
ON POTENTIAL DENSITY OF INTEGRAL POINTS ON THE
COMPLEMENT OF SOME SUBVARIETIES IN THE PROJECTIVE

SPACE

TERANISHI MOTOYA

Abstract. We study some density results for integral points on the complement of
a closed subvariety in the n-dimensional projective space over a number field. For
instance, we consider a subvariety whose components consist of n−1 hyperplanes plus
one smooth quadric hypersurface in general position, or four hyperplanes in general
position plus a finite number of concurrent straight lines. In these cases, under some
conditions on intersection, we show that the integral points on the complements are
potentially dense. Our results are generalizations of Corvaja–Zucconi’s results for
complements of subvarieties in the two or three dimensional projective space.

1. Introduction

One of the central problems in Diophantine Geometry is to describe the set of
integral points on varieties defined over a number field K. Let S be a set of places
of K, containing all infinite ones. As in the celebrated Siegel’s theorem on integral
points, proving that the S-integral points on an affine smooth curve of genus ≥ 1 are
always finite, the abundancy for integral points has been thought to be concerned with
geometric nature.

In this paper, we are especially interested in seeking for a sufficient condition for
potential density of integral points on varieties written as complements of subvarieties
in the projective space, which means that they become Zariski dense after a finite
extension of the ground field and the set S.

Several conjectures and results for special cases of them are provided on the problems
of potential density of integral points. In this paper, we are interested in the following
two conjectures.

Conjecture 1.1 ([HT01]). Let (X,D) be a pair with X a smooth projective vari-
ety and D a reduced effective anticanonical divisor with at most normal crossings
singularities. Are the integral points on X \D potentially dense?

Conjecture 1.2 (The Puncturing Conjecture, [HT01], [CZ23]). Let X be a smooth
(quasi-)projective variety over a number field K and Z a subvariety of codimension
≥ 2. Assume that the rational points on X are potentially dense. Are the integral
points on X \ Z are potentially dense?

Much of results are known for 2 or 3-dimension. For example, Conjecture 1.1 is
proved for X smooth del Pezzo surfaces (see [Coc23], [HT01]), for X elliptic K3 sur-
faces (see [BT00], [LN22]) and for some Fano 3-fold or complements in P3 [CZ23].
Conjecture 1.2 is proved for varieties in some class containing toric varieties [HT01],
for some Fano 3-fold [MR22]. Besides, there is a work by Levin and Yasufuku [LY19]
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Figure 1. D = H1 +H2 +Q in Theorem 1.3 (n = 3)

which studies potential density of an affine surface X given as the complement in a
curve in P2 via its logarithmic kodaira dimension κ(X). Note that Conjecture 1.1 is
contained in the case κ(X) = 0.
Our interest is to study these two conjectures for X = Pn

K , and we proved the
following theorem.

Theorem 1.3. Let n ≥ 2, and D be a divisor on Pn
K of the following form:

D = H1 + · · ·+Hn−1 +Q.

Here, H1, . . . , Hn−1 ⊂ Pn
K are hyperplanes over a number field K in general position

and Q is a smooth quadric hypersurface over K. Suppose that the line L := H1 ∩
· · · ∩Hn−1 and Q have two K-rational intersection point.Then the integral points on
Pn
K \D are potentially dense.

Theorem 1.4. Let D ⊂ P3
K be a closed subvariety of the following form:

D = H1 +H2 +H3 +H4 + L1 + · · ·+ Lr

Here, H1, . . . , H4 are hyperplanes over K in general position, and L1, . . . , Lr are con-
current lines over K passing through a common K-ratinal point p. Suppose also that
each of L1, . . . , Lr does not intersect the 6 lines

⋃
1≤i<j≤4Hi ∩Hj. Then the integral

points on P3
K \D are potentially dense.

Theorem 1.3 is a higher dimensional generalization of a result obtained by Corvaja-
Zucconi [CZ23, Theorem 3.3.2]. The strategy of our proof of Theorem 1.3 is similar
to Corvaja–Zucconi’s proof. The key step is to find sufficiently many straight lines
intersecting D in two coprime points and to apply a lemma of Beukers [Beu95] (see
Proposition 3.1) to search for infinitely many integral points lying on a straight line.

Theorem 1.4 proves the puncturing conjecture for X = P3
K and Z a finite number

of concurrent straight lines with some condition on their intersection, but note that
this result is true by the case of toric varieties in [HT01]. The motivation behind this
theorem is to give a similar proof of Corvaja-Zucconi’s result [CZ23, Lemma 3.2.1],
which
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Figure 2. D = H1 +H2 +H3 +H4 + L1 + L2 in Theorem 1.4.

we directly construct sufficiently many S-integral points by using appropriate S-
units for their coordinates. The condition on the intersection of L1, . . . , Lr and

⋃
1≤i<j≤4Hi∩

Hj is necessary for our constructions of integral points.
The organization of this paper is as follows. In Section 2, we review some basic

about integral points on varieties. In Section 3, we review a lemma of Beukers on
integral points on straight lines. In Section 4, we prove the main theorems of this
paper and mention its generalization.

2. Preliminaries

This section is included to recall some basic definitions such as integral points on
varieties. Our main reference is [Cor16].

2.1. Notation.

• K is a number field, and OK is the ring of integers.
• MK is the set of all places of K, Mfin

K is the set of all finite ones, and M∞
K is

the set of all infinite ones.
• S is a finite set of places of K, and we always suppose that S contains the
infinite ones.

• OS := {x ∈ K | v(x) ≥ 0 for all v /∈ S } is the ring of S-integers.
• Ov := {x ∈ K | v(x) ≥ 0 } is the valuation ring at a finite place v with its
maximal ideal mv := {x ∈ K | v(x) > 0 }. Let kv := Ov/mv be the residue
field of Ov.

• By a variety we shall mean a separated and finite type scheme over a field k.
The set of k-rational points is denoted by X(k). For quasi-projective varieties,
we often specify a closed immersion to the projective space.

• For a homogeneous ideal I of the polynomial ring k[X0, . . . , Xn] over a field k,
the zero set of I in Pn

k is denoted by V+(I).
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2.2. Reduction of a subvariety. We recall the notion of the reduction of a sub-
variety on the projective space Pn

K over a number field K. This is necessary for our
definition of integral points.

Definition 2.1 ([Cor16, Section 1.1]). Let Z ⊂ Pn
K be a subvariety over K defined by

the radical homogeneous ideal I of K[X0, . . . , Xn]. Let v ∈ Mfin
K . The reduction of Z

at v is the subvariety Zv ⊂ Pn
kv

defined by the ideal obtained by the canonical image
of Iv := I ∩ Ov[X0, . . . Xn] in kv[X0, . . . , Xn].

Definition 2.2. We denote by xv the reduction of a point x ∈ Pn
K(K) at v ∈ MK .

When xv ∈ Zv, we say that x ∈ Pn
K(K) reduces to Z at v.

Example 2.3. Let I = (XY − 4Z2) ⊂ Q[X, Y, Z] be an ideal. The curve V+(I) is
an irreducible conic over Q. The reduction of V+(I) ⊂ P2

Q at the 2-adic valuation

v ∈ Mfin
Q is

V+(Ivkv[X, Y, Z]) = V+((XY )F2[X, Y, Z]) ⊂ P2
F2

This is a reducible curve whose components are two lines over F2.

Remark 2.4. In the language of scheme theory, Zv is naturally constructed as follows.
Let Pn

OK
= ProjOK [X0, . . . , Xn] be the projective space over OK . We have an em-

bedding of Z in the generic fiber Pn
K , and we construct Zv as the special fiber at pv ∈

SpecOK (where pvOv = mv) of the Zariski closure Z of Z in Pn
OK

. Indeed, if Z = V+(I)
where I is a homogeneous ideal of K[X0, . . . , Xn], then Z = V+(I ∩ OK [X0, . . . , Xn])
and Zv is the closed fiber of Z at v, i.e.,

Z ×OK
Spec kv = Proj (kv[X0, . . . , Xn]/Ivkv[X0, . . . , Xn]).

For two closed subvarieties Z,W ⊂ Pn
K , taking their (scheme theoretic) intersection

does not necessarily commute with taking their reduction. In other words, there is a
possibility that we have (Z ∩W )v ⊊ Zv ∩Wv for some place v ∈ Mfin

K because we may
have

(I(Z) + I(W )) ∩ Ov[X0, . . . , Xn]

⊋ (I(Z) ∩ Ov[X0, . . . , Xn]) + (I(W ) ∩ Ov[X0, . . . , Xn])

where I(Z), I(W ) ⊂ K[X0, . . . , Xn] are the homogeneous ideals of Z,W , respectively.
However, we may see that this occurs at only a finite number of places.

Lemma 2.5. Let Z,W ⊂ Pn
K be a closed subset over K. Then the set

S = { v ∈ Mfin
K | (Z ∩W )v ⊊ Zv ∩Wv } ∪M∞

K

is finite.

Proof. Let Z = V+(I), W = V+(J) where I, J ⊂ K[X0, . . . , Xn] are homogeneous
ideals. Consider the quotient OK [X0, . . . , Xn]-module

M :=
(I + J) ∩ OK [X0, . . . , Xn]

(I ∩ OK [X0, . . . , Xn]) + (J ∩ OK [X0, . . . , Xn])
.
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Let T := OK \ { 0 } be a multiplicatively closed set of OK [X0, . . . , Xn]. Then we have

T−1M = M ⊗OK [X0,...,Xn] K[X0, . . . , Xn]

∼=
T−1((I + J) ∩ OK [X0, . . . , Xn])

T−1(I ∩ OK [X0, . . . , Xn]) + T−1(J ∩ OK [X0, . . . , Xn])

= (I + J)/(I + J)

= 0.

Here, the third equality follows from the fact that an ideal of T−1OK [X0, . . . , Xn] =
K[X0, . . . , Xn] is the extension of an ideal of OK [X0, . . . , Xn] (see [AM69, Proposition
3.11 (i)]). Since OK [X0, . . . , Xn] is a noetherian ring, the module M is finitely gener-
ated over OK [X0, . . . , Xn]. Hence we may find t ∈ T such that tM = 0. Now, let us
define the set S ′ as

S ′ := M∞
K ∪ { v ∈ Mfin

K | v(t) > 0 } ,
and let Iv, Jv and (I + J)v are ideals of Ov[X0, . . . , Xn] as in Definition 2.1. Then, t is
a unit in Ov for any v /∈ S ′, and hence we have

M ⊗OK [X0,...,Xn] Ov[X0, . . . , Xn]

=
(I + J)v ∩ OK [X0, . . . , Xn]

(Iv ∩ OK [X0, . . . , Xn]) + (Jv ∩ OK [X0, . . . , Xn])
⊗OK [X0,...,Xn] Ov[X0, . . . , Xn]

=
(I + J)v
Iv + Jv

= 0.

Therefore, it follows that the set S is contained in the finite set S ′. □

2.3. Potential density of integral points. Let us review some basic results of
integral points on varieties and the notion of its potential density.

Definition 2.6. Let X ⊂ Pn
K be a quasi-projective variety, let D ⊂ X be a proper

closed subvariety over K, and let X̃ ⊂ Pn
K be the Zariski closure of X. We say that

a K-rational point x ∈ X(K) is an S-integral point on X \D if x does not reduce to

D ∪ (X̃ \ X) at all finite places outside S. We write the set of S-integral points on
X \D by (X \D)(OS). If D = { y } is a single point and if x is an S-integral point on
X \ { y }, we say that x and y are S-coprime.

We also include the definition of integral points on quasi-projective varieties. Note
that K-rational points are exactly M∞

K -integral points with D empty. When D is a
divisor, it is called the divisor at infinity.

Remark 2.7. For different definitions of integral points, see [CZ18] for example.

As with rational points, we may think of the quantitative study of interal points
such as its density or degeneracy. We are interested in the density of integral points
after an enlargement of K and S.

Definition 2.8. Let X ⊂ Pn
K be a projective variety over K, and D ⊂ X be a proper

closed subvariety over K. We say that the integral points on X \ D are potentially
dense if there exists a finite extension K ′ of K and a finite set S ′ containing all the
places lying over those of S such that (X \D)(OS′) is Zariski dense in X(K ′).
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For integral points on an affine variety, in other words if D is the “hyperplane
at infinity” of the projective space, we may see a naive definition of integral points.
Namely, they are the points with S-integer coordinates.

Proposition 2.9. Let X ⊂ Pn
K be a variety over K, and let D be a divisor given by

D = { [X0 : · · · : XN ] ∈ X(K) | XN = 0 } .

For a K-rational point

x := [x0 : · · · : xN−1 : 1] ∈ (X \D)(K),

the following are equivalent.

(i) The point x is an S-integral point on X \D.
(ii) xi ∈ OS for all i ∈ { 0, 1, . . . , N − 1 }.

Proof. Let πv be a uniformalizer of mv, and let xN = 1. Suppose (i), and suppose
that xi /∈ OS for some i. Then for some places v /∈ S, the minimum of valuations
e := min

0≤i≤N
v(xi) is smaller than 0. So we have

xv = [x0π
−e
v : · · · : xN−1π

−e
v : π−e

v ]v

= [x0π
−e
v : · · · : xN−1π

−e
v : 0]v,

and hence x reduces to D at v, a contradiction. Conversely, suppose (ii). Then for
all places v of K outside S, we have e = v(1) = 0. Therefore, the reduction xv is
exactly

xv = [x0 mod mv : · · · : 1 mod mv] /∈ Dv,

and hence x is an S-integral point on X \D. □

In a similar way, we can prove the following:

Proposition 2.10. Let X ⊂ Pn
K be a variety over K, and let D be a divisor given by

D = { [X0 : · · · : XN ] ∈ X(K) | X0X1 . . . XN−1XN = 0 } .

For a K-rational point

x := [x0 : · · · : xN−1 : 1] ∈ (X \D)(K),

the following are equivalent.

(i) x is an S-integral point on X \D.
(ii) xi ∈ O∗

S for all i ∈ { 0, 1, . . . , N − 1 }.
In particular, if O∗

S is of infinite group, the set (Pn
K \D)(OS) is Zariski dense in Pn

K .

The property that two K-rational points are S-coprime can be described in an
algebraic way.

Proposition 2.11. Let x = [x0 : · · · : xn] and y = [y0 : · · · : yn] be K-rational points
in Pn

K . Then the following is equivalent.

(1) x and y are S-coprime.
(2) For any v /∈ S, the following equation of fractional ideals of Ov holds.

(2.1)
∑
i,j

(xiyj − xjyi)Ov = (x0, x1, . . . , xn)(y0, y1, . . . , yn)Ov
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Proof. Let π be a uniformalizer of the maximal ideal mv, and let

m1 = min { v(x0), . . . , v(xn) }, m2 = min { v(y0), . . . , v(yn) }.
Suppose (1), then

[x0π−m1 : x1π−m1 : · · · : xnπ−m1 ] ̸= [y0π−m2 : y1π−m2 : · · · : ynπ−m2 ].

Here, a denotes the canonical class of a ∈ OS in the residue field kv. So, there exists
some i′, j′ such that

(xi′π−m2) · (yj′π−m1)− (xj′π−m2) · (yi′π−m1) ̸= 0

in kv. This is equivalent to v(xi′yj′ − xj′yi′) = m1 + m2. For other i, j we have
v(xiyj − xjyi) ≥ m1 + m2 by the definition of m1 and m2. Thus (2) holds. The
converse is also true by the same argument. □

To handle integral points or their reduction in a geometric way, it is more convenient
to use the definition of integral points as OS-sections of arithmetic varieties.

Proposition 2.12. Let X̃ ⊂ Pn
K be a projective variety, and let D ⊂ X̃ be a closed

subvariety, both defined over K. Let X ⊂ Pn
OS

be the closure of generic fiber X̃. Let
D be the Zariski closure of D. Then we have a bijection

{S-integral points on X̃ \D } 1:1−→ { sections SpecOS → X \ D } .

Proof. When we have a rational point x of X̃, we obtain a morphism

SpecK → X̃ = X ×OS
SpecK → X .

The structure map X → SpecOS is proper because it factors as X → Pn
OS

→ SpecOS.

Hence, we obtain a unique morphism SpecOv → X̃ commuting the following diagram
by the valuative criterion of properness ([Har77, Corollary II.4.8]).

SpecK

��

x // X

��
SpecOv

//

88

SpecOS

The morphism SpecOv → X is extended to some open set of SpecOS ([Liu02, Exercise
3.2.4]). So, we obtain a morphism SpecOS → X by gluing extensions of SpecOv → X
for all v /∈ S (They can be glued by uniqueness).

For now, let x ∈ (X̃ \ D)(OS). Denote also x as the morphism SpecOS → X we
have obtained. The reduction xv at v /∈ S is the specialization

Spec kv → SpecOS → Xv.

By assumption, the image point of xv : SpecOS → Xv is not contained in Dv (see
Remark 2.4). Therefore, x induces a section Φ(x) : SpecOS → X \ D.

Conversely, given a section s : SpecOS → X \ D, we naturally obtain a rational
point Ψ(s) : SpecK → X by considering following composition:

Ψ(s) : SpecK
can.−−→ SpecOS ×OS

SpecK

−→ (X \ D)×OS
SpecK

imm.−−−→ X ×OS
SpecK

∼=−→ X.

It is easy to show that Ψ(Φ(x)) = x and Φ(Ψ(s)) = s. □
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We conclude this section with referring to facts about potential density of integral
points. The following gives a bound on the number of components to have a potentially
dense set of integral points.

Proposition 2.13 ([NW02, Theorem 1.2], [Cor16, Section 5.4]). Let X̃ be a smooth

projective variety over K. Let q(X̃) be its irregularity and ρ(X̃) be the rank of its

Néron-Severi group. Let D1, . . . , Dl be hypersurfaces of X̃ in general position. If

l > dim X̃ + ρ(X̃)− q(X̃), then the set (X̃ \ (D1 ∪ · · · ∪Dl))(OS) is not Zariski dense
for any ring of S-integers OS.

Example 2.14. Let X̃ = Pn
K and D a divisor with l irreducible component in general

position. If l > n+ 1, then the integral points on Pn
K \D is not potentially dense.

Our Theorem 1.4 is a partial generalization of the following.

Proposition 2.15 ([CZ23, Lemma 3.1.1]). Let Y ⊂ P2
K be the closed subvariety

formed by the union of three lines in general position and a finite set of points outside
the three lines. Then the integral points on P2

K \ Y are potentially dense.

2.4. Behaviour of integral points under morphisms. The goal of this section
is to illustrate that having a potentially dense set of integral points is an isomorphic
invariant of quasi-projective varieties.

It is possible for two isomorphic quasi-projective varieties over K to have different
numbers of integer points.

Example 2.16. Consider the two plane conics

C1 := { [X0 : X1 : X2] | X0X1 = X2
2 } ,

C2 := { [X0 : X1 : X2] | X0X1 = 2X2
2 } ,

and let D be the line V+(X2) in P2
K . Although the two curves C1 and C2 are isomorphic

over Q and there is an isomorphism [X0 : X1 : X2] 7→ [2X0 : X1 : X2] fixing D, the
number of integral points (Z-points) of them are different. Indeed, we have

(C1 \D)(Z) = { [1 : 1 : 1], [−1 : −1 : 1] }
(C2 \D)(Z) = { [1 : 2 : 1], [2 : 1 : 1], [−1 : −2 : 1], [−2 : −1 : 1] } .

However, if the set S ⊂ MQ contains the 2-adic valuation, we obtain a bijection of
S-integral points.

As can be seen from the example above, when we study integral points by sending
to other quasi-projective varieties with a morphism over K, we have to care about
the coefficients of its local representation, because it is not necessarily extended to
a morphism over OK . However, we may see that the morphism is extended to a
morphism over OS for some finite set S ⊂ MK containing all infinite places, and hence
S-integral points on the domain should be sent to those on the target. Namely,

Proposition 2.17 ([Cor16, Section 1.3]). Let X̃1 ⊂ Pn
K and X̃2 ⊂ Pm

K be quasi-

projective varieties, and let D1 ⊂ X̃1 and D2 ⊂ X̃2 be divisors, all defined over a

number field K. Let π : X̃1 → X̃2 be a K-morphism such that π−1(D2) = D1.

Enlarging S if necessary, π sends S-integral points on X̃1 \D1 to S-integral points on

X̃2 \D2, i.e., we have

π((X̃1 \D1)(OS)) ⊂ (X̃2 \D2)(OS).
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Proof. Consider an affine open subset U ⊂ X1 \ D1 and V ⊂ X2 \ D2 such that
π(U) ⊂ V . Each U, V are isomorphic to a quasi-projective variety embedded in An

and Am, respectively. Then the restriction π|U : U → V is given by

π(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fk(x1, . . . , xn))

for some polynomials f1, . . . , fk ∈ K[X1, . . . , Xn]. By enlarging S, we can say that
f1, . . . , fk ∈ OS[X1, . . . , Xn]. Note that for (x1, . . . , xn) ∈ U(OS) we have xi ∈ OS

(Proposition 2.9), and so we have fi(x1, . . . , xn) ∈ OS for all i.
Since π is a glueing of finite number of restriction of the form U → V , we obtain

an OS-morphism X̃1 \ D1 → X̃2 \ D2 between OS-models, where X̃1 and X̃2 are the

closure of X̃1 and X̃2 in Pn
OS

. Therefore, π sends an OS-section s : SpecOS → X̃1 \D1

to π ◦ s, an OS-section SpecOS → X2 \ D2. □

Corollary 2.18. In the setting of Proposition 2.17, suppose also that π : X̃1 → X̃2

is dominant. If the integral points on X̃1 \ D1 are potentially dense, then those on

X̃2 \D2 are also potentially dense. In particular, if π is an isomorphism over K, the
converse is also true.

Proof. For any continuous map f : X → Y between topological spaces, the image
of a dense subset in X is also dense in the image f(X). Hence the claim holds by
dominancy of π and Proposition 2.17. □

Example 2.19 (The case of P1
K). Let n ≥ 1 be an integer. Let D ⊂ P1

K be a
divisor consisting of n distinct K-rational points. Then the integral points on P1

K \D
are potentially dense if and only if n = 1, 2. Indeed, when n ≥ 3, we can choose
coordinates in P1

K so that D contains the three points [0 : 1], [1 : 1], [1 : 0]. Then if
[x : 1] ∈ P1

K \D is an integral point, we have x ∈ O∗
S and x− 1 ∈ O∗

S. So the quantity
of integral points concerns with a unit equation U + V = 1, where U, V ∈ O∗

S. It is
known that this equation has only finitely many of solutions for any S and K (see
[HS00, Theorem D.8.1]). Hence the set (P1

K \D)(OS) is finite.

Example 2.20 (The case of (P2
K , concurrent 3 rational lines)). In Conjecture 1.1, the

singularity of a divisor D should be with at most normal crossings. Without this
condition, the conjecture becomes false. For example, let X = P2

K and let D be a
divisor consisting of concurrent three lines over K. This is the exceptional case of
[Coc23, Theorem 1.2]. The integral points on X \ D are actually not potentially
dense. Indeed, drawing lines passing through the common point of the three induces
a morphism

X \D → P1
K \ {P1, P2, P3 }

where P1, P2, P3 are distinctK-rational points. After enlarging S, this morphism sends
integral points to those on the target, but the set of integral points on the target is
finite by Example 2.19. Therefore, the set (X \D)(OS) is always contained in a finite
number of straight lines for any S and K.

Example 2.21. If an affine variety X ⊂ An
K over K admits a dominant morphism

X → C, where C ⊂ An
K is a smooth affine curve of genus ≥ 1, then the integral points

on X is not potentially dense by Siegel’s theorem on integral points.
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3. Beukers’ Lemma

3.1. Integral points on a line. In this section, we assume that OS is a principal
ideal domain. Note that OS becomes a principal ideal domain if we enlarge S so that
S contains all prime divisors appearing in a complete representative system for the
ideal class group of K, which is finite.
We shall explain a proposition on the integral points on a line, which can be used

to construct plenty of integral points on varieties. Given a straight line L over K in
the projective space Pn

K intersecting a subvariety D in two K-rational points, it is
clear that the S-integral points on the complement Pn

K \D lying on L are potentially
dense in L, because L \ (L ∩D) is isomorphic to Gm over K. In order to produce a
Zariski dense set of integral points, it is more useful if we can take S sufficiently small.
The following proposition proposes such S. Note that this is a simplified version of
[CZ23, Lemma 3.2.1]

Proposition 3.1. Let X ⊂ Pn
K be a variety over K, let L ⊂ X be a line over K, and

let D ⊂ X be a proper closed subvariety of X over K. Suppose that the intersection
L ∩ D consists of two K-rational points A and B which are S-coprime, and that
Lv ∩ Dv = {Av, Bv } for all v /∈ S. Suppose also that O∗

S is infinite and OS is a
principal ideal domain. Then the set L(K) ∩ (X \D)(OS) is infinite.

Proof. We can write A = [a0 : · · · : an] and B = [b0 : · · · : bn] with ai, bi ∈ OS for
i = 0, . . . , n. Since OS is a principal ideal domain, we may suppose that

(a0, . . . , an)OS = (b0, . . . , bn)OS = OS

as ideals of OS.
Let u ∈ O∗

S. Let us show that the point

P (u) := [ua0 + b0 : ua1 + b1 : · · · : uan + bn]

does not reduce to A and B outside S. By Proposition 2.11, we must show∑
i,j

{(uai + bi)aj − (uaj + bj)ai}OS = (ua0 + b0, . . . , uan + bn)(a0, . . . , an)∑
i,j

{(uai + bi)bj − (uaj + bj)bi}OS = (ua0 + b0, . . . , uan + bn)(b0, . . . , bn).

By assumption, (a0, . . . , an) and (b0, . . . , bn) are the unit ideal of OS. Furthermore,
the left hand sides are both

∑
i,j(aibj − ajbi) and these are the unit ideal of OS by

Proposition 2.11. So, we must show I := (ua0 + b0, . . . , uan + bn) is the unit ideal.
Suppose that mv divides I for some v /∈ S. Then (−u)ai ≡ bi (mod mv) and the
reduction of A at v is

Av = [a0 mod mv : · · · : an mod mv] = [(−u)a0 mod mv : · · · : (−u)an mod mv],

which is exactly Bv = [b0 mod mv : · · · : bn mod mv]. This contradicts with the
assumption that A and B are S-coprime. Therefore, the family {P (u) }u∈O∗

S
gives

infinitely many S-integral points on L \ {A,B }. □

Remark 3.2. For our purposes, we have considered only the case of lines in the
projective space. The assumption that OS is a principal ideal domain may be weaken,
and the same may be true for general smooth rational curves over K in Pn

K according
to [CZ23].
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As above, rational curves with one K-rational point or with two S-coprime points
at infinity which does not reduce to any curve on the divisor D are called fully integral
curves ([CZ23, Section 3.2.4]). The significance of this proposition is that we may
obtain integral points lying on a straight line without excessive enlargement of S or
K. This implies that the Zariski closure (Pn

K \D)(OS) contains the straight line.
So the potential density of integral points on varieties may be acquired if there are
sufficiently many fully integral curves. This is the key to prove our Theorem 1.3. See
also [LY19, Lemma 25] for a rigorous statement.

Remark 3.3. The potential density of fully integral curves with at least one S-integer
point is first proved by Beukers when they are embedded in P2

K (see [Beu95, Theorem
2.3]). Hassett and Tschinkel generalized to general rational curves (see [HT01, Section
5.2]). In the main theorem of [ABP09], it gives a characterization for (affine) rational
curves over K with infinitely many S-integral points.

3.2. A remark on application of Beukers’ Lemma. We should keep in mind
the difference of the two sets (L \ (L ∩D))(OS) and L(K) ∩ (X \ D)(OS). In other
words, we should note that even if a K-rational point on a line L does not reduce to
L ∩D = {A,B }, it may reduce to D \ {A,B } and may obtain no integral point on
X \D. An example is as follows.

Example 3.4. Let K = Q(
√
5), S = M∞

K . Note that O∗
S = O∗

K = {±ϵn | n ∈ Z },
where ϵ = (−1 +

√
5)/2. Let X = P2

K , and let

D := {[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 13], [ϵ : 1 : 13], [ϵ2 : 1 : 13], . . . , [ϵ27 : 1 : 13]}.
Let L be the line V+(X2). Then L ∩ D consists of two coprime K-rational points
[0 : 0 : 1] and [1 : 0 : 0]. Let w be the 13-adic valuation on K. For any v /∈ S \ {w },
we have

Lv ∩Dv = {[0 : 0 : 1], [1 : 0 : 0]},
and Lw ∩Dw consists of 30 F169-rational points. Hence we have Lv ̸⊂ Dv for all v /∈ S.
However, the set L(K) ∩ (X \D)(OK) is empty. Indeed, since we have

ϵ14 = (−13ϵ+ 8)2 ≡ −1, ϵ28 ≡ 1 (mod 13),

any integral points [u : 1 : 0] ∈ (L \ (L ∩D))(OK) reduces to D at w for all u ∈ O∗
K .

In contrast to Proposition 3.1, the condition Lv ∩Dv = {Av, Bv } does not appear
in [CZ23, Lemma 3.2.1 (b)]. It is because when D is a divisor, we can confirm the
condition Lv ∩Dv = {Av, Bv } from Lv ̸⊂ Dv. For example, let D be a quadric curve
in P2

K and L be a line in P2
K . Suppose that the intersection L ∩D consists of two S-

coprime K-rational points. Then, if we know that Lv∩Dv is zero-dimensional, we have
Lv ∩Dv = {Av, Bv }, because Lv ∩Dv already contains two points and because a line
and a quadric curve usually intersect in two points. We summarize this observation
as follows.

Proposition 3.5. Let L ⊂ Pn
K be a line over K, and let D ⊂ Pn

K be a divisor over K.
We suppose the following.

• The intersection L ∩D consists of two K-rational points A,B.
• The reduction Lv is not contained in Dv for all v /∈ S.
• The points A and B are S-coprime.
• The S-unit group O∗

S is infinite and that OS is a principal ideal domain.
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Then the set L(K) ∩ (X \D)(OS) is infinite.

Proof. SinceD is a divisor, it is defined by a degree n homogeneous polynomial overK.
Let mA and mB be the multiplicity of the intersection at A and B, respectively. Then
Lv and Dv intersect at two distinct kv-rational points Av and Bv with multiplicity
≥ mA and ≥ mB. Since mA + mB = n, both equality hold. This shows Lv ∩ Dv =
{Av, Bv }, and the proof is complete by Proposition 3.1. □

4. Main Results

In this section, we prove the main results of this paper.

4.1. Integral points on a quadric hypersurface. In this section, we study the
integral points on Q with respect to hyperplane sections. The proposition in this
section is a generalization of [CZ23, Lemma 3.3.1, Proposition 4.2.1], and is applied
in Theorem 1.3.

Let us recall assumptions in Theorem 1.3.

Assumption 4.1. Let n ≥ 2, and let D = H1 + · · ·+Hn−1 +Q, where Q is a quadric
hypersurface in Pn

K and H1, . . . , Hn−1 ⊂ Pn
K are hyperplanes in general position, all

defined over K. Let L := H1 ∩ · · · ∩ Hn−1. We assume that Q and L have two K-
rational intersection point. Let p be one of them, and assume that Q is smooth at p.
Denote TpQ as the tangent hyperplane at p.

Proposition 4.2. Let E = H1 + · · · + Hn−1. Then the integral points on Q \
(Supp(TpQ+ E) ∩Q) are potentially dense.

Proof. We may assume that the divisor TpQ+ E is reduced.
By drawing the line lq joining p and q ∈ Pn

K(K) \ { p }, we obtain a K-morphism
π : Pn

K \ { p } → Pn−1
K . The line lq intersects Q \ p in another point if and only if lq is

not contained in TpQ. So we obtain an isomorphism over K

π′ : Q \ { p }
∼=−→ Pn−1

K \ π(TpQ).

Let ΠT := π(TpQ) and let Πi := π(Hi) for 1 ≤ i ≤ n − 1. Then Πi and ΠT are
hyperplanes in Pn−1

K . The morphism π′ induces

Q \ (Supp(TpQ+ E) ∩Q)
∼=−→ Pn−1

K \ (Π1 + · · ·+Πn−1 +ΠT ).

Since the line L = H1 ∩ · · · ∩ Hn−1 intersects Q in two K-rational points, we have
L ̸⊂ TpQ. Thus, the hyperplanes H1, . . . , Hn−1 and TpQ does not contain any common
lines, or equivalently, the hyperplanes Π1, . . . ,Πn−1 and ΠT are in general position.
Therefore, we have an isomorphism

Pn−1
K \ Supp(Π1 + · · ·+Πn−1 +ΠT ) ∼= Gn−1

m

over K. Then the integral points on both sides are potentially dense, and those on
Q \ (Supp(TpQ+ E) ∩Q) are also potentially dense. □

4.2. Proof of Theorem 1.3. Applying Proposition 4.2, now we can prove Theo-
rem 1.3.
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Proof of Theorem 1.3. Let U := Q \ (Supp (TpQ+ E) ∩Q). Enlarging S, we may
assume that OS is a principal ideal domain, that O∗

S is infinite, that (TpQ)v ∩ Qv =
(TpQ∩Q)v and Ev ∩Qv = (E ∩Q)v for all v /∈ S by Lemma 2.5, and that the integral
points on U is Zariski dense in Q by Proposition 4.2.

Let q ∈ U(OS) be an integral point, and let lq be the line joining p and q. Let us
show that the line lq is fully integral. By Proposition 3.5, it is sufficient to show that
the reduction (lq)v is not contained in Dv for all v /∈ S. Indeed, the point qv ∈ Qv is
not contained in Ev ∩Qv and (TpQ)v ∩Qv for all v /∈ S by the definition of q, and it
follows that we have (lq)v ̸⊂ Ev ∪ (TpQ)v and hence (lq)v ̸⊂ Qv. Therefore, it follows
that the line lq is fully integral and the set lq(K) ∩ (Pn \D)(OS) is infinite.

Now we have following:

Z :=
⋃

q∈U(OS)

lq(K)

=
⋃

q∈U(OS)

lq(K) ∩ (Pn \D)(OS)

⊂ (Pn
K \D)(OS)

So it is sufficient to prove that Z = Pn
K . Let H be any hyperplane over K not

containing p. By considering a projection from p, we obtain a dominant morphism
f : Q \ { p } → H. The image f(U(OS)) is contained in Z and Zariski dense in H.
Therefore, Z contains

⋃
H ̸∋pH. So we obtain Z = Pn

K . □

By Theorem 1.3, we immediately obtain a generalization of [CZ23, Theorem 3.3.2].

4.3. Proof of Theorem 1.4. Let us prove our last theorem.

Proof of Theorem 1.4.
Step 1. (Coordinate change)

Changing the coordinates, we may suppose

H1 = V+(X0), H2 = V+(X1), H3 = V+(X2), H4 = V+(X3).

Then, we have

(P3
K \D)(OS) =

{ [α : β : γ : 1] ∈ P3
K(K) | α, β, γ ∈ O∗

S, (α, β, γ)v /∈ (L1 ∪ · · · ∪ Lr)v for all v /∈ S } .
Let us write Cij := Hi ∩ Hj for distinct i, j ∈ { 1, 2, 3, 4 }. We may suppose that the
intersection point p of the lines L1, . . . , Lr is in the affine open set A3

K = P3 \ V+(X3),
so let us write

p := [b : d : f : 1]

for some b, d, f ∈ K. Since L1, . . . , Lr do not intersect the three lines C12 ∪C23 ∪C13,
it follows that b, d, f are not zero. The line Li is written as

Li(K) = { [ait+ bs : cit+ ds : eit+ fs : s] | [t : s] ∈ P1
K(K) }

for some ai, ci, ei ∈ K. Note that ai, ci, ei are not zero because Li does not intersect
the three lines C14 ∪ C24 ∪ C34.

The subvariety
⋃r

i=1 Li contains (x0, x1, x2) ∈ A3
K(K) \ { p } if and only if the fol-

lowing holds:

[x0 − b : x1 − d : x2 − f ] ∈ { [ai : ci : ei] ∈ P2
K(K) | i = 1, 2, . . . , r } .
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So, the condition (α, β, γ)v /∈ Lv is equivalent to say that the point [α−b : β−d : γ−f ]
does not reduce to the right hand side.

Step 2. (Construction of integral points)
Enlarging S if necessary, we may suppose that ai, b, ci, d, ei, f ∈ O∗

S for all i ∈
{ 1, . . . , r } and that the unit group O∗

S admits elements α, β, γ of infinite order. For
integers j, k and i ∈ { 1, 2, . . . , r }, let Ii,j,k and Ij,k be the ideals of OS given by

Ii,j,k := (ei(β
j − d)− ci(γ

k − fi))OS

Ij,k :=
r∏

i=1

Ii,j,k

When the pair (j, k) satisfies Ij,k ̸= (0) and v is a place outside S, we define the integers
gv,j,k, gj,k, Nj,k as follows:

gv,j,k := min { v(βj − d), v(γk − f) },
gj,k := max

mv |Ij,k
gv,j,k,

Nj,k := #((OS/I
1+gj,k
j,k )∗).

Note that Ij,k ̸= (0) and β, d, γ, f ∈ O∗
S implies that these numbers are finite and

non-negative. Now, we construct xj,k,l for l ∈ Z as follows:

xj,k,l := (bαlNj,k , βj, γk).

Note that since b, α, β and γ are S-unit, it follows that xj,k,l does not reduce to the

four planes
⋃4

i=1Hi.
Step 3.(Integrality of xj,k,l)
Let us show that xj,k,l ∈ (P3

K \ D)(OS). By Proposition 2.11 and Step 1., it is
sufficient to show the following equation of ideals of the valuation ring Ov for all v /∈ S
and i ∈ { 1, . . . , r }:

(4.1) (bαlNj,k − b, βj − d, γk − f)Ov

= (ci(bα
lNj,k − b)−ai(β

j −d), ei(β
j −d)− ci(γ

k−f), ei(bα
lNj,k − b)−ai(γ

k−f))Ov.

We also denote mv by the maximal ideal of OS corresponding to v. If mv does not
divide Ii,j,k, then the both hand sides of Eq. (4.1) contain ei(β

j−d)−ci(γ
k−f), which

is a unit in Ov. This implies that they are unit ideal. If mv divides Ii,j,k, then we have

I
1+gj,k
j,k ⊂ I

1+gj,k
i,j,k ⊂ m

1+gv,j,k
v

and hence
bαlNj,k − b ≡ b · 1l − b ≡ 0 (mod m

1+gv,j,k
v ).

This implies v(bαlNj,k − b) > gv,j,k. Combining this inequality with ai ∈ O∗
S, we obtain

gv,j,k = min { v(βj − d), v(γk − f) }
= min { v(ci(bαlNj,k − b)− ai(β

j − d)), v(ei(bα
lNj,k − b)− ai(γ

k − f)) }.

Note also that v(ei(β
j − d)− ci(γ

k − f)) ≥ gv,j,k by the definition of gv,j,k. Therefore,
the both hand sides of Eq. (4.1) are exactly m

gv,j,k
v Ov. Hence the point xj,k,l does not

reduce to Li for all i, and is an S-integral point on P3
K \ D for a nice pair (j, k) and

l ∈ N.
Step 4. (Potential density of integral points)
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Let us fix k ∈ Z. Since β is of infinite order in O∗
S and since ei ̸= 0, all of j ∈ Z

except for at most r integers satisfies ei(β
j − d) − ci(γ

k − f) ̸= 0 for any i. This
implies Ij,k ̸= (0), and the point xj,k,l is an S-integral point on P3

K \ D for all l ∈ N.
Since α, β is also of infinite order and b ̸= 0, the set of all the points xj,k,l for such
j, l is Zariski dense in the hyperplane V+(X2 − γkX3). Therefore, it follows that the
set (P3

K \D)(OS) contains infinitely many hyperplanes
⋃

k∈Z V+(X2 − γkX3), and the
desired potential density is obtained. □

Although not contained in Theorem 1.4, the following case also may be proven:

Proposition 4.3. LetD,Hi, Li, p be as in Theorem 1.4. Suppose that p ∈ Hi∩Hj∩Hk

for some 1 ≤ i < j < k ≤ 4. Then the integral points on P3
K \D are potentially dense.

Proof. Let (i, j, k) = (1, 2, 3) for instance, and let Li ∩H4 = {xi }. Then the integral
points on

H4 \ (D ∩H4) = H4 \ ((Supp(H1 +H2 +H3) ∩H4) ∪ {x1, . . . , xr })

are potentially dense by Proposition 2.15. Enlarging the set S, we may suppose the
following:

• OS is a principal ideal domain and the unit group O∗
S is infinite.

• The set (H4 \ (H4 ∩D))(OS) is Zariski dense in H4.
• (Li)v ∩ (H4)v = (Li ∩H4)v =: { (xi)v } and pv /∈ (H4)v. (By Lemma 2.5)

Let q ∈ (H4 \ (H4 ∩D))(OS) be an integral point, and let lq be the line connecting
p and q. If qv ∈ (Li)v, then we have qv ∈ (H4)v ∩ (Li)v = { (xi)v }, a contradition.
Therefore, it follows that (lq)v ∩Dv = { pv, qv }. Since pv is different from pv ∈ (H4)v,
the straight line lq is fully integral. So we easily find that the integral points on P3

K \D
are potentially dense by applying Proposition 3.1 to the line lq. □

Note that the coordinate of the point xj,k,l we constructed in Theorem 1.4 refers
to b ∈ K, which is the first coordinate of the intersection point p of L1, . . . , Lr. So,
without the concurrency, it seems to be difficult to construct a point in the same way
as xj,k,l.

4.4. On 3-dimensional non-normal crossings cases. The condition #(L∩Q) = 2
is necessary for our proof of Theorem 1.3, because it implies that the hyperplanes
Π1, . . . ,Πn−1,ΠT are in general position. Here we work on P3, and we remove the
condition “normal crossings” of D = H1 +H2 +Q.

Let L := H1 ∩H2 be the line. We consider two cases below:

(1) L ⊂ Q.
(2) L ⊂ TpQ and L ̸⊂ Q.

For (1), we prove that the integral points on P3 \D remains to be potentially dense.
The method is the same (and even easier) as Theorem 1.3 and becomes even easier.

Proposition 4.4. LetD be a divisor on P3
K of the formD := H1+H2+Q. Here, H1, H2

are two distinct hyperplanes and Q is a smooth quadric hypersurfaces, all defined over
K. Suppose that the line L := H1 ∩H2 is contained in Q. Then the integral points of
P3 \D are potentially dense.

Proof. Let us write Q ∩Hi = L ∪ Li, where Li is a straight line distinct from L. Let
pi (i = 1, 2) be the point at which the lines intersect. Note that Hi = TpiQ. The
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projection from p1 induces isomorphisms Q \H1

∼=−→ P2 \ Π1 and

Q \ (H1 ∪H2) ∼= P2 \ (Π1 ∪ Π2) ∼= A1 ×Gm.

Thus Q \ (H1 ∪H2) has potentially dense set of S-integral points. For any S-integral
points q on the complement, let lq be the line passing through q and p1. Since (lq)v ̸⊂
(H1 ∪ H2 ∪ Q)v for all v /∈ S, we have (lq ∩ D)v = { p1v, qv } = (lq)v ∩ Dv and q, p1v
are S-coprime. By Proposition 3.5, the line lq has infinitely many S-integral points of
Q\ (H1 ∪H2). The same argument in Theorem 1.3 shows that (P3 \D)(OS) is Zariski
dense, after enlarging S so that (Q \ (H1 ∪H2))(OS) is Zariski dense. □

Example 4.5. Let H1 = V+(X1), H2 = V+(X2) and Q = V+(X0X1 + X2X3) be
smooth hypersurfaces in P3

K . Then the intersection H1 ∩H2 ∩Q = V+(X1) ∩ V+(X2)
is a line. So the integral points on P3

K \ Supp(H1 +H2 +Q)) is potentially dense.

For (2), we have not determined whether integral points are potentially dense or
not. The projection from an intersection point of components can not produce a
Zariski dense set of integral points, because the corresponding lines Π1,Π2,ΠT (see
Proposition 4.2) are concurrent. So we propose the following.

Problem 4.6. Let D be a divisor on P3
K of the form D := H1+H2+Q. Here, H1 and

H2 are two distinct hyperplanes and Q is a smooth quadric hypersurfaces, all defined
over K. Suppose that the line L := H1 ∩ H2 tangent to Q at a K-rational point. Is
the integral points of P3 \D are not potentially dense?

Since the divosor D above is not normal crossing divisor, the computation of loga-
rithmic kodaira dimension κ(P3 \D) becomes more subtle. Like as Levin-Yasufuku’s
work [LY19], a (3-dimensional) characterization of complements which connects po-
tential density to the value κ is awaited.
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