to form a suspended micrometer-sized polymer wire. 

After post-exposure baking, a monolithic polymer structure consisting of a micrometer-sized 

suspended polymer wire and polymer posts was formed through a single development step. This 

monolithic polymer structure was then carbonized by pyrolysis at 600 °C in a vacuum furnace. A 

gold heater line was selectively coated on the suspended carbon backbone by photolithography 

(NR9-8000) and e-beam evaporation (10 nm Cr/50 nm Au), as shown in Figure S1c. After 

removing the negative photoresist layer, a 50 nm-thick HfO2 insulation layer was deposited on the 

entire substrate via atomic layer deposition (Lucida D100, NCD Co., Ltd., Republic of Korea). 

The HfO2 layer was patterned using photolithography and reactive ion etching processes for 

electrical connection to the nanoheater (Figure S1d). Sensor electrode leads (20 nm Cr/200 nm 

Au) for connection to the sensing material (ZnO NWs) were patterned similarly to the patterning 

process of the heater electrodes (Figure S1e). Finally, ZnO NWs were regioselectively grown in 

the central 60 μm of the nanoheater through selective seed layer deposition and hydrothermal 

growth (Figure S1f). A ZnO seed layer (thickness = 20 nm) was deposited via RF sputtering (SRN-

120, Sorona Co., Ltd., Republic of Korea), and ZnO NWs were grown using zinc nitrate 

hexahydrate (Zn(NO3)2·6H2O, Sigma-Aldrich, USA) and hexamethylenetetramine (HMTA, 

(CH2)6N4, Sigma-Aldrich, USA) in deionized water in an autoclave system. For the selective seed 
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layer deposition, a positive photoresist (AZ 9260) mask was patterned before the seed layer 

deposition, ensuring that the photoresist remained below the suspended nanoheater by controlling 

the UV exposure energy. 

Characterization of Morphology and Material Composition. The morphology of the sensor 

was characterized using SEM (Quanta 200, FEI, USA). The chemical composition of the present 

sensor was analyzed using EDS (Silicon Drift Detect–X-MAXN, Oxford Instruments plc, UK). 

XPS (K-alpha, ThermoFisher Scientific Corp., USA) analysis was performed to determine the 

chemical states and compositions of the ZnO NWs and pyrolyzed carbon. 

Experimental Setup for the Gas Sensor Test. In the gas sensor test, the target gas 

concentration was controlled by mixing the gas with compressed dry air using mass flow 

controllers (GMC1200, Atovac, Republic of Korea), as shown in Figure S9. The ZnO NW 

network was heated by applying a square current wave (Agilent 33220A, Agilent Technologies, 

Inc., USA) to the 1D nanoheater. Simultaneously, the change in the ZnO NW network resistance 

was monitored using a source meter (Keithley 2450, Keithley Instruments, Inc., USA). The 

thermal time constant of the nanoheater was evaluated in dry air at RT using a pulsed current signal 

(0.1–4 mA, 0.001–1000 Hz) generated from a current source (Keithley 6221 AC and DC source, 

Keithley Instruments, Inc., USA). The heating/cooling rate of the ZnO NWs was measured by 

recording the voltage output every 10 ns with an oscilloscope (DSO7032A InfiniiVision, Agilent 

Technologies, Inc., USA), while a constant current (100 nA) from a current source (Keithley 2450, 

Keithley Instruments, Inc., USA) flowed through the ZnO NWs. 

Deep-learning-based Gas Prediction. A CNN model was constructed using Python and open-

source libraries. TensorFlow (Google, USA) was used as the primary ML framework. The training 
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of the CNN model and the analysis of the gas sensing results were conducted in a high-performance 

computing environment, utilizing a GeForce RTX 3050 GPU (NVIDIA, USA). 

 

CONCLUSION 

This study successfully addressed the challenges of high power consumption and limited 

selectivity of conventional MOS gas sensors by implementing a nanoheater-embedded gas sensor 

driven by duty cycling. Our approach, involving the supply of repeated pulsed-power inputs to the 

suspended 1D nanoheater, effectively decoupled the effects of temperature and surface charge 

exchange on the sensor's response. This was due to the nanoheater’s thermal response being 

significantly faster than redox kinetics, providing a dual-response sensing signal within a single 

time domain. The distinctive features extracted from the dual responses, including the ratio of data 

at power-off and power-on states according to gas types and concentrations, remained 

distinguishable even after signal normalization for deep learning efficiency and stability. This 

enabled the real-time identification of five gas types (air, NO2, SO2, CO, and H2) and their 

concentrations through a CNN. Moreover, the combination of ultra-small size and ultra-fast 

switching capability enabled the sensor to operate with extremely low power consumption (160 

μW) under duty-cycling mode without significantly compromising sensor performance. This level 

of power efficiency surpasses that of state-of-the-art e-nose systems. In addition, the MOS 

nanomaterial-based sensors built on a suspended 1D nanoheater were manufactured using wafer-

level batch microfabrication processes despite their complex 3D mixed-scale architecture. These 

advantages of the duty-cycling-driven, single-sensor-based e-nose system offer a promising 
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solution for a cost-effective implementation of real-time gas monitoring systems capable of 

operating at ultralow power, which are well-suited for battery-driven mobile and IoT systems. 
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Supplementary Note 

 

Convolutional Neural Network (CNN) for Image Processing 

Convolutional neural networks (CNNs) are algorithms used for processing high-dimensional 

data, such as in image recognition. CNNs exhibit exceptional performance in recognizing local 

patterns and features within images. Through the convolution and pooling layers, small portions 

of images are investigated, features are detected, and overall image characteristics are learned.1 

This enables CNNs to effectively recognize features, even when the position of objects changes 

within the image. The convolution and pooling processes maintain the spatial information and 

structural layout of images while extracting features.2 Consequently, CNNs excel in tasks such as 

image classification, object detection, and segmentation. They are also effective in preventing 

overfitting. Techniques such as dropout are employed in CNNs to prevent overfitting, where 

random neurons are deactivated during training, enhancing generalization performance.2 The 

feature extraction process mainly involves two key techniques: First, the convolution process 

applies filters to images to detect features. Second, the pooling process, conducted after 

convolution, extracts features and reduces the map size to attain lower computational complexity.3 
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Supplementary figures 

 

Figure S1. Schematic of the fabrication steps of a metal-oxide nanowire-based gas sensor with an 

embedded nanoheater: (a) Formation of the built-in shadow mask through isotropic silicon etching 

under a SiO2 etch mask; (b) fabrication of a suspended carbon nanowire backbone; (c) integration 

of the nanoheater via selective Au layer deposition; (d) deposition and patterning of a HfO2 

insulation layer; (e) patterning of sensor electrodes (Au) for measuring the electrical resistance of 

the localized ZnO NW network; (f) localized growth of ZnO NWs. 
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Figure S2. Scanning electron microscopy images of a suspended metal-oxide nanowire-based gas 

sensor with an embedded nanoheater: (a) Overall sensor configuration; (b–e) corresponding 

enlarged top views; (f, g) bird’s-eye views of the suspended 1D structure (inset in (f): enlarged 

view of the built-in shadow mask, scale bar: 10 μm).  
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Figure S3. Schematic of selective metal coating on a 1D carbon nanostructure using a built-in 

shadow mask and an evaporation method: patterned photoresist mask over the carbon nanowire 

and built-in shadow mask (a) before and (b) after metal deposition; (c) the selectively metal-coated 

carbon nanowire following photoresist removal (wp: width of the photoresist mask, wb: width of 

the built-in shadow mask). 
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Figure S4. Diagrams illustrating the dependency of the sensor signals on the number of readout 

points in duty-cycling mode. The left diagrams show the heater’s pulsed-voltage input (VHeater), 

and the right diagrams display the corresponding sensor signal (IMOS). Red diamonds represent 

readout data points. 
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Figure S5. Transient dual-response current signals measured at various concentrations of reducing 

gases, including SO2, CO, and H2, under different power conditions ranging from 100 to 160 μW. 
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Figure S6. Comparison of gas (NO2, CO, SO2, and H2) responses at (a) HT, (b) RT, and (c) their 

ratio (RT/HT) with respect to power consumption and concentration.  
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Figure S7. Evaluation of the effectiveness of gas identification using dual-response signals from 

a single MOS sensor through a CNN algorithm: (a) classification accuracy, (b) total loss, (c) 

classification loss, and (d) regression loss according to the number of epochs. 
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Figure S8. Confusion matrices of gas type identification for two time windows (30 and 120 s) 

obtained from (a) HT, (b) RT, (c) balanced RT, and (d) HT+RT data sets. 
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Figure S9. Gas sensing test setup.  



 66 

Table S1. Comparison of the proposed and state-of-the-art duty-cycled MOS gas sensors. 

Sensor type 
Heater size 

(W × L × T) [µm] 

Thermal time 

constants 

(heating/cooling) 

[μs] 

Duty cycle 

[%] 

Power 

consumption 

[mW] 

Reference 

Chemiresistor 20 × 30 × 1 
< 1000 

(heating) 
- 2.51 [14] 

Chemiresistor 20 × 50 × 0.46 76/33  16.6 
2.1 

**12.1 
[16] 

Chemiresistor 40 × 40 × 40 - 20 - [17] 

Chemiresistor 40 × 40 × 40 - 20 - [45] 

FET 2 × 38 × 1.1 115/60 50 
1 

**2 
[46] 

Chemiresistor 0.25 × 60 × 0.5 5/10 5 
0.09 

**1.8 
This Work 

**This value is calculated for the case of continuous heating. 
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