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An Explainable Deep Reinforcement Learning
Model for Warfarin Maintenance Dosing Using

Policy Distillation and Action Forging
Sadjad Anzabi Zadeh, W. Nick Street, Barrett W. Thomas

Abstract— Deep Reinforcement Learning is an effective
tool for drug dosing for chronic condition management.
However, the final protocol is generally a black box with-
out any justification for its prescribed doses. This paper
addresses this issue by proposing an explainable dosing
protocol for warfarin using a Proximal Policy Optimization
method combined with Policy Distillation. We introduce
Action Forging as an effective tool to achieve explainability.
Our focus is on the maintenance dosing protocol. Results
show that the final model is as easy to understand and
deploy as the current dosing protocols and outperforms the
baseline dosing algorithms.

Index Terms— Explainable reinforcement learning, Deep
reinforcement learning, Policy distillation, Sequential deci-
sion making, Drug dosing, Personalized medicine, Antico-
agulation

I. INTRODUCTION

F INDING the optimal sequence of actions is crucial in
many domains, including drug dosing [1] and online

advertisement [2]. Reinforcement Learning (RL), a broad term
for all the methods used to find optimal sequences of actions,
has seen dramatic successes in the past decade. Solving protein
folding problems [3] and proposing new algorithms for matrix
multiplication [4] are some of the latest examples of successful
application of RL in challenging domains. In most cases,
deep neural networks learn the optimal action/decision for
any situation. Hence they are called Deep Reinforcement
Learning (DRL). While conformance to the expected outcome
is enough in some domains, critical application domains, such
as healthcare, require a deeper understanding of the model’s
decision-making process. Explainable Reinforcement Learning
(XRL) methods attempt to replace or unravel the black box at
the heart of DRL models.

This work presents our method of building a dosing protocol
for warfarin, an anticoagulant, using XRL. DRL outperforms
supervised learning methods regarding dosing performance,
known as Percent Time in Therapeutic Range (PTTR) for
warfarin [1]. However, the model is not as available and
trustworthy as the current dosing protocols. While in common
dosing protocols, the whole protocol is visible as a formula
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or a table, the proposed DRL protocol was a black box
with no visible decision process or logic. It is, of course,
a matter of debate whether a nonlinear regression model is
interpretable or trustworthy, but the answer is obvious for
the DRL model. In this work, we use a Proximal Policy
Optimization (PPO) technique to train a deep neural network
for maintenance dosing, which determines the change in the
current dose to achieve or maintain the therapeutic effect of
warfarin. The network receives previous doses and outcomes
and returns the percentage change in the dose necessary to
achieve and maintain the therapeutic effect for the patient. We
apply numerous techniques in the training process to have a
dosing protocol that is easier to explain. We coined “action
forging” for all techniques focusing on the action space. We
use the trained DRL model to build a decision tree in the
policy distillation phase. The decision tree is then transformed
to present the final protocol as a dosing table in a form familiar
to practitioners.

The rest of this paper is organized as follows: Section II
discusses the need for better warfarin dosing protocols and
where this research fits into the current body of knowledge.
The problem is explained and formally described as an MDP
model in Section III. We lay out the experiments in Section
IV and present the results and their implications in Section V.
We conclude the study in Section VI.

II. BACKGROUND AND SIGNIFICANCE

Warfarin has been used as a common anticoagulant for
more than 60 years. While direct-acting oral anticoagulants
(DOACs) are starting to replace warfarin, warfarin is still
the first line of care in many guidelines [5] and widely
used in many parts of the world, such as in Africa [6].
Dosing of warfarin is not without its challenges. Since it
acts indirectly, patients’ diet, lifestyle, and genetic makeup
change its effect. The required dose of warfarin can vary from
patient to patient over 20 fold [7]. Moreover, warfarin has a
narrow therapeutic range with severe side effects. Overdosing
increases the chance of bleeding, and under-dosing can result
in thromboembolism [8]. All these features of warfarin make
it a perfect candidate for precision medicine [9].

Most dosing protocols for warfarin are developed using
clinical trial data and supervised learning methods. Interna-
tional Warfarin Pharmacogenetics Consortium (IWPC) is the
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biggest of such efforts, with more than 20 collaborating centers
and data on more than 6,000 patients. Their thorough use of
supervised learning methods, including regression, SVM, and
neural networks, shows that the best dosing model to find
the maintenance dose is a nonlinear regression model [10]. A
maintenance dose is a dose that will keep the patient in the
therapeutic range for a set number of days. While knowing the
maintenance dose is helpful, it will not eliminate the need for
a dosing protocol to adjust the dose whenever the blood coag-
ulability goes out of range. Healthcare providers have different
dosing protocols. In many cases, these adjustment dosing
protocols are tables in which the left column shows possible
values of blood coagulability, measured as a dimension-less
value called International Normalized Ratio (INR), and the
right column determines the percent of dose change for the
patient (see [11] for an example). In severe cases, such as
too high or too low INR values, skipping a dose or a one-
time increase in the dose might also be part of the dosing
protocol. Besides the change in the dose, these protocols
usually determine the next INR measurement interval in days.
In severe cases, the measurement and subsequent adjustment
might be required as soon as the next day. For less severe
cases, however, one week is the most common interval, and if
the patient is in the range, the subsequent measurement might
be scheduled for up to eight weeks later.

Lately, there has been growing interest in using RL for
warfarin dosing. To apply RL, we must define the system’s
state, denoted by S (what we know about the patient), and the
action we take, denoted by A (the dose and duration), which
changes the system to a new state (S′). During this process, we
observe an immediate reward (R) which reinforces whether
our actions are appropriate. A policy is any mapping from
the state space to the action space, and the goal is to find the
optimal one. There are many methods to accomplish this, with
Q-learning being one of the commonly used. In Q-learning,
we aim to learn the value of a state-action pair (Q(S,A)),
which is the expected cumulative reward if we take action A
at state S. With Q, we can enumerate all possible actions and
find the one that maximizes the expected cumulative reward,
which is considered the optimal action based on Bellman’s
optimality principle [12].

Zeng et al. (2022) proposed a DRL algorithm based on Q-
learning for in-hospital use after surgical valve replacement
[13]. This paper’s S comprises 31 demographic, comorbidity,
laboratory, and surgery-related variables. The action is the one-
day warfarin dose varying from 0 mg to 15 mg. Based on
the dataset available to the researchers, they discretized the
dose by 0.5 mg steps for quantities less than 6 mg and by
1.0 mg for higher amounts. The current INR and the next-
day INR are binned in three groups for the reward function.
The reward is a positive value for the change in INR is in the
right direction and is negative otherwise. The paper computes
the next-day INR using the k-Nearest Neighbor method. It
predicts the INR of the patient as an average of observations
close to the patient in the state space. The results show that
their proposed DRL method outperforms clinicians’ guidelines
in achieving therapeutic range faster, keeping the patients in
the therapeutic range longer, and having fewer out-of-range

incidents during care and discharge.
Similarly, Q-learning is used in [1] too. However, instead

of relying on patient data, they used a pharmacokinetic/
pharmacodynamic (PK/PD) model of warfarin to compute the
INR of patients in their study. The PK component models
how a medication is absorbed, distributed, metabolized, and
excreted, and the PD component describes how drug concen-
tration translates into the effect. The state definition is more
straightforward and includes age, CYP2C9 and VKORC1
genotypes, and previous dose and INR information. The dose
similarly ranges from 0 mg to 15 mg. and 0.5 mg is the
step throughout the range. For the reward, they propose a
normalized distance from the mean value of the therapeutic
range. While Zeng et al. prescribed the dose for a day and
measured INR the next day, Anzabi Zadeh et al. defined
the measurement points on days 2, 5, and then every seven
days. The results show how the proposed work reacts to high
INR values faster and dramatically improves Percent Time
in Therapeutic Range (PTTR) compared to commonly used
dosing protocols.

Both of the reviewed papers and most of the similar work on
the application of RL in drug dosing (See survey in [14]), are
black box models that accept the patient state and generate
the optimal recommendation. It is not easy to explain such
models, and one must check the inner workings of the models
and access the logic behind their recommendations in terms
of correctness, unbiasedness, and safety, all of which are
crucial in the healthcare domain. Despite the progress in
making supervised learning models more understandable and
interpretable, RL methods are more complex, as they involve
long-term consequences, dependency on actions and states,
and exploration of the solution space [15]. It is worth noting
that explainability and interpretability are just two of several
related concepts with contested definitions. As [16] points out,
explainability covers techniques that make non-interpretable
machine learning models explainable as a post hoc process.
According to [15], few methods are available for interpretable
RL, such as policy tree representation and relational re-
gression trees, but there are no “general interpretable well-
performing methods” for DRL. Explainable Reinforcement
Learning (XRL) is the alternative that utilizes RL to learn the
optimal policy and then attempts to explain the actions post
hoc. This paper introduces “action forging” techniques to im-
prove the DRL output regarding interpretability. Nevertheless,
the proposed techniques are pre-processing techniques for the
post hoc explanation of the policy. Therefore, we adopt the
term “explainable” in this research.

Attempts at interpretable/ explainable RL models are re-
viewed comprehensively in [17]. In their review, two particular
categories are related to what we present in this work. The goal
of “intelligibility-driven regularization” is to achieve some
notion of interpretability by introducing an additional cost
function similar to regularization in other areas of machine
learning. This approach needs more exploration in RL. In our
proposed work, we employ a form of l1−regularization to
sparsify the action space and discuss our approach to make the
action distribution smoother. While these two are similar to the
suggested regularizations, we use these techniques to achieve
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an easier-to-explain policy suitable for post hoc interpretation
and not a fully interpretable model.

The other category in [17] is “interpretable policy”, in which
the goal is to explain the learned policy using an interpretable
model. Policy Distillation (PD) matches our proposed work in
the methods reviewed in this category. In PD, as introduced
in [18], the trained model is a teacher whose knowledge will
be transferred to another network, the student. Model com-
pression and learning stabilization were PD’s main objectives
in supervised learning. However, in the context of RL, it has
also been used to build interpretable policies using decision
trees and soft decision trees [17]. Similarly, this paper is our
attempt to build an XRL model for warfarin dosing.

III. MATERIAL AND METHODS

In this section, we discuss the distinction between initial and
maintenance dosing protocols. Then we formulate the problem
of maintenance dosing and discuss the solution method. In
solving this problem, we introduce ideas and techniques to
modify the action space so that the final protocol is easier
to explain post hoc. Then we use decision trees to distill an
explainable dosing protocol from the final PPO model.

A. Problem Description

The dosing process starts with prescribing a dose followed
by adjusting the dose in the follow-up appointments. Both the
initial and adjustment doses depend on patients’ response as
measured by INR as well as patients’ characteristics, including
demographic and genetic features (Table I). In our previous
work [1], we proposed a full dosing protocol that covers
the whole dosing trial. The common practice, however, is to
consider the two dosing phases independently. The initiation
phase prescribes the dose. In contrast, the maintenance dose
determines the change in the dose. Our focus in this paper
is to design a maintenance dosing protocol using RL that is
as easy to understand and use as the current dosing protocols
while performing better than the current ones. We will use
a standard initial dosing protocol (IWPC) to start the dosing
process.

B. MDP Model

We model the maintenance dosing process as a Markov
Decision Process (MDP). Decisions are made in discrete time
points and can be one or many days apart. The first decision
point n = 1 occurs on the first day of dose adjustment, and the
second decision point is τ1 days later, where τ is the number
of days and the superscript 1 indicates the decision point. The
sequence of decisions continues by moving forward τn days
at each decision point n until we reach the end of the trial on
day T . The time between two decision points could be part
of the decision. However, we fix the intervals in our work to
simplify the problem.

At each decision point n, we need the necessary patient
information to determine the dose. This information comprises
time-invariant components, such as demographic and genetic
factors, and time-dependent features, such as the latest INR

TABLE I
CHARACTERISTICS OF THE VIRTUAL PATIENTS (ADOPTED FROM [1])

Characteristic mean±SD

Age (yr)1 67.3 ±14.43
Weight (lb)2 199.24±54.71
Height (in)3 66.78±4.31
Sex (%)

Female 53.14
Male 46.86

Race (%)
White 95.18
Black 4.25
Asian 0.39
American Indian/ Alaskan 0.18
Pacific Islander 0.0001

Tobacco (%)
No 90.33
Yes 9.66

Amiodarone (%)
No 88.45
Yes 11.54

Fluvastatin (%)
No 99.97
Yes 0.03

CY P2C9 (%)
*1/*1 67.39
*1/*2 14.86
*1/*3 9.25
*2/*2 6.51
*2/*3 1.97
*3/*34 0.00

V KORC1
G/G 38.37
G/A 44.18
A/A 17.45

1, 2, 3 Age, weight, and height are clipped to the ranges of [18,
100], [70, 500], and [45, 85], respectively, based on a dataset of
10,000 virtual patients provided by [11].
4 In the implementation, we assumed the probability of observing
this genotype to be 2.0× 10−4.

measurement and the previous dose. We define the state Sn

as a tuple including age, CYP2C9 and VKORC1 genotypes,
the latest INR measurement µn, the INR value at the previous
decision point µn−1, the latest dose dn−1 and duration τn−1.
Note that dn and τn are the next dose and duration and are
not known. As [1] shows, we can include more information by
incorporating more of the history of the dosing decisions and
INR values. However, the results showed that the improvement
from extra information is marginal. Therefore, we include
only the most recent history (the equivalent of h = 1 in that
formulation).

Sn :=
(
Age,CY P2C9, V KORC1, µn, µn−1, dn−1, τn−1

)
(1)

Since we want to find a simple, explainable dosing protocol
and the results from [1] show that we can exclude genotype
information without significant loss of performance, we focus
on training a model that relies solely on the time-variant
portion of the state definition. To avoid confusion, we denote
this definition by On since it is the observed part of the state.

On :=
(
µn, µn−1, dn−1, τn−1

)
(2)

Based on the state/observation of any given patient at
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decision point n, we define the decision xn as a tuple of
(pn, τn), where p is the percent change in the dose, and τ is
the pre-specified duration. The next dose to prescribe will be
dn = dn−1 (1 + pn). The dose can be any value in the range
of 0 mg to 15 mg. The practice of any fractional value for the
dose is common in dosing protocols, and it is the practitioners’
job to determine the actual dose for each day that is practical
and close to the prescribed dose. We administer the fractional
dose as is and do not modify it for our proposed and baseline
protocols.

The next step is to measure the INR of the patient who
received the prescribed dose. In this work, we are not dealing
with actual patients for a number of reasons. Ethics of medical
trials limits the dose prescription to values that are safe
and known to be effective to the patient, which limits RL’s
exploration of possible solutions. Moreover, DRL algorithms
require a large set of training data to converge to the optimal
solution, and clinical trials of such magnitude are not feasible.
Hence, we use a PK/PD model to simulate patients’ reponse
to warfarin.

Our MDP model receives the INR value of each patient
as exogenous information by running the PK/PD model. The
patient’s response to warfarin is not deterministic. So, along
with the effect of age and genotypes, the PK/PD incorporates
noise in concentration levels and INR measurements to ac-
count for individual differences. The PK/PD model accepts
(Age,CY P2C9, V KORC1, µn, dn, τn). It also keeps track
of the warfarin concentration from previous doses. The output
of the PK/PD is the INR values for τn days for the patient,
Wn+1 = {µn

1 , µ
n
2 , ..., µ

n
τ }. This vector is the exogenous

information in our MDP model. The last INR value is the
new observed INR (µn+1 = µn

τ ) that makes the new state
Sn+1. The rest of the values are not observable and cannot be
used to make the decision. However, we can use these values
to define the reward function and performance metrics.

The reward function provides a scalar value that shows
whether the prescribed dose improved or deteriorated the
patient’s condition. We use daily INR values (Wn+1) to
compute Euclidean distance as a penalty, and the negation of
the total penalty is our reward function. That is,

r(Sn, xn,Wn+1) = −cE

[
τn∑
t=1

ηt (µm − µn
t )

2

]
, (3)

where µm is the midpoint of the therapeutic range (2.5 in
our case). Parameter c is the normalization factor, and for our
therapeutic range of two to three, c = 4 normalizes the reward
so that the reward for both INR values of two and three is
−1.0. The parameter η differentiates this reward function from
the one proposed in [1]. That reward function is not sensitive
to the direction of change in the INR. If, for example, the
INR moves from 2.6 to 2.9 during the period τn, it indicates
worsening conditions. The reverse trend, however, shows that
the dose is moving the INR in the right direction. In the case
of the previous reward function, these two scenarios would
produce the same reward and will not guide the model to
discern good and bad dosing decisions. In the new reward
function, η is the amplifying factor; a number slightly greater

than one that penalizes moving away from µm. As we move
away from the dosing day, ηt increases, putting more weight
on the later INR differences. Note that in this formulation,
we need the exogenous information revealed after making the
decision to compute the reward. For this reason, we have
Wn+1 rather than Wn.

We define the objective function as maximizing the total
reward for all patients for the duration of the experiment. That
is:

F ⋆ = max
π∈Π

E
[ ∑
P∈Φ

∑
n

rπ(Sn
P , x

π,n,Wn+1
P )

∣∣∣S0
P

]
, (4)

where Π is the set of all possible policies, and Φ is the set of
all patients.

C. Proximal Policy Optimization

To solve the dosing problem described in the previous
section, the dosing trial starts with one of the most commonly
used dosing algorithms, IWPC [19]. Then we use Proximal
Policy Optimization (PPO) to find the optimal maintenance
dosing protocol. PPO is a policy gradient algorithm, which
means the actions are learned directly, as opposed to value
function approximation methods such as Q-learning [12], in
which the algorithm learns to assign value to state-action pairs
and then finds the action with maximum value. Since we
want to manipulate actions to generate the explainable dosing
policy, policy gradient algorithms are better options for XRL.

Implementation-wise, two separate neural networks are
trained in the PPO algorithm: the actor, which receives the
state and provides the probability distribution over all actions,
and the critic, which learns the value of each state (V (s)). The
critic is used during the training to mitigate the high variance
of the observed reward [20]. A mini-batch of observations is
fed to the model in each training iteration, and the actor and
critic are trained independently. This algorithm is an on-policy
method since the observations result from using the same PPO
model to produce the actions.

Figure 1 shows our implementation of the PPO model. The
actor consists of a set of fully-connected layers with ReLu
activation functions and one layer with linear activations. To
pick an action, the output of the linear layer passes through the
softmax function to be normalized and the action is selected.
During the training, the selection is random according to the
action distribution. In inference, we deterministically pick the
action with the highest probability. The critic has a simpler
architecture of fully-connected layers with ReLu activation
functions. The output of the critic, V (s), is used during the
training only to help with the learning process.

D. Action Forging

Moving towards explainability, we implement several
action-forging techniques. By action forging, we mean tools
and ways to change the shape of the action distribution based
on our understanding of the distribution and our goal of
achieving an explainable policy. The main premises in this
section are:
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Fig. 1. The PPO structure with Action Forging

• Fewer dose changes are preferred. Reducing dose change
frequency reduces adverse events and improves patients’
medication compliance and effectiveness [21].

• Fewer dose change options are preferred. Considering
the established protocols of dose adjustment, which are
mostly in tabular form, we want the practitioner to see a
smaller table of possible decisions to avoid mistakes and
improve the usability of the protocol. Also, in the post
hoc analysis, improved explainability can compensate for
an acceptable and marginal loss in performance.

All ideas and techniques in this section are applied to the
linear layer and its output in the actor network (Figure 1). In
other words, we change the un-normalized action probabilities,
not the normalized ones.

a) Action Regularizer: To have fewer actions, we introduce
an action regularizer. We discretize the action space, aiming
to produce a dosing protocol similar to the ones in practice.
When changing the dose, most protocols depict the logic
as a table with actions as pre-determined percent changes.
Hence, we also discretize the percent dose changes. However,
deciding which percentages to include in the action space
is challenging. A bigger action space means more freedom
for the model to choose the appropriate action. Nevertheless,
it also translates into fine-tuning the prescribed dose by the
model and increasing the number of dose changes in the course
of treatment. A smaller action space, on the other hand, will
allow us to extract clear-cut rules, but can negatively impact
the performance if the values in the action space are not
determined properly.

To let the model choose which actions work best as part
of the training process, we penalize the model’s number of
actions available to the model. This regularization eliminates
some actions from the action space. To enforce this, we
ensure the probability of those actions as an output of the
neural network is zero, irrespective of the input, which can
be achieved by forcing the weights of the respective output
neurons to zero. Since we want weights to be zero, the l2
norm of the weights of the output neurons corresponding to the
eliminated actions should be zero. Since we want to reduce the
number of actions, the penalty is an l1 regularizer. Therefore,
the action regularizer is

L :=
∥∥∥Wj∥2 ∀j ∈ {1... |Ω|}

∥∥
1

(5)

where Ω is the action space and Wj is the vector of the weights
and bias of the neuron corresponding to the jth action.

One challenge with the proposed regularizer is that an
algorithm like PPO does not generally include a mechanism
for exploration, such as ϵ–greedy, other than relying on the
action distribution. As a result, it will always explore an action
that has yet to be eliminated. When the regularizer eliminates
an action, the corresponding neuron will always generate zero
as its output. If an action is not selected, there will be no
gradient for it, and without the gradient, its probability will
not change in backpropagation. In short, an eliminated action
will never become active again. So, having a small regularizer
coefficient is imperative to ensure enough exploration and
avoid early elimination of actions.

b) Action Focus: A dosing policy comprises a logic to
choose a dose and a duration. The logic depends on the state,
and the result of the logic can be any of the permissible
actions. Sometimes, the dose change is inevitable since failure
to change the dose will place the patient out of the therapeutic
range for INR. In other instances, dose change is either the
result of the protocol being too eager to keep the INR close to
the middle point of the therapeutic range or the indifference
between adjacent dose values. We want to limit the number
of dose changes to the greatest extent possible. Hence, we
promote the action of “no dose change” (0% dose change). To
this end, we can increase the probability of this action over
other actions while allowing the model to change the dose
if necessary. So, we need to “focus” on 0% dose change by
increasing the probability of that action compared to small
dose changes and not the whole action space. A wavelet
function ψ() can provide this focus. Note that “a wavelet is a
transient waveform of finite length” [22] with applications in
wavelet analysis. In this work, we only use a wavelet to modify
the action probabilities, not as used in wavelet analysis.

During the early stages of training, applying the wavelet
will affect exploration and damage the model’s performance.
Therefore, we need a parameter to determine the shape of
the function. Early in the training, the function should be a
flat line to have no effect. Gradually the function should take
its complete form and full effect. We define this as a two-
argument function:

Ψ(ω, δ) = ω + h(δ)ψ(ω) (6)

where ω is the vector of action probabilities, δ is the training
step, h is a non-decreasing function of R → [0, 1] that deter-
mines how much effect to expect from the wavelet function,
and ψ is the wavelet function.

The wavelet we used is a piece-wise linear function with a
positive value at 0.0% action and zero or negative for the rest
of the actions.

ψ(t) =

{
u if x = 0
−d
r |x|+ d otherwise

(7)

where u is the value we want to add to the probability of no
dose change action, r is the maximum percent change, and
d determines the level of decreasing the neighboring actions
probabilities. Figure 2 shows the shape of the function for
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u = 0.2, d = −0.1, and r = 1.0 (red line) and how it changes
the probabilities of the actions (solid orange bars) to emphasize
more the zero dose change action (striped red bars). When the
model eventually learns to keep the patients in the therapeutic
range, this increase in the probability of the zero dose change
action persuades the model to pick that action more than its
neighbors. As a result, this action becomes preferred over its
close neighbors and will be the dominant action during the
inference.

Fig. 2. The effect of applying a wavelet function to the action distribution

IV. EXPERIMENTS

The 90-day dosing trial starts with the initial dosing proto-
col, IWPC, which determines the dose for the first four days.
The maintenance dosing protocol is responsible for the dosing
every seven days starting day 5. Some protocols include an
“adjustment protocol” between the initial and maintenance
dosing. In most dosing protocols, the maintenance dosing
period (post initial or post adjustment) starts later than our
proposed work (day 6 or 8 in [11]).

All trained models share a similar architecture. The actor
is a four-layer fully connected network with ReLu activation
functions in hidden layers and linear activation functions in the
last layer. A softmax function is applied to the output of the
layer to normalize the probabilities of the actions. The critic
network also has four layers but with a single output. Table II
shows all the parameters.

The action forging techniques have their hyper-parameters,
and they can interact with each other and impact the training.
We did not do a comprehensive study to find the optimal com-
bination. Instead, we start by finding the best coefficient for the
regularizer using a grid search over its coefficient. Then, we
introduce the wavelet function and adjust its parameters. For
h function, that controls the effect of wavelet, in Equation 7,
we use a two-parameter sigmoid function:

h(δ) =
1

1 + e−c1(δ−c2)
(8)

where c1 is the scaling parameter and c2 is the translation
parameter. We set these parameters in our experiments to c1 =
1e− 3 and c2 = 50.

During the training, patients are generated randomly. Patient
characteristics (Table I) show an imbalance in the distribu-
tion of CYP2C9. To account for this imbalance, we set the
minimum probability of each variant during the training to
0.1. In other words, variants “*1/*1” and “*1/*2” will have

TABLE II
EXPERIMENT SETUP

Parameter Value

Actor
layers 256, 256, 128, 64
learning rate function exponential decay (with staircase)
initial learning rate 1e− 4
learning rate steps 1, 000
learning rate decay 0.8
training iterations 20
GAE lambda 0.97
target KL divergence 0.02
entropy loss coefficient 0.0

Critic
layers 256, 256, 128, 64
learning rate function exponential decay (with staircase)
initial learning rate 1e− 5
learning rate steps 1, 000
learning rate decay 0.8
training iterations 80

Other Parameters
reward clip (−30, None)
clip ratio 0.2
discount factor 0.5
dosing duration 90 days
initial dosing IWPC
initial dosing duration 4 days
buffer size 500 observations
warm-up period 20, 000 virtual patients
test size 2, 000 virtual patients

prevalence values of 45.14% (down from 67.39) and 14.86%
(same as before), and the rest of the variants will have 10%
chance of expression. At each pass, the model interacts with
500 patients, collects the dosing trajectories to build the mini-
batch of observations, and uses it to train. The Percent Time
in Therapeutic Range (PTTR) is the performance measure
we track to ensure the training is improving. It shows the
percentage of time patients in the mini-batch were in the
therapeutic range (INR of two to three). Training starts with
a warm-up period and then stops if the model does not see an
improvement for a set number of training passes.

The results are compared with two baseline protocols.
Similar to our model’s setup, we start the baseline dosing
protocols with IWPC protocol. Both baselines utilize Lenzini
adjustment protocol [23], which includes previous INR values
as well as genetic information to adjust the dose. In the
maintenance phase, Aurora uses “Aurora best-practice stan-
dard dose warfarin therapy protocol” [11] and Intermountain
makes decisions based on “INR-based Intermountain Health-
care Chronic Anticoagulation Clinic Protocol” [24]. Both
maintenance dosing protocols rely on INR as the only factor
to determine the percent change necessary for the patient.

After training, testing, and comparing our proposed model
with the baselines, we build the explainable protocol. We rely
on Python’s sci-kit-learn package’s implemented decision tree
algorithm and default parameters. Like baseline maintenance
dosing protocols, we focus on the INR as the only covariate
to decide the dose. So, the final protocol will be a table with
INR ranges on the left side and the percentage of dose change
on the right side.
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V. RESULTS AND DISCUSSION

Table III presents the PTTR values of the base dosing
protocol (limited state definition O), the full state definition
(S), and two baseline protocols. The base model achieves an
average of 84.5% PTTR (standard deviation 0.09 percentage
points), significantly better than the baseline results. The most
significant gap is in the highly sensitive category where the
best baseline achieves the PTTR of 25.9%, almost a third
of what our proposed model can achieve. In all sensitivity
levels, the standard deviation of our proposed model is smaller
than the baselines, which indicates that more patients receive
adequate care under the proposed protocol. The full-state
model is not significantly different from the base model,
which suggests that the recent dosing history (the previous
and current INR and the previous dosing decision) provides
enough information for the model to make a sound decision.

TABLE III
PERCENT TIME IN THERAPEUTIC RANGE OF OUR MODEL VS. BASELINE

PROTOCOLS

protocol Base model Full state Aurora Intermountain
sensitivity

normal 83.8% (0.10) 82.9% (0.09) 76.4% (0.15) 64.7% (0.30)
sensitive 85.7% (0.06) 84.0% (0.08) 60.1% (0.26) 46.4% (0.34)
highly sens. 83.8% (0.09) 80.9% (0.11) 25.9% (0.21) 11.1% (0.17)

all 84.5% (0.09) 83.2% (0.09) 68.6% (0.23) 56.1% (0.34)

Table IV shows how the regularizer changes the number of
actions and the performance of the models. The base model
allows all 21 possible dose change percentages. Dealing with
the test set of 2,000 patients, the model uses seven actions
and achieves 84.5% PTTR. Note that in the test phase, we
pick the action deterministically by picking the action with
the highest probability. Therefore, even though all 21 actions
are available, only seven are used, indicating that we only
need some possible actions to perform well. The regularizer
shows its effect gradually. For small regularizer coefficients,
the number of actions used in the test set decreases. Then
the number of available actions, which is the main focus of
the regularizer, starts to diminish at higher coefficients. The
minimum happens at 0.1, where there are four actions left.
More robust regularization reverses the process and increases
the number of available actions. This behavior is because
a strong regularizer does not allow for any of the actions
to maintain a high probability. As the regularizer pushes
down all action probabilities, they all remain comparable.
As a result, all actions will have a chance to be selected
as the dosing decision. The minimum action space, which
belongs to the regularizer coefficient value of 0.1, comprises
{−60%,−10%, 50%, 90%}.

In the next step, we apply the action modifier and the
regularizer. We used the piece-wise linear function in Equa-
tion 7 with parameters depicted in Figure 2 along with the
sigmoid function with parameters c1 = 10−3 and c2 = 50.
As Table V shows, applying the action modifier forces the
model to include the 0% action, except for the situation that
the regularizer is too strict. The modified model has improved
performance for regularizer coefficients of 0.1 and 1.0 while

changing the dose less often. For the case of 0.1, in 62.2% of
the decision points over the 2,000 test patients, the decision
was to keep the dose. This number is 71.9% for the regularizer
coefficient of 1.0.

For the explainability part of the work, we chose the model
with the regularizer coefficient of 0.1, which performs better.
The actions used by this model on the test patients are
−50%, 0.0%, 60%. We applied Python’s “DecisionTreeClassi-
fier” class to the maintenance portion of dosing trajectories in
the test set with INR as the only input variable and the percent
dose change as the label. Then we manually combined similar
and redundant leaves. The final tree can fit in a simple table.
Table VI only has three decisions.

We tested all protocols on our test patients to see if this
explainable protocol could compete with the baseline proto-
cols. Since we built the explainable protocol on the test set
of the DRL model, we generated a new test dataset of 2,000
patients and compared the performances. Table VII shows that
the explainable model loses performance, especially in the
highly sensitive category, and all standard deviations are higher
than the base model. However, it outperforms all baseline
models. Our proposed explainable dosing protocol performs
better than the Aurora and Intermountain dosing protocols.
If we compare these protocols, it is clear that our proposed
protocol has fewer decisions (only three INR ranges compared
to 8 and 11 distinct decisions in Aurora and Intermountain,
respectively [11]). Two interesting observations are the cut-
off values and the percentages. In both baseline maintenance
dosing protocols, decision boundaries are arbitrary. For ex-
ample, Aurora segments the INR values into intervals of
1.0 − 1.6 − 1.8 − 2.0 − 3.0 − 3.4 − 5.0. Our explainable
protocol sets the cut-offs inside the therapeutic range (at 2.27
and 2.94) to avoid out-of-range events. Regarding the action,
the baselines have conservative dose changes: up to 10% in
Aurora and 15% in Intermountain (skipping a dose and taking
an immediate dose are the actions they have for extreme cases).
In our case, dose changes are 50% reduction and 60% increase,
translating into a faster response to changes in the patient’s
INR.

The promising dosing protocol that we proposed here should
be considered as an example of how machine learning models
can be transformed to satisfy the need for interpretable, easy
to understand, and easy to use medical solutions. The power
of this approach is in the fact that we do not impose any hard
constraints on the model (such as the number of available
decisions or the cut-off points) or incorporate direct human
input into the model (such as overriding model’s action during
the training process). Rather, we employ a two stage approach
with soft constraints and minimal guidance.

In the first stage, the DRL method is allowed to have the
freedom it needs to learn the optimal policy, but incentivized
through Action Forging to prefer a prolicy that has the poten-
tial to be explained. The second stage distills this policy into an
explainable model in the form familiar to practitioners. Such
two phase method can be applied to any sequential decision
making scenario, especially in healthcare domain where strict
standards need to be met.

There are still a number of issues and improvement poten-
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TABLE IV
PTTR AND ACTION COUNT FOR DIFFERENT REGULARIZATION COEFFICIENTS

model Base (0.0) 10−4 10−3 0.01 0.1 1
sensitivity
normal 83.8% (0.10) 84.2% (0.10) 86.6% (0.06) 84.3% (0.10) 84.6% (0.08) 79.4% (0.13)
sensitive 85.7% (0.06) 86.3% (0.06) 87.1% (0.06) 85.2% (0.08) 85.4% (0.07) 77.2% (0.12)
highly sensitive 83.3% (0.09) 85.9% (0.08) 85.1% (0.09) 79.4% (0.11) 81.5% (0.11) 63.7% (0.15)

all 84.5% (0.09) 85.1% (0.08) 86.7% (0.06) 84.4% (0.09) 84.8% (0.08) 78.0% (0.13)

number of actions 21 21 21 20 4 9
number of actions used 7 5 5 4 4 3

TABLE V
PTTR AND ACTION COUNT OF THE BASE MODEL AND DIFFERENT REGULARIZATION COEFFICIENTS WITH WAVELET (u = 0.2, d = −0.1, r = 1.0)

model Base 0.1 1.0 5.0
sensitivity
normal 83.8% (0.10) 84.4% (0.09) 84.6% (0.09) 72.3% (0.17)
sensitive 85.7% (0.06) 86.4% (0.07) 84.6% (0.09) 74.8% (0.12)
highly sensitive 83.3% (0.09) 82.0% (0.10) 75.7% (0.13) 68.6% (0.16)

all 84.5% (0.09) 85.1% (0.08) 84.3% (0.09) 73.1% (0.09)

number of actions 21 10 5 3
number of actions used 7 3 3 2
% of no change decisions 0.0% 62.2% 71.9% 0.0%

TABLE VI
THE PROPOSED EXPLAINABLE DOSING PROTOCOL

INR Range Dose Change

INR ≤ 2.27 60%
2.27 < INR ≤ 2.94 0%
2.94 < INR −50%

TABLE VII
PTTR AND ACTION COUNT OF THE EXPLAINABLE MODEL VS. BASELINE

PROTOCOLS

protocol Base Explainable model Aurora Intermountain
sensitivity

normal 83.8% (0.10) 84.0% (0.06) 76.4% (0.15) 65.2% (0.30)
sensitive 85.7% (0.06) 71.1% (0.17) 60.1% (0.26) 46.8% (0.34)
highly sens. 83.8% (0.09) 49.3% (0.19) 27.0% (0.21) 11.5% (0.17)

all 84.5% (0.09) 78.0% (0.14) 68.8% (0.23) 56.6% (0.34)

Possible Actions 21 3 8 11

tials that need to be investigated. For one, we only focused
on the dose change excluding the duration from the decision
space. The added decision dimension (duration) increases the
number of decisions dramatically, and makes the training pro-
cess more challenging and data intensive. Moreover, duration
needs a different form of Action Forging to persuade the model
to make longer decisions whenever possible.

Another subject that needs more in-depth study is the
proposed cut-offs by the model. We believe that two factors
play a role in the model’s decision. First, despite inter-
personal variations, any cohort of actual or virtual patients
might present similarities in their response to warfarin based
on the extent of diversity achieved in the dosing study. It is
possible that experimenting on a different cohort result in a
different set of cut-off values. Second, the reward function is
the guiding signal in any RL training. Our proposed reward
function penalizes out of range INR values quadratically. This

might have made the model more conservative and defining
the cut-off values inside the therapeutic range.

Finally, Action Forging is a useful technique that can take
on many forms. We only presented two techniques, action
regularizer and action focus, that were necessary in making
the final model more explainable. Depending on the use case,
novel forging techniques can be developed.

VI. CONCLUSION

In this paper, we proposed a maintenance dosing algorithm
for warfarin. We modeled the problem as an MDP with percent
change as action and used PPO to solve it. Then we used
action modifiers (regularizer and action focus) to make the
action space sparser with more focus on keeping the dose
unchanged. Finally, we applied a decision tree to dosing data
and showed that the final model could be simpler and more
effective than current dosing protocols.
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