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Martingale inequalities

Pavel Zorin-Kranich

University of Bonn, Winter term 2021/22

These lecture notes cover a few techniques for proving Lp estimates for martin-
gales and the most basic applications to Itô integration and rough paths. They have
been created for a course that consisted of 13 lectures á 90 minutes. Due to leaving
academia, I didn’t have time to polish these notes much, but you are welcome to,
because:

This work is licensed under the Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit

https://creativecommons.org/licenses/by/4.0/

or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042,
USA.

Literature There are two books whose titles include our topic [Gar73; Lon93].
They can be useful for some of the basics, but are overall outdated.

For vector-valued martingales, modern references are [Hyt+16; Pis16].
The only book about sharp constants in martingale inequalties is [Osę12].
An extensive treatment of rough paths can be found in [FH20].
One stochastic analysis text that pays attention to inequalities is [Kal21].
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0 Review of martingale basics

Random variables will be usually defined on a filtered probability space (Ω, (Fn)n∈N, µ).
We denote by F∞ the σ-algebra generated by ∪n∈NFn. The following examples are
useful to keep in mind.

Example 0.1 (Dyadic filtration). Ω = [0, 1], µ Lebesgue measure, Fn is the σ-
algebra generated by the dyadic intervals of length 2−n, that is, intervals of the
form [2−nk, 2−n(k + 1)] with k ∈ Z.

A higher dimensional version involves dyadic cubes. One can also construct
similar filtrations on more general manifolds, or even metric measure spaces.

Example 0.2 (Atomic filtrations). Ω = [0, 1], µ Lebesgue measure, Fn is a σ-algebra
generated by finitely many intervals.

We recall that an atom for a measure µ on a σ-algebra F is a set A ∈ F such
that µ(A) > 0 and, for every A′ ∈ F with A′ ⊆ A, we have µ(A′) ∈ {0, µ(A)}. In an
atomic σ-algebra, every measurable set is a finite union of atoms.

One can view martingale analysis as analysis of atomic filtrations, if we do not
allow any constants to depend on the filtration. All results that we are interested
in can be transferred from atomic filtrations to general filtrations. However, it is
technically convenient to always use general filtrations, since they can appear in
applications.

Example 0.3. Ω = [0, 1]N, µ the product of Lebesgue measures,

Fn = {B × [0, 1]{n,n+1,...} | B ⊆ [0, 1]{0,...,n−1} Borel}. (0.1)

This filtration appears in the analysis of independent random variables, and gives a
good idea of how a general filtration looks like.

An adapted process is a sequence of functions (fn) such that, for every n ∈ N,
the function fn is Fn-measurable.

An adapted process f is called predictable if, for every n > 0, the function fn is
Fn−1-measurable.

For nested σ-algebras F ′ ⊆ F on Ω, the conditional expectation is the orthogonal
projection

E(·|F ′) : L2(Ω,F , µ) → L2(Ω,F ′, µ).

The conditional expectation has the following properties. Here and later, all identities
and inequalities are meant to hold almost surely, unless mentioned otherwise.

1. E(1|F ′) = 1.

2. For every p ∈ [1,∞], E extends to a contraction Lp(F) → Lp(F ′)

3.
∫

E(f |F ′) =
∫

f for every f ∈ L1(F).

4. Positivity: f ≥ 0 =⇒ E(f |F ′) ≥ 0.

5. Assume that f ∈ L1(F), g ∈ L0(F ′), and either fg ∈ L1(F) or f ≥ 0,E(f |F ′)g ∈
L1(F ′). Then

E(fg|F ′) = E(f |F ′)g in L1(F ′).

Suppose that (X,F , µ) is a regular measure space and F ′ ⊆ F is a sub-σ-algebra.
Then there exists an essentially unique measurable map (X,F ′) → M(X), y 7→ µy

such that, for every f ∈ L1(F), for µ-a.e. y ∈ X, we have f ∈ L1(X,µy), and
∫

f dµy = E(f |F ′)(y). This map is called a measure disintegration. A measure
disintegration satisfies µx = µy for µ-a.e. y and µy-a.e. x.
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Example 0.4. If F ′ is an atomic filtration, then we can choose a collection of disjoint
atoms A ⊆ F ′ with µ(∪A∈AA) = 1. Then, for each x ∈ A ∈ A, we can set
dµx := µ(A)−1

1A dµ, and

E(f |F ′)(x) = µ(A)−1

∫

A
f(x′) dµ(x′).

Example 0.5. Let Ω = [0, 1]2 with the Lebesgue measure, F the Borel σ-algebra, and
F ′ the Borel σ-algebra in the first variable, like in (7.5). Then, we can choose µ(x,y)

to be the Lebesgue measure on {x} × [0, 1], and

E(f |F ′)(x, y) =

∫ 1

0
f(x, y′) dy′.

A martingale is an adapted process with values in C (later also in a Banach space)
such that, for every m ≤ n, the function fn is integrable, and we have

fm = E(fn|Fm).

Example 0.6. Sums of independent random variables

Example 0.7 (Dyadic martingale). Let f be an integrable function on [0, 1] with the
Lebesgue measure and fn = E(f |Fn) (the same definition works for any filtration).

This construction can often be used to transfer results from martingales to a
real analysis setting. The main difference between the analysis of dyadic martingales
and general martingales is that the Calderón–Zygmund decomposition does not work
for general martingales. A substitute that does work for general martingales is the
Gundy decomposition.

The main reason why this construction does not produce all possible martingales
is that it may happen that limn→∞‖fn‖ = ∞, in which case there might be no
function f with fn = E(f |Fn). A well-known example involves a doubling betting
strategy.

Example 0.8. Any integrable process can be written as the sum of a process with
predictable jumps and a martingale.

A stopping time is a function τ : Ω → N̄ = N ∪ {∞} such that, for every n ∈ N,
we have {τ ≤ n} ∈ Fn.

Example 0.9. Any constant function is a stopping time.

Example 0.10 (Hitting time). If f is an adapted process with values in a metric space
X and B ⊆ X is a Borel set, then

τ := inf{t | ft ∈ B}

is a stopping time, called the first hitting time of B.

If σ, τ are stopping times, then σ ∧ τ and σ ∨ τ are also stopping times.
For a stopping time τ and a process f , the stopped process f τ is defined by

f τ
t := fτ∧t.

If f is a martingale, then the stopped process f τ is again a martingale.
If τ is a stopping time, the corresponding σ-algebra is defined by

Fτ := {A ∈ F∞ | (∀n)A ∩ {τ ≤ n} ∈ Fn}.

The function τ is Fτ -measurable. We abbreviate Eτf := E(f |Fτ ).
The optional sampling theorem says that, for every discrete time martingale f ,

bounded stopping time τ , and another stopping time σ, we have

fσ∧τ = Eσfτ .
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1 Maximal and square functions

You are probably already familiar with the Lebesgue differentialtion theorem. The
best proof of that theorem uses the maximal operator to absorb error terms. This
idea is used in many places in analysis, and the study of martingales is one of these
places.

Definition 1.1 (Maximal operator). For an adapted process f with values in a
normed space, we write

Mfn = (Mf)n := sup
k≤n

|fk|.

Remark. Since our martingales are indexed by a countable set, we can use a pointwise
supremum here. In continuous time, we would need a lattice supremum.

A submartingale is an adapted process with values in R≥0 such that, for every
m ≤ n, we have

fm ≤ Emfn.

Example 1.2. If (fn) is a martingale, then (|fn|) is a submartingale.

Example 1.3. If f is any adapted process, then Mf is a submartingale.

If f is a submartingale, then, for any p ∈ [1,∞] and m ≤ n, we have

‖fm‖p ≤ ‖fn‖p.

We define the Lp norm of a (sub-)martingale by

‖f‖p := sup
n
‖fn‖p.

With this definition, the maximal operator is clearly bounded on L∞. The next
result looks a lot like an L1 → L1,∞ bound for M , but is in fact stronger and more
convenient to use.

Lemma 1.4. Let f be a submartingale with values in R≥0. Then, for every λ > 0
and n ∈ N, we have

λ|{Mfn > λ}| ≤
∫

{Mfn>λ}
fn dµ.

Proof. For a fixed λ, define the stopping time

τ := inf{k | fk > λ}.

Then, {Mfn > λ} = {τ ≤ n}. Hence,

λ|{Mfn > λ}| = λ
∑

k≤n

|{τ = k}|

≤
∑

k≤n

∫

{τ=k}
fk dµ

(submartingale property) ≤
∑

k≤n

∫

{τ=k}
fn dµ

=

∫

{Mfn>λ}
fn dµ.

Remark (L1,∞ norm). By Chebychev’s inequality, for any measurable function g, we
have

sup
λ>0

λ−1|{g > λ}| ≤ ‖g‖1.
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The converse inequality is false with any constant, as shown by the example g(x) =
1/x on the measure space R>0 with the Lebesgue measure. The left-hand side of the
above inequality is the so-called L1,∞ seminorm of g. As suggested by the notation,
L1,∞ is part of a larger family of Lorentz spaces, which is in turn contained in Orlicz
spaces, but we will not talk about such generalities.

Theorem 1.5 (Doob’s maximal inequality). Let f be a submartingale with values
in R≥0. Then, for every p ∈ (1,∞], we have

‖Mf‖p ≤ p′‖f‖p.

Here and later, p′ denotes the Hölder conjugate: 1/p + 1/p′ = 1.

Proof. By the layer cake formula and Lemma 1.4, we write

‖Mfn‖pp =
∫ ∞

0
pλp−1µ(Mfn > λ) dλ

≤
∫ ∞

0
pλp−2

∫

{Mfn>λ}
fn dµ dλ

=

∫

Ω

∫ Mfn

0
pλp−2fn dλdµ

=
p

p− 1

∫

Ω
(Mfn)

p−1fn dµ

≤ p

p− 1
(

∫

Ω
fp
n dµ)

1/p(

∫

Ω
(Mfn)

p dµ)1−1/p.

Since fn ∈ Lp implies fk ∈ Lp for all k ≤ n by Lp contractivity of conditional
expectations, we have Mfn ∈ Lp. Hence, we can cancel suitable powers of ‖Mfn‖p
on both sides and obtain the claim.

There are other ways to deduce Theorem 1.5 from Lemma 1.4, such as real
interpolation with the L∞ estimate. But the above proof does not rely on the L∞

estimate, only on the L1-like estimate in Lemma 1.4.
It is often the case in martingale theory that inequalities near L1 are the most

powerful ones. One can justify this by the observation that L1 is the minimal as-
sumption required to even define a martingale.

If f is a martingale, then the increments dfk are orthogonal in the Hilbert space
L2(Ω). Indeed, more generally, for any n and g ∈ L0(Fn−1), we have

E(gdfn) = E(E(gdfn|Fn−1)) = E(gE(dfn|Fn−1)) = E(g · 0) = 0. (1.1)

Definition 1.6 (Square function). For a martingale f , we write

Sfn :=
(

∑

k≤n

|dfk|2
)1/2

.

In continuous time, the analog of Sf is denoted by [f ] and called the quadratic
variation. We will construct it in (6.12).

Here and later, for notational simplicity, we will consider martingales with f0 = 0.
Since martingale increments dfk are orthogonal, we have

‖fn‖2 = ‖Sfn‖2.

Next, we will see that S is bounded from L1 to L1,∞. The proof that we present
for this fact uses a summation by parts identity of a kind that also appears e.g. in
the Itô formula.
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Lemma 1.7. Let f be a martingale, λ > 0, and τ := inf{n | |fn| > λ}. Then,
∑

k

E(|dfk|21τ>k) ≤ 2λ‖f‖1.

On the left-hand side of the above estimate, we are taking the expectation of
Sτ−1. Note that τ − 1 is not a stopping time. Such predictability emulation will also
be important in the BDG inequality below.

Proof. By the monotone convergence theorem, it suffices to consider the case fN =
fN+1 = · · · for an arbitrarily large N . Then, we can replace τ by τ ∧N +1 without
changing the inequality. This is necessary to apply the optional sampling theorem.

We use the identity
∑

k<τ

|dfk|2 + |fτ−1|2 = 2fτfτ−1 − 2
∑

k≤τ

fk−1dfk.

Note that
{k ≤ τ} = Ω \ {τ < k} = Ω \ {τ ≤ k − 1} ∈ Fk−1.

Therefore, by (1.1), we have

E(1k≤τfk−1dfk) = 0.

Hence,

E

∑

k<τ

|dfk|2 + E|fτ−1|2 = 2E(fτfτ−1).

Therefore,
∑

k

E(|dfk|21τ>k) ≤ 2E|fτfτ−1| ≤ 2E|fτλ| ≤ 2λ‖f‖1,

where the last step follows from the optional sampling theorem, which gives in par-
ticular fτ = EτfN+1.

Corollary 1.8. Let f be a martingale and λ > 0. Then,

|{Sf > λ}| ≤ 3λ−1‖f‖1.

Proof. Let τ := inf{n | |fn| > λ}. Then

|{Sf > λ}| ≤ |{Sfτ−1 > λ}|+ |{τ < ∞}| ≤ λ−2‖Sfτ−1‖22 + λ−1‖f‖1.

By Lemma 1.7, the first summand is ≤ 2λ−1‖f‖1.

Lemma 1.9 (Davis decomposition). For every martingale (fn), there exists a decom-
position f = fpred+fbv as a sum of two martingales such that fpred has a predictable
bound on jumps:

|dfpred
n | ≤ 2Mdfn−1, (1.2)

and fbv has bounded variation:

E

∑

n

|dfbv
n | ≤ 2EMdf. (1.3)

Proof. Let

dgn := min(1,
Mdfn−1

|dfn|
)dfn,

dfpred
n := dgn − En−1(dgn),

dhn := dfn − dgn = max(0, 1 − Mdfn−1

|dfn|
)dfn,

dfbv
n := dhn − En−1(dhn).
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Then, by definition,
|dgn| ≤ Mdfn−1,

and, by positivity of conditional expectation, also

|En−1(dgn)| ≤ En−1(|dgn|) ≤ En−1(Mdfn−1) = Mdfn−1.

This implies (1.2).
On the other hand, we have the telescoping bound

|dhn| = max(0, |dfn| −Mdfn−1) = Mdfn −Mdfn−1,

which implies (1.3).

Theorem 1.10 (Davis inequalities). Let f be a martingale with f0 = 0. Then,

ESf ∼ EMf.

Here and later, A . B means that A ≤ CB with an absolute constant C, and
A ∼ B means that A . B and B . A.

Proof. It suffices to consider martingales with fN = fN+1 = · · · =: f∞ for some N ,
as long as we show bounds independent of N .

Let f = fpred + fbv be a Davis decomposition as in Lemma 1.9. Then, for every
n > 0, we have the predictable bound

|fpred
n | ≤ |fpred

n−1 |+ |dfpred
n | ≤ |fpred

n−1 |+ 2|Mdfn−1| =: ρn−1.

Let λ > 0 and τ := inf{n | ρn > λ}. Then,

|{Sfpred > λ}| ≤ |{Sfpred > λ, τ = ∞}|+ |{τ < ∞}|
≤ |{Sfpred,(τ) > λ}|+ |{τ < ∞}|
≤ λ−2‖Sfpred,(τ)‖22 + |{τ < ∞}|
= λ−2‖fpred

τ ‖2 + |{τ < ∞}|.

On the set {τ = ∞}, we use the bound Mfpred ≤ Mρ ≤ λ, while on the set {τ < ∞},
we use the bound |fpred

τ | ≤ ρτ−1 ≤ λ (at this point, predictability is essential). This
gives

|{Sfpred > λ}| ≤ λ−2

∫

{τ=∞}
|fpred

τ |2 + λ−2

∫

{τ<∞}
|fpred

τ |2 + |{τ < ∞}|

≤ λ−2

∫

{Mfpred≤λ}
|Mfpred|2 + |{τ < ∞}|+ |{τ < ∞}|.

Note that {τ < ∞} = {Mρ > λ}. Inserting this in the above inequality and
integrating in λ, we obtain

ESfpred =

∫ ∞

0
|{Sfpred > λ}|dλ

≤
∫ ∞

0
λ−2

∫

{Mfpred≤λ}
|Mfpred|2 dλ+ 2

∫ ∞

0
|{Mρ > λ}|dλ

= E|Mfpred|2
∫ ∞

Mfpred

λ−2 dλ+ 2EMρ

= EMfpred + 2EMρ

≤ 3EMfpred + 4EMdf

≤ 3EMf + 3E
∑

n

|dfbv
n |+ 4EMdf

≤ 3EMf + 10EMdf.

8



This, together with the simple bound

ESfbv ≤ E

∑

n

|dfbv
n | ≤ 2EMdf,

implies ESf . EMf .
The proof of the converse inequality is similar and uses

Sfpred
n =

(

(Sfpred
n−1 )

2+(dfpred
n )2)1/2 ≤ |Sfpred

n−1 |+|dfpred
n | ≤ |Sfpred

n−1 |+2|Mdfn−1| =: ρn−1.

Lemma 1.11 (Garsia–Neveu). Let W,Z be positive random variables such that, for
every λ > 0, we have

E(1W>λ(W − λ)) ≤ E(1W>λZ). (1.4)

Then, for every p ≥ 1, we have

‖W‖p ≤ p‖Z‖p.

Proof. For p = 1, it suffices to take λ → 0, so assume p > 1. Suppose first that W
is bounded by Λ and (1.4) holds for all λ ∈ (0,Λ). We will use the formula

tp = p(1− p)

∫ t

0
(t− λ)λp−2 dλ.

It yields

EW p = p(p− 1)E

∫ W

0
(W − λ)λp−2 dλ

= p(p− 1)

∫ Λ

0
E((W − λ)1W>λ)λ

p−2 dλ

≤ p(p− 1)

∫ Λ

0
E(Z1W>λ)λ

p−2 dλ

= p(p− 1)E

∫ W

0
Zλp−2 dλ

= pEZW p−1

≤ p(EZp)1/p(EW p)1−1/p.

Since W is bounded, we can cancel a suitable power of EW p on both sides and obtain
the claim.

For general W , we apply the bounded case to min(W,Λ) and let Λ → ∞.

Corollary 1.12. Let (At) be an increasing predictable process with A0 = 0 and ξ a
positive random variable such that, for everty t, we have

Et(A∞ −At) ≤ Et(ξ).

Then, for every p ≥ 1, we have

‖A∞‖p ≤ p‖ξ‖p.

Proof. For λ > 0, let τ := inf{t | At+1 > λ}. Then,

Emax(A∞−λ, 0) = E(A∞−λ)1τ<∞ ≤ E(A∞−Aτ )1τ<∞ ≤ E(ξ1τ<∞) ≤ E(ξ1A∞>λ),

so we can apply Lemma 1.11.
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Corollary 1.13 (Burkholder–Davis–Gundy inequalities). For every p ∈ [1,∞) and
every martingale f , we have

‖Sf‖p ∼ ‖Mf‖p.

Proof. For any t0 and B ∈ Ft0 , we can apply Theorem 1.10 to the martingale 1B(f−
f (t0))t≥t0 , and obtain

Et0(M(f − f t0)) ∼ Et0(S(f − f t0)).

Note that

Mf −Mft0 ≤ M(f − f t0) ≤ 2Mf, Sf − Sft0 ≤ S(f − f t0) ≤ Sf,

so the conditions of Corollary 1.12 hold for instance for Ãt = Mft and ξ = Sf ,
with exception of the fact that Ãt is not predictable. This can be remedied by
taking At = Mft−1 and ξ = Sf + Mdf ≤ 3Sf . Corollary 1.12 now shows that
‖Mf‖p . p‖Sf‖p.

The proof of the converse inequality is similar.

1.1 Predictable square function

Definition 1.14 (Predictable square function). For a martingale f , let

sfn :=
(

n
∑

k=1

Ek−1(|dfk|2)
)1/2

.

The continuous time version of sf is denoted by 〈f〉 and called the predictable
quadratic variation. We mainly discuss sf because the continuous time analog is
sometimes used in stochastic analysis, and in order to present a few techniques.

The next lemma looks similar to Lp contractivity of conditional expectation, but
it cannot be proved by using this contractivity for each invidual summand.

Lemma 1.15. Let z1, z2, . . . be positive random variables. Then, for every p ∈
[1,∞), we have

E(
∞
∑

k=1

Ek−1(zk))
p ≤ ppE(

∞
∑

k=1

zk)
p.

Proof. The hypothesis of Corollary 1.12 holds with equality for An = Wn and ξ =
Z∞, where

Wn :=

n
∑

k=1

Ek−1(zk), Zn :=

n
∑

k=1

zk. (1.5)

Corollary 1.16. Let p ∈ [2,∞) and f be a martignale. Then, we have

‖sf‖p ≤ (p/2)1/2‖Sf‖p.

Lemma 1.17. Let Z,W be positive random variables such that, for some C < ∞
and all λ > 0, we have

E(Z ∧ λ) ≤ CE(W ∧ λ).

Then, for every p ∈ (0, 1], we have

EZp ≤ CEW p.

10



Proof. For p = 1, it suffices to let λ → ∞ in the hypothesis.
For p < 1, we use the formula

tp = p(1− p)

∫ ∞

0
(t ∧ λ)λp−2 dλ.

Chaning the order of integration and applying the hypothesis for each λ, we obtain
the claim.

Corollary 1.18. Let z1, z2, . . . be positive random variables. Then, for every p ∈
(0, 1], we have

E(
∞
∑

k=1

zk)
p ≤ 2E(

∞
∑

k=1

Ek−1(zk))
p.

Thus, we see that, for p ∈ (0, 2] and any martingale f , we have

‖Sf‖p .p ‖sf‖p.

Proof. Define W,Z as in (5.17). Let τ := inf{n |Wn+1 > λ}. Then,

E(Z∞ ∧ λ) ≤ E(Zτ + λ1τ<∞)

=
∑

k

E(1k≤τzk) + λ|{W∞ > λ}|

≤
∑

k

E(1k≤τEk−1zk) + E(W∞ ∧ λ)

≤ 2E(W∞ ∧ λ).

We conclude by Lemma 1.17.

Corollary 1.19. Let p ∈ (0, 2] and f be a martingale. Then

‖Mf‖p ≤ 51/p‖sf‖p.

Proof. Let τ := inf{n | sfn+1 > λ}. Then,

E((Mf)2 ∧ λ2) ≤ E[(Mf τ )2] + λ2
E1τ<∞

(Doob’s inequality) ≤ 4E[(f τ )2] + λ2
E1sf∞>λ

≤ 5E((sf∞)2 ∧ λ2).

We conclude by Lemma 1.17.

Lemma 1.20 (Good-λ inequality). Let f, g be positive random variables, p ∈ (0,∞),
and suppose that we are given β > 1 and δ, ε ∈ R>0 with βpε < 1. Assume that, for
every λ > 0, we have

µ{g > βλ, f ≤ δλ} ≤ εµ{g > λ}.
Then,

Egp ≤ δ−p

β−p − ε
Efp.

Proof. The hypothesis implies

µ{g > βλ} = µ{g > βλ, f ≤ δλ}+ µ{g > βλ, f > δλ}
≤ εµ{g > λ}+ µ{f > δλ}.

Using the formula tp = p
∫ t
0 λ

p−1 dλ, we obtain

Egp = pE

∫ g

0
λp−1 dλ

= p

∫ ∞

0
µ{g > λ}λp−1 dλ.

11



Inserting the above estimate, we obtain

E(g/β)p ≤ εEgp + E(f/δ)p.

Rearranging, we obtain the claim.

Lemma 1.21. Let z1, z2, . . . be positive random variables. Then, for every p ∈
(0,∞), we have

E(

∞
∑

k=1

zk)
p .p E(Mz ∨

∞
∑

k=1

Ek−1(zk))
p.

Thus, we see that, for p ∈ [2,∞) and any martingale f , we have

‖Sf‖p .p ‖sf ∨Mdf‖p.

Proof. We continue using notation (5.17). We will verify the hypothesis of Lemma 1.20.
Let β, δ ∈ R>0 with β > δ + 1. Consider the stopping times

τ := inf{n | Zn > λ}, τβ := inf{n | Zn > βλ}, σ := inf{n | (Wn+1 ∨ zn) > δλ}

and the process

hn =
∑

k≤n

1τ<k≤τβ∧σzk.

Then, if Z > βλ and W ∨Mz ≤ δλ, we have σ = ∞, so that

h∞ =
∑

τ<k≤τβ

zk ≥ βλ−
∑

k<τ

zk − zτ ≥ βλ− λ− δλ = (β − 1− δ)λ.

Hence,

µ{Z > βλ,W ∨Mz ≤ δλ} ≤ µ{h∞ > (β − 1− δ)λ}

≤ 1

(β − 1− δ)λ
Eh∞

=
1

(β − 1− δ)λ

∑

k

E(1τ<k≤τβ∧σzk)

=
1

(β − 1− δ)λ

∑

k

E(1τ<k≤τβ∧σEk−1zk)

≤ 1

(β − 1− δ)λ
E(1τ<∞δλ)

=
δ

β − 1− δ
µ{Z > λ}.

Now it suffices to take any β > 1 and δ sufficiently small depending on β.

Remark. Most of the material in this section is from [Bur73].

2 Lépingle inequality

For 0 < r < ∞ and a sequence of random variables f = (fn)n, the r-variation of f
on the interval [t′, t] is defined by

V rft′,t := sup
J,t′≤u0<···<uJ≤t

(

J
∑

j=1

|fuj−1 − fuj
|r
)1/r

, (2.1)

where the supremum is taken over arbitrary increasing sequences. Analogously,
V ∞ft′,t := supt′≤u′<u≤t|fu′ − fu|.

We abbreviate V rft := V rf0,t and V rf := V rf0,∞.
The following result is a quantitative version of the martingale convergence the-

orem.
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Theorem 2.1 (Lépingle inequality). For every p ∈ [1,∞), there exists a constant
Cp < ∞ such that, for every r > 2, and every martingale f , we have

‖V rf‖Lp ≤ Cp
r

r − 2
‖Mf‖Lp . (2.2)

The main difficulty here is that the supremum in the definition of V r is taken
over not necessarily adapted partitions. We will remedy this by a greedy selection
algorithm, stopping as soon as we see a large jump. We have to use stopping rules
depending on a parameter m in order to capture jumps of all possible sizes.

Proof. By the monotone convergence theorem, we may assume that f becomes con-
stant after some time N .

Let Mt := supt′′≤t′≤t|ft′ − ft′′ |. For each m ∈ N, define an adapted partition by

τ
(m)
0 := 0, τ

(m)
j+1 := inf{t ≥ τ

(m)
j | |ft − fτj | ≥ 2−mMt,Mt > 0}. (2.3)

Claim. Let 0 ≤ t′ < t < ∞ and m ≥ 2. Suppose that

2 < |ft′ − ft|/(2−mMt) ≤ 4. (2.4)

Then there exists j with t′ < τ
(m)
j ≤ t and

|ft′ − ft| ≤ 8|f
τ
(m)
j−1

− f
τ
(m)
j

|. (2.5)

Proof of the claim. Let j be the largest integer with τ ′ := τ
(m)
j ≤ t. We claim that

τ ′ > t′. Suppose for a contradiction that τ ′ < t′ (the case τ ′ = t′ is similar but
easier). By the hypothesis (2.4) and the assumption that t, t′ are not stopping times,
we obtain

2 · 2−mMt < |ft′ − ft| ≤ |fτ ′ − ft′ |+ |fτ ′ − ft| < 2−mMt′ + 2−mMt ≤ 2 · 2−mMt,

a contradiction. This shows τ ′ > t′.
It remains to verify (2.5). Assume that Mτ ′ < Mt/2. Then, for some τ ′′ ∈ (τ, t],

we have |fτ ′ − fτ ′′ | ≥ Mt/2 ≥ 2−mMτ ′′ , contradicting maximality of τ ′. It follows
that

|f
τ
(m)
j−1

− f
τ
(m)
j

| ≥ 2−mMτ ′ ≥ 2−mMt/2 ≥ |ft′ − ft|/8.

Next, for any 0 < ρ < r < ∞, we will show the pathwise inequality

V r
t (ft)

r ≤ 8ρ
∞
∑

m=2

(

2−(m−2)M∞

)r−ρ
∞
∑

j=1

|f
τ
(m)
j−1

− f
τ
(m)
j

|ρ. (2.6)

Let (ul) be any increasing sequence. For each l with |ful
−ful+1

| 6= 0, let m = m(l) ≥
2 be such that

2 < |ful
− ful+1

|/(2−mMul+1
) ≤ 4.

Such m exists because the distance is bounded by Mul+1
.

Let j = j(l) be given by the Claim above with t′ = ul and t = ul+1. Then

|ful
− ful+1

|r ≤ 8ρ|f
τ
(m)
j−1

− f
τ
(m)
j

|ρ · (4 · 2−mMul+1
)r−ρ.

Since each pair (m, j) occurs for at most one l, this implies

∑

l

|ful
− ful+1

|r ≤ 8ρ
∑

m,j

|f
τ
(m)
j−1

− f
τ
(m)
j

|ρ · (2−(m−2)M∞)r−ρ.

Taking the supremum over all increasing sequences (ul), we obtain (2.6).
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Since we assumed that fn becomes independent of n for sufficiently large n, we
have

M∞ ≤ V r
t (ft) < ∞.

Substituting this inequality in (2.6) and canceling V r
t (ft)

r−2 on both sides, we obtain

V r
t (ft)

ρ ≤ 8ρ
∞
∑

m=2

2−(m−2)(r−ρ)
∞
∑

j=1

|f
τ
(m)
j−1

− f
τ
(m)
j

|ρ. (2.7)

By the optional sampling theorem, for each m, the sequence (f
τ
(m)
j

)j is a martin-

gale with respect to the filtration (F
τ
(m)
j

)j . Let

S(m) :=
(

∞
∑

j=1

|f
τ
(m)
j−1

− f
τ
(m)
j

|2
)1/2

denote the square function of this martingale. Then (2.7) implies

V rf ≤ 8
(

∞
∑

m=2

2−(m−2)(r−2)S2
(m)

)1/2
≤ 8

∞
∑

m=2

2−(m−2)(r−2)/2S(m)

By Minkowski’s inequality, this implies

‖V rf‖Lp ≤ 8
∞
∑

m=2

2−(m−2)(r−2)/2‖S(m)‖Lp .

Applying the BDG inequality for the martingales (f
τ
(m)
j

)j , we obtain

‖V rf‖Lp .p

∞
∑

m=2

2−(m−2)(r−2)/2‖sup
j
|f

τ
(m)
j

|‖Lp

.
r

r − 2
‖Mf‖Lp .

Remark. The dependence of the constant in Theorem 2.1 on the variation exponent

r can be improved to
√

r
r−2 using a vector-valued BDG inequality. In fact, a slightly

more careful version of the above argument already shows this for p ∈ [2,∞).

2.1 Martingale convergence

Corollary 2.2 (Martingale convergence). Let f be a martingale with ‖f‖1 < ∞.
Then, for every r > 2, V rf is finite a.s. In particular, the sequence (fn)n converges
a.s.

Proof. Fixing λ < ∞ and N ∈ N, consider the stopping time

τ := inf{n | |fn| > λ}.

Then Mf τ∧N ≤ λ∨ |fτ∧N |. Since τ ∧N is a bounded stopping time, by the optional
sampling theorem, we have

‖Mf τ∧N‖1 ≤ λ+ ‖fτ∧N‖1 ≤ λ+ ‖f‖1.

By Lépingle’s inequality, for r > 2, we obtain

‖V rf τ∧N‖1 . λ+ ‖f‖1.

Since the right-hand side does not depend on N and by the monotone convergence
theorem, we obtain

‖V rf τ‖1 . λ+ ‖f‖1.
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In particular, the function V rf τ is finite a.s. On the set {Mf < λ}, we have f = f τ ,
so that V rf is finite a.s. on this set.

Taking the union over λ ∈ N, we find that V rf is finite a.s. on the set {Mf < ∞}.
By Doob’s maximal inequality, this set has full probability.

We have shown that, for an L1 martingale f , the limit f∞ := limn→∞ fn exists
a.s. We recall the condition under which this convergence also holds in L1. We start
with an example that shows that this is not always the case.

Example 2.3. Consider Ω = [0, 1] with the dyadic filtration. The sequence

fn = 2n1[0,2−n]

is a martingale and converges pointwise a.s. to 0. On the other hand, Efn = 1 6= 0 =
E0.

Definition 2.4. A set F of real random variables is called uniformly integrable if

lim
λ→∞

sup
f∈F

E(1|f |>λ|f |) = 0.

Example 2.5. If f ∈ L1, then the singleton {f} is uniformly integrable.

Uniform integrability is useful because it is the minimal hypothesis under which
an analogue of the dominated convergence theorem holds. We recall this analogue.

Proposition 2.6 (Dominated convergence). For every sequence of random variables
f = (fn), the following are equivalent:

1. f is Cauchy in L1,

2. f is uniformly integrable and Cauchy in probability, that is,

(∀ε > 0)(∃N ∈ N)(∀m,n ≥ N)µ{|fn − fm| > ε} < ε.

In relation with martingales, it is important that uniform integrability is pre-
served under conditional expectation. This can be seen using the following charac-
terization.

Lemma 2.7. Let F be a set of random variables. The following are equivalent.

1. F is uniformly integrable.

2. supf∈F E|f | < ∞ and
lim

µ(A)→0
sup
f∈F

E(1A|f |) = 0. (2.8)

Proof. Without loss of generality, all r.v. in F are positive.
=⇒ : For every λ > 0, we have

Ef ≤ λ+ E(1f>λf).

Taking the supremum over f ∈ F on both sides and choosing λ such that

sup
f∈F

E(1f>λf) < ∞,

we see that supf∈F E|f | < ∞.
Moreover,

E(1Af) ≤ µ(A)λ+ E(1f>λf).

Taking first the supremum over f ∈ F , and then limµ(A)→0, we obtain

lim
µ(A)→0

sup
f∈F

E(1Af) ≤ sup
f∈F

E(1f>λf).
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Taking limλ→0, we obtain (2.8).
⇐= : We have µ{f > λ} ≤ λ−1

Ef . Taking the supremum over f ∈ F , we obtain

sup
f∈F

µ{f > λ} ≤ λ−1 sup
f∈F

Ef.

The RHS converges to 0 as λ → ∞. The second hypothesis now implies that F is
uniformly integrable.

Lemma 2.8. Let F ⊂ L1(Ω,F) be uniformly integrable. Then the set

{E(f |F ′) | f ∈ F,F ′ ⊆ F sub-σ-algebra}

is uniformly integrable.

Proof. We verify the characterization above. We have

E|E(f |F ′)| ≤ EE(|f ||F ′) = E|f |.

This verifies the first condition.
Fixing λ > 0, we also have

E(1A|E(f |F ′)|) ≤ E(1AE(|f ||F ′)) = E(E(1A|F ′)|f |) ≤ λE|f |+ E(1E(1A|F ′)>λ|f |)

Since µ{E(1A|F ′) > λ} ≤ λ−1µ(A) and using (2.8) for the set F , we obtain

lim
µ(A)→0

sup
f∈F,F ′⊆F

E(1A|E(f |F ′)|) ≤ λE|f |.

Since λ > 0 was arbitrary, this implies (2.8) for the set of conditional expectations.

The above results can now be summarized as follows.

Proposition 2.9 (Martingale closure). For every martingale f = (fn)n∈N, the fol-
lowing are equivalent.

1. The set {fn}n∈N is uniformly integrable.

2. The sequence (fn)n∈N converges in L1.

3. There exists f∞ ∈ L1 such that, for every n ∈ N, we have fn = Enf∞.

If the above conditions hold, then we can take f∞ = limn→∞ fn a.s. and in L1.

Remark. We have seen that, for a martingale f , we have

Mf ∈ L1 =⇒ f is uniformly integrable =⇒ f ∈ L1.

The second implication cannot be reversed by Example 2.3. The following example
shows that the first implication also cannot be reversed, and also that M is not
bounded on L1.

Example 2.10. Let Ω = [0, 1] with the dyadic filtration and

f∞ :=
∞
∑

m=0

(m+ 1)−22m1[2−m−1,2−m]

and fn := Enf∞. Then, for x ∈ (2−l−1, 2−l), we have

Mf(x) = fl(x) = 2l
∞
∑

m=l

∫ 2−l

0
(m+ 1)−22m1[2−m−1,2−m](y) dy

= 2l−1
∞
∑

m=l

(m+ 1)−2 ∼ (l + 1)−12l.

We see that Mf 6∈ L1.
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3 Vector-valued inequalities

Remark. The norm on a Banach space X will be sometimes denoted by Xf := ‖f‖X .
This is consistent with operator notation, in that every norm is also a sublinear
operator.

Lemma 3.1. Let X be a Banach space. Let T be a subadditive operator that maps X-
valued martingales starting at 0 to R≥0-valued increasing adapted processes starting
at 0 such that, for every stopping time τ , we have

Tfτ = T (f τ )τ ,

and for every time t we have

Tft ≤ Tft−1 +Xdft.

Let U be another operator satisfying the same properties as T .
Assume that, for some r ∈ (1,∞) and every X-valued martingale f , we have

P{Tf > λ} . λ−r(LrUf)r. (3.1)

Then, for every q ∈ [1,∞) and every X-valued martingale f , we have

LqTf .q L
qUf + LqMXdf. (3.2)

The formulation is flexible enough to apply to any combination {T,U} = {XM,XS},
and also some other operators, such as martingale transforms or r-variation norms.

Proof. Consider first the case q = 1. We use the Davis decomposition f = fpred +
fbv. Of the two possible generalizations of the Davis decomposition to X-valued
martingales, we use the one in which the absolute value is replaced by the X-norm
(the alternative would be to make a decomposition for each k separately). Specifically,
we have

Xdfpred
n ≤ 2MXdfn−1, E

∑

n

Xdfbv
n ≤ 2EMXdf.

For λ > 0, define the stopping time

τ := inf{t | Ufpred
t > λ or MXdft > λ}.

We claim that
Ufpred

τ ≤ Ufpred ∧ 3λ. (3.3)

Indeed, the first bound is trivial. The second bound is trivial if τ = ∞, so assume
τ ∈ (0,∞). Then, by properties of the Davis decomposition, we have

Ufpred
τ ≤ Ufpred

τ−1 +Xdfpred
τ ≤ λ+ 2MXdfτ−1 ≤ 3λ.

Also,

{Tfpred > λ} ⊆ {Tfpred
τ > λ} ∪ {τ < ∞}

⊆ {Tfpred
τ > λ} ∪ {Ufpred > λ} ∪ {MXdfτ > λ}.

By the layer cake formula,

‖Tfpred‖L1 =

∫ ∞

0
P{Tfpred > λ}dλ

≤
∫ ∞

0
P{Tfpred

τ > λ}dλ+

∫ ∞

0
P{Ufpred > λ}dλ

+

∫ ∞

0
P{MXdf > λ}dλ =: I + II + III.
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The term III is easy to bound by the layer cake formula.
In the term II, we use the properties of the Davis decomposition to estimate

II = ‖Ufpred‖L1

≤ ‖Uf‖L1 + ‖Ufbv‖L1

≤ ‖Uf‖L1 + ‖
∑

n

Xdfbv
n ‖L1

≤ ‖Uf‖L1 + 2‖MXdf‖L1 .

Using the hypothesis (3.1) and (3.3), we bound the first term by

I .

∫ ∞

0
λ−r‖Ufpred

τ ‖rLr dλ

≤
∫ ∞

0
λ−r‖Ufpred ∧ 3λ‖rLr dλ

= E

∫ ∞

0
min

(

λ−r(Ufpred)r, 3r
)

dλ

. EUfpred = II,

and we reuse the previously established estimate for II.
We have shown (3.2) for q = 1, and we will now extend this claim to q > 1. In

doing so, we may replace Uf by (Uf +MXdf)/2. This has the effect that we may
omit the second summand on the RHS of (3.2).

For q > 1, we use the Garsia-Neveu lemma. For a martingale f , let τf := f − f τ

be the martingale f started at (stopping) time τ .
For any t ∈ N and B ∈ Ft, we can apply the case q = 1 to the martingale 1B

tf ,
and obtain

EtT
tf . EtU

tf.

Note that
Tf∞ − Tft = Tf∞ − T (f t)∞ ≤ T (f − f t)∞ = T tf∞,

U tf∞ ≤ (Uf + Uf t)∞ ≤ 2Uf∞,

so the conditions of Corollary 1.12 hold for At = Tf(t−1)∨0 and ξ ∼ Uf∞. Corol-
lary 1.12 now shows the claim.

Monotonicity of Uf is used in estimates for both I and II above.

Corollary 3.2 (ℓr valued BDG inequality). For every k ∈ N, let fk = (fk,n)n be a
real-valued martingale starting at 0. Then, for every q, r ∈ [1,∞), we have

LqℓrkMfk .q L
qℓrkSfk.

Proof. For r = q, this follows from the scalar-valued Doob’s inequality and Fubini.
For general q, we apply Lemma 3.1 with X = ℓr.

Toy example: better constant in Lépingle.

3.1 Weighted and vector-valued Doob inequalities

Let w ∈ L1(Ω,F∞) be a positive function, that we will call a weight. We write
wk := Ekw, w∗ := supk wk, and wB :=

∫

B w dµ for B ∈ F∞.

Lemma 3.3. Let f be an R≥0-valued submartingale (recall that this means fk ≤ Ekfn
for k ≤ n). Then, for every λ > 0 and n ∈ N, we have

λw{Mfn > λ} ≤
∫

{Mfn>λ}
fnMwn dµ.
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Proof. For a fixed λ, define the stopping time

τ := inf{k | fk > λ}.

Then, {Mfn > λ} = {τ ≤ n}. Hence,

λw{Mfn > λ} = λ
∑

k≤n

w{τ = k}

≤
∑

k≤n

∫

{τ=k}
fkwk dµ

(submartingale property) ≤
∑

k≤n

∫

{τ=k}
fnwk dµ

≤
∫

{Mfn>λ}
fnw

∗ dµ.

We recall that, for a function f on a measure space (Ω, µ) and p ∈ [1,∞), the
Lp,∞ quasinorm is defined by

‖f‖Lp,∞ := sup
λ>0

λµ{|f | > λ}1/p.

For p = ∞, we have ‖f‖Lp,∞ = ‖f‖L∞ .

Theorem 3.4 (Marcinkiewicz/real interpolation, see e.g. [Gra14]). Let (Ω, µ) and
(Ω̃, µ̃) be σ-finite measure spaces. Let 0 < p0 < p1 ≤ ∞. Let

T : Lp0(Ω) + Lp1(Ω) → L0(Ω̃)

be a subadditive operator such that, for every function f , we have

‖Tf‖Lpj,∞(Ω̃) ≤ Aj‖f‖Lpj (Ω), j = 0, 1.

Then, for every p ∈ (p0, p1), we have

‖Tf‖Lp(Ω̃) .p ‖f‖Lp(Ω).

Lemma 3.5. Let p ∈ (1,∞), f be a submartingale, and w a weight. Then,

‖Mf‖Lp(w) .p ‖f‖Lp(w∗)

Proof. We will show the following more precise estimate:

‖MfN‖Lp(w) .p ‖fN‖Lp(MwN ), (3.4)

from which the claim follows by letting N → ∞. The main advantage of this
formulation is that the right-hand side increases in N , which would not be the case
if we would use the weight w∗ instead of MwN .

Lemma 3.3 implies in particular

‖MfN‖L1,∞(w) . ‖fN‖L1(MwN ).

The estimate
‖MfN‖L∞(w) . ‖fN‖L∞(MwN )

is easy to see. By real interpolation, these two bounds imply (3.4).

Proposition 3.6 (Vector-valued maximal inequality). Let p ∈ (1,∞) and r ∈ (1,∞].
Then, for any sequence of martingales fk = (fk,n)n, we have

LpℓrkMfk .q,r L
pℓrkfk.
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Proof. The case r = ∞ follows from the scalar case, because ℓ∞fk is a submartingale.
The case p = r also follows from the scalar case and Fubini.
For 1 < r < p < ∞, let ρ := (p/r)′ = p/(p − r). Then, for some weight w ∈ Lρ

with ‖w‖ρ ≤ 1, we have

‖ℓrkMfk‖rp .
(

E
(

∑

k

(Mfk)
r
)p/r

)r/p

= E

∑

k

(Mfk)
rw

. E

∑

k

|fk|rw∗

and we conclude using Hölder’s inequality and boundedness of the maximal operator
on Lρ.

For 1 < p < r < ∞, let s ∈ (1, p). Then, for some sequence of weights with

‖ℓ(r/s)
′

k wk‖(p/s)′ ∼ 1,

we have

‖ℓrkMfk‖sp = ‖ℓr/sk (Mfk)
s‖p/s

∼
∫

∑

k

wk(Mfk)
s

.

∫

∑

k

w∗
k|fk|s

≤ ‖ℓ(r/s)
′

k w∗
k‖(p/s)′‖ℓ

r/s
k |fk|s‖p/s.

Since (r/s)′ < (p/s)′, from the previously shown case, we obtain

‖ℓ(r/s)
′

k w∗
k‖(p/s)′ . ‖ℓ(r/s)

′

k wk‖(p/s)′ ∼ 1.

Remark. Most of this section is from [Hyt+16, Section 3].

4 Rough paths

In this section, we discuss how to define
∫

adg for not very regular functions a, g.
The intended application is that g is a sample path of a martingale, which only has
bounded r-variation for r > 2, so that we cannot use Stieltjes integration.

The function a is assumed to have the same regularity as g, because we want the
theory to be suitable for solving equations like f(t) =

∫ t
0 a(s, f(s)) dg(s).

4.1 Young integration with Hölder functions

We begin with a criterion for convergence of Riemann-like sums. Let ∆ := {(s, t) |
0 ≤ s ≤ t ≤ T}. For any Ξ : ∆ → R and a partition 0 = π0 < . . . < πJ = T , write

IπΞ0,T :=
J
∑

j=1

Ξπj−1,πj
.

We will discuss sufficient conditions for the convergence of these sums along the
directed (by set inclusion) set of partitions.

For a mapping Ξ : ∆ → E (E a vector space), we write

δΞs,u,t := Ξs,t − Ξs,u − Ξu,t.
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A control is a function ω : ∆ → [0,∞) that is superadditive in the sense that

ω(s, t) + ω(t, u) ≤ ω(s, u)

for all s ≤ t ≤ u. This implies in particular that ω(t, t) = 0 for all t.

Lemma 4.1. Let ω be a control and θ > 1. Let (E, |·|) be a Banach space and
Ξ : ∆ → E such that, for every 0 ≤ s ≤ t ≤ u ≤ T , we have

|δΞs,t,u| ≤ ω(s, u)θ. (4.1)

Then, for every partition 0 = π0 ≤ . . . ≤ πJ = T , we have

|Ξ0,T − IπΞ0,T | . (θ − 1)−1ω(0, T )θ.

Proof. By induction on the partition size J , we will show the bound

|Ξ0,T − IπΞ0,T | ≤
J−1
∑

k=1

(2/k)θω(0, T )θ.

For J = 1, we have IπΞ0,T = Ξ0,T , which serves as the induction base.
Suppose that the claim is known for all partitions of size J and let π be a partition

of size J + 1. By superadditivity of ω, we have

J−1
∑

k=0

ω(πk, πk+2) =
∑

k≤J−1 even

ω(πk, πk+2) +
∑

k≤J−1 odd

ω(πk, πk+2) ≤ 2ω(0, T ).

Hence, there exists k with ω(πk, πk+2) ≤ 2ω(0, T )/J . Let π′ := π \ {πk+1}. Then,

|IπΞ0,T − Iπ′

Ξ0,T | = |δΞπk,πk+1,πk+2
| ≤ ω(πk, πk+2)

θ ≤ (2/J)θω(0, T ).

Applying the inductive hypothesis to π′, we obtain the claim.

Proposition 4.2 (Sewing). Let ω be a control such that

lim
π

sup
j

ω(πj, πj+1) = 0. (4.2)

Let Ξ : ∆ → E be such that (4.1) holds. Then, the limit

IΞ0,T := lim
π

IπΞ0,T

exists and satisfies
|IΞ0,T − Ξ0,T | . (θ − 1)−1ω(0, T )θ.

Proof. For any partitions π ⊆ π′, by Lemma 4.1, we have

|IπΞs,t − Iπ′

Ξs,t| ≤
∑

j

|Ξπj ,πj+1 − Iπ′

Ξπj,πj+1 |

.
∑

j

ω(πj , πj+1)
θ

. sup
j

ω(πj, πj+1)
θ−1

∑

j

ω(πj, πj+1)

. ω(s, t) sup
j

ω(πj , πj+1)
θ−1.

The hypothesis (4.2) implies that π 7→ IπΞs,t is a Cauchy net.
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Example 4.3 (Young integral). Let a, g : [0, T ] → R be α-Hölder functions and

Ξs,t := as(gt − gs).

Then,

δΞs,t,u = Ξs,u − Ξs,t − Ξt,u

= as(gu − gs)− as(gt − gs)− at(gu − gt)

= as(gu − gt) + as(gt − gs)− as(gt − gs)− at(gu − gt)

= (as − at)(gu − gt).

In particular, Ξs,t,u . |s− t|α|u− t|α ≤ |u− s|2α. Hence, provided that 2α > 1, the
hypothesis of Proposition 4.2 holds with θ = 2α and ω(s, t) ∼ |t− s|.

4.2 Young integration with V
r functions

If the function g : [0, T ] → R has bounded r-variation, then

ωg,r(s, t) := (V rgs,t)
r = sup

s≤π0≤···≤πJ≤t

J
∑

j=1

|gπj
− gπj−1 |r

is a control. If both a, g ∈ V r, then, in the situation of Example 4.3, we have

|δΞs,t,u| ≤ ωa,r(s, t)
1/rωg,r(t, u)

1/r. (4.3)

This implies in particular (4.1) with ω = ωa,r + ωg,r and θ = 2/r. However, (4.2)
only holds for this control if a, g are also continuous. In order to integrate functions
with jumps, we will show a version of the sewing lemma under the condition (4.3).

Definition 4.4. If f is a function defined on a suitable interval, we write

f(t+) := lim
t′→t,t′>t

f(t′), f(t−) := lim
t′→t,t′<t

f(t′),

provided that the respective limits exist.

Lemma 4.5. Let ω be a control. Then, for every ε > 0, there exists a partition π
such that

max
j

(

ω(πj−1+, πj) ∧ ω(πj−1, πj−)
)

≤ ε. (4.4)

Proof. We select the partition greedily starting with π0 = 0. It will be clear from the
construction that the claim (4.4) holds. If πj has been already selected and πj < T ,
we distinguish two cases.

Case 1: if ω(πj , πj+) < ε, then we let

πj+1 := sup{t > πj | ω(πj , t) < ε}.

Then ω(πj , πj+1−) ≤ ε.
Case 2: if ω(πj , πj+) ≥ ε, then we choose any πj+1 ∈ (πj , T ] with ω(πj+, πj+1) ≤

ε.
To see that such πj+1 exists, suppose for a contradiction that, for every t ∈ (πj, T ],

we have ω(πj+, t) > ε. Choose recursively t0 = T and, given tk, let tk+1 ∈ (πj , tk)
be such that ω(tk+1, tk) > ε. By superadditivity, we obtain

ω(πj , T ) ≥
∑

k

ω(tk+1, tk) = +∞,

a contradiction.
The selection of πj ’s ends after finitely many steps, because otherwise we would

have ω(πj , πj+1+) ≥ ε for every j, which in turn implies ω(πj, πj+2) ≥ ε, and
summing over even j we obtain a contradiction with the superadditivity of ω.
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Theorem 4.6 (Sewing with jumps). Let ω1,n, ω2,n be controls and α1,n, α2,n ≥ 0
with α1,n + α2,n > 1 for all n ∈ {1, . . . , N}.

Let Ξ : ∆ → E. Assume

|δΞs,u,t| ≤
N
∑

n=1

ω
α1,n

1,n (s, u)ω
α2,n

2,n (u, t),

Then the following net limit exists,

IΞ0,T := lim
π

IπΞ0,T ,

and one has the following estimate:

|IΞ0,T − Ξ0,T | .
N
∑

n=1

ω
α1,n

1,n (0, T−)ω
α2,n

2,n (0+, T ),

with C depending only on minn α1,n + α2,n.

Proof. Let
θ := min

n
α1,n + α2,n > 1

and

ω(s, t) :=

N
∑

n=1

ω
α1,n/θ
1,n (s, t−)ω

α2,n/θ
2,n (s+, t).

Note that the functions (s, t) 7→ ω1,n(s, t−) and (s, t) 7→ ω2,n(s+, t) are also controls.
The function ω is a control, because, by Hölder’s inequality,

ω
α1,n/θ
1,n (s, u)ω

α2,n/θ
2,n (s, u) ≥ (ω1,n(s, t)+ω1,n(t, u))

α1,n/θ(ω2,n(s, t)+ω2,n(t, u))
α2,n/θ

≥ ω1,n(s, t)
α1,n/θω2,n(s, t)

α2,n/θ + ω1,n(t, u)
α1,n/θω2,n(t, u)

α2,n/θ.

It follows from Lemma 4.5 applied to the control
∑

n(ω1,n + ω2,n) that (4.2) holds.
Since |δΞs,t,u| ≤ ω(s, u)θ, we can apply Proposition 4.2.

Theorem 4.6 allows us to integrate under the hypothesis (4.3), but only for r < 2.
By the law of the iterated logarithm, paths of the Brownian motion are not in V r

for any r ≤ 2.
There are two options to refine the above reasoning in order to obtain an inte-

gration theory suitable for martingales.

• The classical stochastic integration uses orthogonality between martingale in-
crements. We will return to that.

• Rough integration theory replaces Riemann–Stieltjes sums by higher order
quadrature schemes. Higher order quadrature improves the order of conver-
gence (under suitable regularity assumptions). In the rough setting, it improves
from having no convergence to having convergence.

Another motivation for us to look at the rough integration theory is that it informs
us about the estimates that we will want when we return to stochastic integration.

4.3 Rough paths

Throughout this section, we fix some r ∈ [2, 3).
An r-rough path (with values in R

d) consists of

X : [0, T ] → R
d, X : ∆ → R

d×d
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such that X ∈ V r, X ∈ V r/2, where

V r
Xs,t = sup

s≤u0≤···≤uJ≤t

(

∑

j

|Xuj ,uj+1 |r
)1/r

.

and Chen’s relation holds for s < t < u:

Xs,u = Xs,t + Xt,u + (Xt −Xs)⊗ (Xu −Xt). (4.5)

Remark. If X is sufficiently regular for the integral to be defined, one can take

Xs,t :=

∫ t

s
(Xu− −Xs)⊗ dXu.

Next, we introduce the spaces in which one can state and solve differential equa-
tions driven by rough paths.

Definition 4.7 (Controlled path). Let X = (X,X) be an r-rough path in R
d. An

X-controlled r-rough path in a vector space E consists of Y : [0, T ] → E, Y ′ : [0, T ] →
L(Rd, E) such that Y ′ ∈ V r and

RY,X
s,t := δYs,t − Y ′

sδXs,t ∈ V r/2.

Although RY,X depends on all of Y, Y ′,X, it is commonly abbreviated to RY ,
since the other dependencies are usually unambiguous.

It may be helpful to think about the scalar case d = d′ = 1, and we will use
the scalar notation. All arguments will be, however, formulated in such a way that
they work in the vector-valued case, which is important e.g. because one may wish
to incorporate time as an additional coordinate in X.

Example 4.8. (X, 1) is an X-controlled path.

Lemma 4.9 (Rough integral). Let X = (X,X) be an r-rough path and Y = (Y, Y ′)
an X-controlled path in L(Rd,Rd′). Let Ξs,t := YsδXs,t + Y ′

sXs,t. Then,

∫ T

0
Y dX := lim

π
IπΞ0,T

exists and satisfies

∣

∣

∣

∫ t

s
Y dX− Ξs,t

∣

∣

∣
. V r/2Rs,t−V

rXs+,t + V rY ′
s,t−V

r/2
Xs+,t.

Proof.

δΞs,t,u = YsδXs,u + Y ′
sXs,u − (YsδXs,t + Y ′

sXs,t)− (YtδXt,u + Y ′
tXt,u)

= YsδXt,u + Y ′
s (Xs,u − Xs,t)− (YtδXt,u + Y ′

tXt,u)

= (Ys − Yt)δXt,u + Y ′
s (Xt,u + δXs,t ⊗ δXt,u)− Y ′

tXt,u

= (Ys − Yt)δXt,u + (Y ′
s − Y ′

t )Xt,u + Y ′
s(δXs,t ⊗ δXt,u)

= −RY,X
s,t δXt,u + (Y ′

s − Y ′
t )Xt,u.

(4.6)

Hence, we can apply Theorem 4.6.

Example 4.10.
∫ T
0 (X −X0, 1)⊗ dX = X0,T . Indeed, in this case δΞ = 0 in (4.6).

This gives even a V r/3 approximation of the integral. However, we drop the
second order term and only use a V r/2 approximation, since we want to run the
iteration in the simplest possible space for the given regularity.
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4.3.1 Rough differential equations

We consider an initial value problem that is informally described by Y0 = y0, dY =
ϕ(Y ) dX. A rigorous formulation is the following: given a rough path X in R

d and a
function ϕ : Rd′ → L(Rd,Rd′), we are looking for an X-controlled path Y such that

YT = y0 +

∫ T

0
ϕ(Y)X. (4.7)

We still have to define what we mean by ϕ(Y).
We will find that this problem has a unique solution if ϕ ∈ C2,1

b , the space of
twice differentiable functions with ϕ,Dϕ,D2ϕ bounded and D2ϕ Lipschitz.

The proof proceeds by a fixed point argument. First, we need to identify a metric
space in which this argument will be run. We abbreviate ‖X‖r := V rX0,T .

4.3.2 Operations on controlled paths

We have deliberately omitted the condition Y ∈ V r from the definition of the con-
trolled path, because it is implicit in the other conditions.

Lemma 4.11 (Implicit bound). Let X be a rough path and Y an X-controlled path.
Then

‖Y ‖r ≤ ‖Y ′‖sup‖X‖r + ‖RY ‖r/2.
Lemma 4.12 (Integration). Let X be a rough path and Y an X-controlled path. Let
Zt :=

∫ t
0 Y dX and Z ′

t := Yt. Then, Z = (Z,Z ′) is an X-controlled path, and it
satisfies

‖RZ‖r/2 . ‖RY ‖r/2‖X‖r + ‖Y ′‖r‖X‖r/2 + ‖Y ′‖sup‖X‖r/2. (4.8)

Proof.

RZ
s,t = δZs,t − Z ′

sδXs,t

=

∫ t

0
Y dX−

∫ s

0
Y dX− YsδXs,t

=

∫ t

s
Y dX− YsδXs,t − Y ′

sXs,t + Y ′
sXs,t.

The last term corresponds to the last term in the conclusion, and the remaining
difference is estimated by Lemma 4.9.

Lemma 4.13 (Composition with a smooth function). Let X be a rough path and
Y an X-controlled path. Suppose ϕ ∈ C1,1

b . Then ϕ(Y) := (ϕ(Y ),Dϕ(Y )Y ′) is an
X-controlled path, and we have

‖ϕ(Y)′‖r = ‖Dϕ(Y )Y ′‖r ≤ ‖Dϕ‖sup‖Y ′‖r + ‖Dϕ‖Lip‖Y ‖r‖Y ′‖sup, (4.9)

‖Rϕ(Y )‖r/2 ≤ ‖Dϕ‖sup‖RY ‖r/2 +
1

2
‖Dϕ‖Lip‖Y ‖2r . (4.10)

Interestingly, this estimate does not depend on X.

Proof. Adding and subtracting Dϕ(Yt)Y
′
s , we obtain

Dϕ(Yt)Y
′
t −Dϕ(Ys)Y

′
s = Dϕ(Yt)(Y

′
t − Y ′

s) + (Dϕ(Yt)−Dϕ(Ys))Y
′
s . (4.11)

This implies the first estimate.
By Taylor’s formula,

|Rϕ(Y )
s,t | = |ϕ(Yt)− ϕ(Ys)−Dϕ(Ys)Y

′
sXs,t|

≤ |ϕ(Yt)− ϕ(Ys)−Dϕ(Ys)Ys,t|+ |Dϕ(Ys)R
Y
s,t|

≤ 1

2
‖Dϕ‖Lip|Ys,t|2 + ‖Dϕ‖sup|RY

s,t|,

which implies second estimate.
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The above discussion allows us to constrct a space in which the equation (4.23)
makes sense.

Lemma 4.14 (Solution space). For any ϕ ∈ C1,1
b and any A ∈ (0,∞), there exists

ε > 0 such that if ‖X‖r + ‖X‖r/2 < ε, then the set of X-controlled paths

Y = Y(X, A) := {Y|‖Y ′‖r ≤ A, ‖RY ‖r/2 ≤ A2, ‖Y ‖r ≤ A/‖ϕ‖Lip, ‖Y ′‖sup ≤ ‖ϕ‖sup}
(4.12)

is invariant under the mapping

Step : Y 7→ (y0 +

∫ ·

0
ϕ(Y) dX, ϕ(Y )) (4.13)

for any y0 ∈ R
d′ .

Proof. Implicit constants in this proof are allowed to depend on the C1,1
b norm of ϕ.

Suppose Y ∈ Y. Direct estimates show

‖ϕ(Y )‖r ≤ ‖ϕ‖Lip‖Y ‖r ≤ A, ‖ϕ(Y )‖sup ≤ ‖ϕ‖sup.
By Lemma 4.13, we have

‖ϕ(Y)′‖r . A, ‖Rϕ(Y)‖r/2 . A2. (4.14)

By Lemma 4.12, we obtain

‖R
∫ ·

0
ϕ(Y) dX‖r/2 . ε(A2 +A+ 1).

By Lemma 4.11, this implies

‖
∫ ·

0
ϕ(Y) dX‖r . ε(A2 +A+ 1).

Choosing ε sufficiently small, we obtain the claim.

Remark. Global bounds on ϕ can be replaced by growth conditions, and then ε would
also depend on y0 and these growth conditions. There is also a “rough Gronwall
lemma” for concatenating local solutions in such a setting.

4.3.3 Contractive iteration

In this section, we will show that the iteration (4.13) is contractive with respect
to a suitable metric on the space (4.12). This implies existence and uniqueness of
solutions.

For the later purpose of proving continuous dependence of the solution on data,
the estimates will involve two rough paths X, X̃ and paths Y, Ỹ controlled by the
respective rough paths. We abbreviate

∆Y = Y−Ỹ , ∆Y ′ = Y ′−Ỹ ′, ∆RY = RY −RỸ , ∆X = X−X̃, ∆X = X−X̃,

∆ϕ(Y ) = ϕ(Y )− ϕ(Y ′), ∆Rϕ(Y ) = Rϕ(Y ) −Rϕ(Ỹ ).

Lemma 4.15 (Stability of composition). Suppose ϕ ∈ C2,1
b . Let X, X̃ be rough paths,

Y a X-controlled path, and Ỹ a X̃-controlled path. Then,

‖ϕ(Y )− ϕ(Ỹ )‖r ≤ ‖Dϕ‖sup‖∆Y ‖r + ‖Dϕ‖Lip‖∆Y ‖sup‖Ỹ ‖r, (4.15)

‖ϕ(Y )′ − ϕ(Ỹ )′‖r ≤ ‖Dϕ‖sup‖∆Y ′‖r + ‖Dϕ‖Lip‖Y ‖r‖∆Y ′‖sup
+‖Dϕ‖Lip‖∆Y ‖sup‖Ỹ ′‖r+‖D2ϕ‖sup‖∆Y ′‖r‖Ỹ ′‖sup+‖D2ϕ‖Lip‖∆Y ‖sup‖Ỹ ‖r‖Ỹ ′‖sup,

(4.16)

‖Rϕ(Y ) −Rϕ(Ỹ )‖r/2 ≤ ‖Dϕ‖sup‖∆RY ‖r/2 + ‖Dϕ‖Lip‖∆Y ‖sup‖RỸ ‖r/2
+

1

2
‖D2ϕ‖sup(‖Y ‖r + ‖Ỹ ‖r)‖∆Y ‖r +

1

2
‖D2ϕ‖Lip‖∆Y ‖sup‖Ỹ ‖2r . (4.17)
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Lemma 4.15 almost recovers Lemma 4.13 upon setting Ỹ = 0.

Proof. In order to show (4.15), we write

(ϕ(Yt)− ϕ(Ys))− (ϕ(Ỹt)− ϕ(Ỹs))

=

∫ 1

0
Dϕ(Ys + r(Yt − Ys))(Yt − Ys) dr −

∫ 1

0
Dϕ(Ỹs + r(Ỹt − Ỹs))(Ỹt − Ỹs) dr

=

∫ 1

0

(

Dϕ(Ys + r(Yt − Ys))(Yt − Ys − (Ỹt − Ỹs))

+ (Dϕ(Ys + r(Yt − Ys))−Dϕ(Ỹs + r(Ỹt − Ỹs)))(Ỹt − Ỹs)
)

dr, (4.18)

and estimate

|Dϕ(Ys + r(Yt − Ys))−Dϕ(Ỹs + r(Ỹt − Ỹs))|
≤ ‖Dϕ‖Lip|(Ys + r(Yt − Ys))− (Ỹs + r(Ỹt − Ỹs))|
≤ ‖Dϕ‖Lip(r|Yt − Ỹt|+ (1− r)|Ys − Ỹs|)
≤ ‖Dϕ‖Lip‖∆Y ‖sup.

In order to show (4.16), we write

(Dϕ(Yt)Y
′
t −Dϕ(Ỹt)Ỹ

′
t )− (Dϕ(Ys)Y

′
s −Dϕ(Ỹs)Ỹ

′
s )

= Dϕ(Yt)((Y
′
t − Ỹ ′

t )− (Y ′
s − Ỹ ′

s )) + (Dϕ(Yt)−Dϕ(Ys))(Y
′
s − Ỹ ′

s)

+ (Dϕ(Yt)−Dϕ(Ỹt))(Ỹ
′
t − Ỹ ′

s) + ((Dϕ(Yt)−Dϕ(Ys))− (Dϕ(Ỹt)−Dϕ(Ỹs)))Ỹ
′
s .

The first 3 terms contribute the first 3 terms to (4.16). The 4-fold difference in the
last term can be written as in (4.18) with Dϕ in place of ϕ, which gives the last 2
terms in (4.16).

Now we show (4.17). By inserting Dϕ(Ys)Ys,t and Dϕ(Ỹs)Ỹs,t, one has

R
ϕ(Y )
s,t −R

ϕ(Ỹ )
s,t = ϕ(Y )s,t −Dϕ(Ys)Y

′
sXs,t − (ϕ(Ỹ )s,t −Dϕ(Ỹs)Ỹ

′
s X̃s,t)

= ϕ(Y )s,t −Dϕ(Ys)Ys,t − (ϕ(Ỹ )s,t −Dϕ(Ỹs)Ỹs,t)

+Dϕ(Ys)R
Y
s,t −Dϕ(Ỹs)R

Ỹ
s,t

(4.19)

By Taylor’s formula, the first line in (5.12) equals

∫ 1

0
(1− r)

(

D2ϕ(Ys + rYs,t)Y
⊗2
s,t −D2ϕ(Ỹs + rỸs,t)Ỹ

⊗2
s,t

)

dr.

The integrand can be written in the form

D2ϕ(Ys + rYs,t)(Y
⊗2
s,t − Ỹ ⊗2

s,t ) + (D2ϕ(Ys + rYs,t)−D2ϕ(Ỹs + rỸs,t))Ỹ
⊗2
s,t ,

and this contributes the last line to (4.17).
The second line in (5.12) equals

Dϕ(Ys)R
Y
s,t −Dϕ(Ỹs)R

Ỹ
s,t . Dϕ(Ys)(R

Y
s,t −RỸ

s,t) + (Dϕ(Ys)−Dϕ(Ỹs))R
Ỹ
s,t

which completes the proof.

Lemma 4.16 (Stability of rough integration). Let X, X̃ be rough paths, Y a X-
controlled path, and Ỹ a X̃-controlled path. Define Z, Z̃ as in Lemma 4.12. Then,

‖∆RZ‖r/2 .r ‖∆Y ′‖sup‖X‖r/2 + ‖∆Y ′‖r‖X‖r/2 + ‖∆RY ‖r/2‖X‖r
+ ‖Ỹ ′‖sup‖∆X‖r/2 + ‖Ỹ ′‖r‖∆X‖r/2 + ‖RỸ ‖r/2‖∆X‖r. (4.20)
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Note that (4.20) with Ỹ = 0 recovers (4.8).

Proof. Let Ξs,t := YsXs,t + Y ′
sXs,t − (ỸsX̃s,t + Ỹ ′

s X̃s,t). Then one has,

|RIX(Y )
s,t −R

I
X̃
(Ỹ )

s,t | = |
∫ t

s
Y dX− YsXs,t − (

∫ t

s
Ỹ dX̃− ỸsX̃s,t)|

≤ |Y ′
sXs,t − Ỹ ′

s X̃s,t|+ |I(Ξ)s,t − Ξs,t|.

We estimate the first term by

|∆Y ′
sXs,t|+ |Ỹ ′

s∆Xs,t|.

We estimate the last term by the sewing lemma (Theorem 4.6) with (as the calcula-
tion (4.6) shows)

δ(Ξ)τ,u,ν = RY
τ,uδXu,ν + δY ′

τ,uXu,ν − (RỸ
τ,uδX̃u,ν + δỸ ′

τ,uX̃u,ν).

and

|δ(Ξ)τ,u,ν | ≤ |∆δY ′
τ,uXu,ν|+ |δỸ ′

τ,u∆Xu,ν|+ |∆RY
τ,uδXu,ν |+ |RỸ

τ,u∆δXu,ν |.

Lemma 4.17 (Stability of implicit bound).

‖Y − Ỹ ‖r ≤ ‖∆Y ′‖sup‖X‖r + ‖Ỹ ′‖sup‖∆X‖r + ‖∆RY ‖r/2.

Proof. This follows from writing

Ys,t − Ỹs,t = (Y ′
sXs,t +RY

s,t)− (Ỹ ′
s X̃s,t +RỸ

s,t)

= (Y ′
s − Ỹs)Xs,t + Ỹs(Xs,t − X̃s,t) + (∆RY

s,t).

Lemma 4.18 (Contractivity of the iteration). For every A < ∞ and ϕ ∈ C2,1
b , there

esists ε > 0 such that, for every rough path X with ‖X‖r < ε and ‖X‖r/2 < ε, the
map (4.13) is strictly contractive on the set

{Y ∈ Y(X, A) | Y0 = y0, Y
′
0 = ϕ(y0)} (4.21)

with respect to the metric

d(Y, Ỹ) = max(‖∆RY ‖r/2, ‖∆Y ′‖r, 2(‖Dϕ‖sup +A‖Dϕ‖Lip)‖∆Y ‖r). (4.22)

Proof. The implicit constants here are allowed to depend on A in the definition of
Y.

Suppose Y, Ỹ ∈ Y(X, A) with d(Y, Ỹ) = α and Y0 = Ỹ0 = y0. Then,

‖∆Y ‖sup ≤ ‖∆Y ‖r . α.

By Lemma 4.15, we obtain

‖ϕ(Y )− ϕ(Ỹ )‖r ≤ ‖Dϕ‖sup‖∆Y ‖r + ‖Dϕ‖Lip‖∆Y ‖sup‖Ỹ ‖r ≤ α/2.

‖ϕ(Y )′ − ϕ(Ỹ )′‖r .ϕ ‖∆Y ′‖r + ‖Y ‖r‖∆Y ′‖sup
+ ‖∆Y ‖sup‖Ỹ ′‖r + ‖∆Y ′‖r‖Ỹ ′‖sup + ‖∆Y ‖sup‖Ỹ ‖r‖Ỹ ′‖sup . α(1 +A),

‖Rϕ(Y ) −Rϕ(Ỹ )‖r/2 . ‖∆RY ‖r/2 + ‖∆Y ‖sup‖RỸ ‖r/2
+ (‖Y ‖r + ‖Ỹ ‖r)‖∆Y ‖r + ‖∆Y ‖sup‖Ỹ ‖2r . α(1 +A2).
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Let Z = Step(Y), Z̃ = Step(Ỹ). Then

‖∆Z ′‖r = ‖ϕ(Y )− ϕ(Ỹ )‖r ≤ α/2.

By Lemma 4.16,

‖∆RZ‖r/2 . ε(‖∆ϕ(Y )′‖sup + ‖∆ϕ(Y )′‖r + ‖∆Rϕ(Y )‖r/2) . αε.

By Lemma 4.17, this implies

‖∆Z‖r . ‖∆Z ′‖sup‖X‖r + ‖∆RZ‖r/2 ≤ ‖∆Z ′‖rε+ Cεα . εα.

Choosing ε small enough, we obtain the claim.

Theorem 4.19 (Existence of solutions). For every ϕ ∈ C2,1
b , there exist A < ∞ and

ε > 0 such that, for every rough path X with ‖X‖r < ε and ‖X‖r/2 < ε and every y0,
there exists a unique X-controlled path Y ∈ Y(X, A) such that, for every t ∈ [0, T ],
we have

Yt = y0 +

∫ t

0
ϕ(Y) dX, Y ′

t = ϕ(Yt). (4.23)

Proof. Let A, ε be as in Lemma 4.18. Define a sequence of controlled paths by

(Y0)t = y0, (Y0)
′
t = 0, (Yj+1) = Step(Yj).

For j ≥ 1, the paths (Yj) are elements of (4.21). It follows from Lemma 4.18 that this
sequence is Cauchy with respect to the metric (4.22), and its limit solves the RDE
(4.23). Uniqueness of the solution follows from strict contractivity of (4.13).

One can also show that the solution Y in Theorem 4.19 is unique among all
X-controlled paths (not only those in Y(X, A)). To this end, we note that, given any
two X-controlled solutions, they are in Y(X, A) for some large A. One then has to
subdivide the time interval into smaller intervals, on each of which X has sufficiently
small variation norm to apply Lemma 4.18. Large jumps of X have to be handled
separately. We omit the tedious details.

4.3.4 Lipschitz dependence on data

Lemma 4.20 (Local Lipschitz dependence of RDE solution on the data). For every
ϕ ∈ C2,1

b and every A < ∞, there exists ε > 0 such that if X, X̃ are rough paths
with norms < ε, Y ∈ Y(X, A) is a solution of (4.23) with initial datum y0, and
Ỹ ∈ Y(X̃, A) is a solution of (4.23) with initial datum ỹ0 such that |y0− ỹ0| ≤ ε and
rough path X̃, then

max(‖∆RY ‖r/2, ‖∆Y ′‖r, ‖∆Y ‖r) .r,ϕ,A max(‖X − X̃‖r, ‖X − X̃‖r/2, |y0 − ỹ0|).

Proof. Let β be the RHS of the conclusion and

α := max(‖∆RY ‖r/2, ‖∆Y ′‖r, 2(‖Dϕ‖sup +A‖Dϕ‖Lip + 1)‖∆Y ‖r).

We may assume α > β, since otherwise the conclusion already holds. In this case,
we have

‖∆Y ‖sup ≤ |y0 − ỹ0|+ ‖∆Y ‖r . α, ‖∆Y ′‖sup ≤ ‖ϕ‖Lip‖∆Y ‖sup . α.

By Lemma 4.15, we obtain

‖ϕ(Y )′ − ϕ(Ỹ )′‖r . α(1 +A), ‖∆Rϕ‖r/2 . α(1 +A2),

A simple bound is
‖ϕ(Ỹ )‖r ≤ ‖ϕ‖Lip‖Ỹ ‖r ≤ A.
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As in (5.15), we have

‖Rϕ(Ỹ)‖r/2 . A2.

Inserting all these bounds into Lemma 4.16, we obtain

‖∆RY ‖r/2 . ε(‖∆ϕ(Y )′‖sup + ‖∆ϕ(Y )′‖r + ‖∆Rϕ(Y )‖r/2)
+ β(‖ϕ(Ỹ )′‖sup + ‖ϕ(Ỹ )‖r + ‖Rϕ(Ỹ )‖r/2)

. εα(1 +A2) + β(1 +A2).

By Lemma 4.15, we have

‖∆Y ′‖r = ‖ϕ(Y )− ϕ(Ỹ )‖r ≤ ‖Dϕ‖sup‖∆Y ‖r + ‖Dϕ‖Lip‖∆Y ‖sup‖Ỹ ‖r
≤ (‖Dϕ‖sup +A‖Dϕ‖Lip)‖∆Y ‖r +A‖Dϕ‖Lip|y0 − ỹ0| ≤ α/2 + Cβ.

Moreover, by Lemma 4.17, we have

‖∆Y ‖r ≤ ‖∆Y ′‖sup‖X‖r + ‖Ỹ ′‖sup‖∆X‖r + ‖∆RY ‖r/2.
≤ Cαε+Aβ + C(εα+ β).

Inserting these bounds into the definition of α, we obtain

α ≤ max(C(εα + β), α/2 + Cβ,C(εα+ β)),

where C depends on r, ϕ,A. If Cε ≤ 1/2, then this implies α ≤ Cβ.

Remark. Rough paths were introduced in [Lyo98] and controlled paths in [Gub04].
For a long time, the theory concentrated on Hölder continuous paths; a good expo-
sition of this case is in the book [FH20]. The treatment of V r paths is adapted from
[FZ18].

5 Martingale transforms

The main result of this section, Theorem 5.4, is a bound for discrete time versions
of the Itô integral.

We denote ℓp norms by

ℓpkak := (
∑

k∈N

|ak|p)1/p.

In order to simplify notation, we only consider martingales g with g0 = 0.

5.1 Davis decomposition

We will use the following Lq bound for the Davis decomposition (constructed in
Lemma 1.9).

Lemma 5.1 (Davis decomposition in Lq). For every martingale (fn) with values in
a Banach space X, there exists a decomposition f = fpred + fbv as a sum of two
martingales adapted to the same filtration with fpred

0 = 0 such that the differences of
fpred have predictable majorants:

Xdfpred
n ≤ 2MXdfn−1 (5.1)

and fbv has bounded variation, in an integral sense for every q ∈ [1,∞):

Lq
∑

k≤n

Xdfbv
k ≤ (q + 1)LqMXdfn. (5.2)
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Proof. Recall from the construction in Lemma 1.9 that

dfbv
n = dh̃n − En−1(dh̃n),

where h̃n is a process such that

Xdh̃n = MXdfn −MXdfn−1.

Therefore,

Lq
∑

k≤n

Xdfbv
k ≤ Lq

∑

k≤n

Xdh̃k + Lq
∑

k≤n

Ek−1Xdh̃k.

Using Lemma 1.15 in the second summand, we obtain the claim.

Lemma 5.2. Let 1 ≤ q < ∞, X be a Banach function space, elements of which are
R-valued maps x(·), and (fn) a martingale with values in X. Then for fpred given
by Lemma 5.1 we have

‖‖Sfpred‖X‖Lq ≤ (q + 2)‖‖Sf‖X‖Lq ,

where the square function is given by

‖Sf‖X := ‖ℓ2n(dfn(·))‖X

Remark. We will apply this with X = ℓr, i.e. r-summable series, viewed as maps
from N → R, with the usual Banach structure.

Proof. Using (5.2) we estimate

‖‖Sfpred‖X‖Lq ≤ ‖‖Sf‖X‖Lq + ‖‖Sfbv‖X‖Lq

≤ ‖‖Sf‖X‖Lq + ‖‖
∑

n

|dnfbv|‖X‖Lq

≤ ‖‖Sf‖X‖Lq + ‖
∑

n

‖dnfbv‖X‖Lq

≤ ‖‖Sf‖X‖Lq + (q + 1)‖sup
n
‖dnf‖X‖Lq

. ‖‖Sf‖X‖Lq .

5.2 Vector-valued maximal paraproduct estimate

We call a process (Fs,t)s≤t depending on two time variables adapted if Fs,t is Ft-
measurable for every s ≤ t.

For an adapted process (Fs,t) and a martingale (gn), we define

Π(F, g)s,t :=
∑

s<j≤t

Fs,j−1dgj (5.3)

Note that Π(F, g)s,· only depends on (Fs,·).

Proposition 5.3. Let 0 < q, q1 ≤ ∞, 1 ≤ q0, r, r0 < ∞, 1 ≤ r1 ≤ ∞. Assume

1/q = 1/q0 + 1/q1 and 1/r = 1/r0 + 1/r1. Then, for any martingales (g
(k)
n )n, any

adapted sequences (F
(k)
s,t )s≤t, and any stopping times τ ′k ≤ τk with k ∈ Z, we have

∥

∥ℓrk sup
τ ′
k
≤t≤τk

|Π(F (k), g(k))τ ′
k
,t|
∥

∥

q
≤ Cq0,q1,r0,r1

∥

∥ℓr1k sup
τ ′
k
≤t<τk

|F (k)
τ ′
k
,t
|
∥

∥

q1
‖ℓr0k Sg

(k)
τ ′
k
,τk

‖q0 , (5.4)

where Sgs,t := (δ(Sg)2)
1/2
s,t =

(
∑t

j=s+1|dgj |2
)1/2

.
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Proof of Proposition 5.3. We may replace each g(k) by the martingale

g̃(k)n := g
(k)
n∧τk − g

(k)
n∧τ ′

k
(5.5)

without changing the value of either side of (5.4).
Consider first q ≥ 1. For each k, the sequence

h
(k)
t :=

{

0, t < τ ′k,

Π(F (k), g(k))τ ′
k
,t, t ≥ τ ′k,

is a martingale. We may also assume Fτ ′
k
,t = 0 if t 6∈ [τ ′k, τk). By the ℓr valued BDG

inequality (Corollary 3.2), we can estimate

LHS (5.4) .
∥

∥ℓrk|Sh(k)|
∥

∥

q

=
∥

∥ℓrkℓ
2
j |F

(k)
τ ′
k
,j−1

dg
(k)
j |

∥

∥

q

≤
∥

∥ℓrkMF (k)ℓ2j |dg
(k)
j |

∥

∥

q

≤ ‖ℓr1k MF (k)‖q1
∥

∥ℓr0k Sg(k)
∥

∥

q0
.

Here and later, we abbreviate MF (k := supj|F
(k
τ ′
k
,j
|.

Consider now q < 1. By homogeneity, we may assume
∥

∥ℓr1k MF (k)
∥

∥

q1
=

∥

∥ℓr0k Sg(k)
∥

∥

q0
= 1, (5.6)

and we have to show
∥

∥ℓrk sup
τ ′
k
≤t≤τk

|Π(F (k), g(k))τ ′
k
,t|
∥

∥

q
. 1.

We use the Davis decomposition g = gpred+ gbv (Lemma 5.1 with X = ℓr0). The
contribution of the bounded variation part is estimated as follows:

‖ℓrk sup
τ ′
k
≤t≤τk

|Π(F (k), g(k),bv)τ ′
k
,t|‖q

≤ ‖ℓrk
∑

j

|F (k)
τ ′
k
,j−1

| · |dg(k),bvj |‖q

≤ ‖ℓr1k MF (k)‖q1‖ℓr0k
(

∑

j

|dg(k),bvj |
)

‖q0

≤ ‖ℓr1k MF (k)‖q1‖
∑

j

ℓr0k |dg(k),bvj |‖q0

. ‖ℓr1k MF (k)‖q1‖sup
j

ℓr0k |dg(k)j |‖q0

≤ ‖ℓr1k MF (k)‖q1‖ℓr0k Sg(k)‖q0 ,

where we used (5.2) in the penultimate step.
It remains to consider the part gpred with predictable bounds for jumps. We use

the layer cake formula in the form
∫

f q =

∫ ∞

0
P{f q > λ}dλ =

∫ ∞

0
P{f > λ1/q}dλ.

By the layer cake formula, we have

∥

∥ℓrk sup
τ ′
k
≤t≤τk

|Π(F (k), g(k),pred)τ ′
k
,t|
∥

∥

q

q

=

∫ ∞

0
P{ℓrk sup

τ ′
k
≤t≤τk

|Π(F (k), g(k),pred)τ ′
k
,t| > λ1/q}dλ. (5.7)
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Fix some λ > 0 and define a stopping time

τ := inf
{

t
∣

∣

∣
M(ℓr0k dg(k))t > cλ1/q0 or ℓr0k Sg

(k),pred
t > cλ1/q0 or ℓr1k sup

0<j≤t
|F (k)

τ ′
k
,j
| > λ1/q1

}

.

(5.8)

Define stopped martingales g̃
(k)
t := g

(k),pred
t∧τ and adapted processes

F̃
(k)
t′,t := F

(k)
t′,t∧τ−1.

Then, on the set {τ = ∞}, we have

Π(F (k), g(k),pred)τ ′
k
,t = Π(F̃ (k), g̃(k))τ ′

k
,t for all k, t.

Hence,

{ℓrk sup
τ ′
k
≤t≤τk

|Π(F (k), g(k),pred)τ ′
k
,t| > λ1/q}

⊂{ℓrk sup
τ ′
k
≤t≤τk

|Π(F̃ (k), g̃(k))τ ′
k
,t| > λ1/q}

∪ {ℓr0k Sg(k) > λ1/q0} ∪ {ℓr0k Sg(k),pred > λ1/q0}
∪ {ℓr1k MF (k) > λ1/q1}

(5.9)

The contributions of the latter three terms to (5.7) are . 1 by (5.6) and Lemma 5.2.
It remains to handle the first term.

By construction, we have ℓr1k MF̃ (k) ≤ λ1/q1 , and due to (5.1) we also have
ℓr0k Sg̃(k) ≤ λ1/q0 , provided that the absolute constant c in (5.8) is small enough.
Choose an arbitrary exponent q̃ with q0 < q̃ < ∞. By the already known case of the
Proposition with (q0, q1) replaced by (q̃,∞), we obtain

P{ℓrk sup
τ ′
k
≤t≤τk

|Π(F̃ (k), g̃(k))τ ′
k
,t| > λ1/q}

≤ λ−q̃/q‖ℓrk sup
τ ′
k
≤t≤τk

|Π(F̃ (k), g̃(k))τ ′
k
,t|‖q̃q̃

.q̃ λ
−q̃/q‖ℓr1k MF̃ (k)‖q̃∞‖ℓr0k Sg̃(k)‖q̃q̃

≤ λ−q̃/q0‖ℓr0k Sg(k),pred ∧ λ1/q0‖q̃q̃.

(5.10)

This estimate no longer depends on the stopping time τ . Integrating the right-hand
side of (5.10) in λ, we obtain

∫ ∞

0
λ−q̃/q0‖ℓr0k Sg(k),pred ∧ λ1/q0‖q̃q̃ dλ = E

∫ ∞

0

(

λ−q̃/q0(ℓr0k Sg(k),pred)q̃ ∧ 1
)

dλ

∼ E(ℓr0k Sg(k),pred)q0

∼ 1,

where we used q̃ > q0, Lemma 5.2 with X = ℓr0 , and the assumption (5.6).

We will soon need a version of Proposition 5.3 with a supremum in both time
arguments of the paraproduct. Nice estimates of such form are only available under
some structural assumptions on F . In this course, we only consider F = δf .

Theorem 5.4. Let q, q0, q1, r, r1 be as in Proposition 5.3 with r0 = 2, that is,

0 < q, q1 ≤ ∞, 1 ≤ q0, r < ∞, 1 ≤ r1 ≤ ∞, 1/q = 1/q0 + 1/q1, 1/r = 1/2 + 1/r1.

Let f be an adapted process, g a martingale, and τ an adapted partition. Then, we
have

∥

∥ℓrk sup
τk−1≤s≤t≤τk

|Π(δf, g)s,t|
∥

∥

q
.

∥

∥ℓr1k sup
τk−1≤t<τk

|δfτk−1,t|
∥

∥

q1
‖Sg‖q0 . (5.11)
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Proof. For any s ≤ t ≤ u, the sums (5.3) satisfy the relation

δΠ(F, g)s,t,u = Πs,u(F, g) −Πs,t(F, g) −Πt,u(F, g)

=
∑

s<j≤u

Fs,j−1dgj −
∑

s<j≤t

Fs,j−1dgj −
∑

t<j≤u

Ft,j−1dgj

=
∑

t<j≤u

(Fs,j−1 − Ft,j−1)dgj .

In case of F = δf , the right-hand side becomes

∑

t<j≤u

(ft − fs)dgj = (ft − fs)(gu − gt).

Therefore, for any τ ′k ≤ s ≤ t, we can estimate

|Πs,t(δf, g)| ≤ |Πτ ′
k
,t(δf, g)| + |Πτ ′

k
,s(δf, g)| + |δfτ ′

k
,sδgs,t|.

In the first two terms, we apply Proposition 5.3 with τ ′k = τk−1, f
(k) = f , g(k) = g

for each k. In the last term, by Hölder’s inequality, we have

∥

∥ℓrk sup
τk−1≤s<t≤τk

|δfτ ′
k
,sδgs,t|

∥

∥

q
≤

∥

∥ℓr1k sup
τk−1≤s<t≤τk

|δfτ ′
k
,s|
∥

∥

q1

∥

∥ℓ2k sup
τk−1≤s<t≤τk

|δgs,t|
∥

∥

q0
.

In the former norm, we observe that the dependence on t disappears. In the latter
norm, we use the ℓ2 valued BDG inequality (Corollary 3.2) with the martingales
h(k) = τk−1gτk .

5.3 Stopping time construction

In this section, we estimate the r-variation of a two-parameter function by square
function-like objects, like we did this for one-parameter functions in the proof of
Lépingle’s inequality.

For an adapted process (Πs,t)s≤t, let

Π∗
n′′ := sup

0≤n<n′≤n′′

|Πn,n′ |, Π∗ := Π∗
∞.

Lemma 5.5. For any discrete time adapted process (Πs,t)s<t, there exist adapted

partitions τ
(m)
j such that, for every 0 < ρ < r < ∞, we have

sup
lmax,

u0<···<ulmax

lmax
∑

l=1

|Πul−1,ul
|r ≤ (Π∗)r

1− 2−r
+2ρ

∞
∑

m=0

(2−mΠ∗)r−ρ
∞
∑

j=1

(

sup
τ
(m)
j−1≤t<τ

(m)
j

|Π
t,τ

(m)
j

|
)ρ

.

(5.12)

Proof of Lemma 5.5. For m ∈ N, define stopping times

τ
(m)
0 := 0,

and then, for j ≥ 0, allowing values in N ∪ {∞},

τ
(m)
j+1 := inf

{

t > τ
(m)
j

∣

∣

∣
sup

τ
(m)
j ≤t′<t

|Πt′,t| > 2−m−1Π∗
t

}

. (5.13)

Fix ω ∈ Ω and let (ul)
lmax
l=0 be a finite strictly increasing sequence. Consider 0 < ρ <

r < ∞ and split
lmax
∑

l=1

|Πul−1,ul
|r =

∞
∑

m=0

∑

l∈L(m)

|Πul−1,ul
|r, (5.14)
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where

L(m) :=
{

l ∈ {1, . . . , lmax}
∣

∣ 2−m−1Π∗
ul

< |Πul−1,ul
| ≤ 2−mΠ∗

ul

}

. (5.15)

In (5.14), we only omitted vanishing summands, since |Πul−1,ul
| ≤ Π∗

ul
. Let also

L′(m) := L(m) \ {supL(m)}. Using (5.15), we obtain

lmax
∑

l=1

|Πul−1,ul
|r ≤

∞
∑

m=0

(2−mΠ∗)r−ρ
∑

l∈L′(m)

|Πul−1,ul
|ρ +

∞
∑

m=0

(2−mΠ∗)r. (5.16)

Claim. For every l ∈ L(m), there exists j s.t. τ
(m)
j ∈ (ul−1, ul].

Proof of the claim. Let j be maximal with τ
(m)
j ≤ ul−1. Since l ∈ L(m), by definition

(5.15), we have
|Πul−1,ul

| > 2−m−1Π∗
ul
.

By the definition of stopping times (5.13), we obtain τ
(m)
j+1 ≤ ul.

Fix m. For each l ∈ L′(m), let j(l) be the largest j such that τ
(m)
j ∈ (ul−1, ul].

Then all j(l) are distinct, and, since l 6= maxL(m), the claim shows that τ
(m)
j(l)+1 < ∞.

Furthermore, by (5.15), the monotonicity of t 7→ Π∗
t , and the fact that the infimum

in the definition (5.13) of stopping times is in fact a minimum unless it is infinite,
we have

|Πul−1,ul
| ≤ 2−mΠ∗

ul
≤ 2−mΠ∗

τ
(m)
j(l)+1

≤ 2 sup
τ
(m)
j(l)

≤t′<τ
(m)
j(l)+1

|Π
t′,τ

(m)
j(l)+1

|. (5.17)

Since all j(l) are distinct, this implies

∑

l∈L′(m)

|Πul−1,ul
|ρ ≤ 2ρ

∞
∑

j=1

sup
τ
(m)
j−1≤t′<τ

(m)
j

|Π
t′,τ

(m)
j

|ρ.

Substituting this into (7.5), we conclude the proof of Lemma 5.5.

Corollary 5.6. Let (Πs,t)s≤t be an adapted process with Πt,t = 0 for all t. Then, for
every 0 < ρ < r < ∞ and q ∈ (0,∞], we have

‖V rΠ‖Lq . sup
τ

∥

∥

∥

(

∞
∑

j=1

(

sup
τj−1≤t<t′≤τj

|Πt,t′ |
)ρ
)1/ρ∥

∥

∥

Lq
, (5.18)

where the supremum is taken over all adapted partitions τ .

Proof. By the monotone convergence theorem, we can restrict the times in the defi-
nition of V r to a finite set, and then apply Lemma 5.5.

The term Π∗ is of the form on the right-hand side of (5.18) with τ1 = ∞. There-
fore, the claim follows from the triangle inequality in Lq (if q ≥ 1), q-convexity of Lq

(if q < 1), and Hölder’s inequality.

Theorem 5.7. Let

0 < q, q1 ≤ ∞, 1 ≤ q0 < ∞, 1 ≤ r1 ≤ ∞, 1/q = 1/q0 + 1/q1, 1/r < 1/2 + 1/r1.

Let f be an adapted process and g a martingale. Then, we have

‖V r
k Π(δf, g)‖q . ‖V r1f‖q1‖Sg‖q0 . (5.19)

Proof. Combine Corollary 5.6 and Theorem 5.4.

Remark. This section is mostly copied from [FZ23].
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6 Itô integration

In this section, we discuss integration with respect to a càdlàg martingale in contin-
uous time, generalizing the paraproduct Π from the previous section. We consider
stochastic processes adapted to some filtration (Ft)t∈R≥0

indexed by positive real
times. We begin with some convenient regularity assumptions. These assumptions
are not restrictive, in the sense that, for any martingale, one can reparametrize time
and change the filtration in such a way that they are satisfied, but we will not discuss
this, since our focus is on more quantitative issues.

A filtration (Ft)t∈R≥0
is called right-continuous if, for every t ≥ 0, we have

Ft =
⋂

t′>t

Ft′ .

For a function f : R≥0 → E with values in a metric space E, the left and right limits
at a point t are denoted by

ft− := lim
s→t,s<t

fs, ft+ := lim
s→t,s>t

fs,

if they exist. A function f : R≥0 → E is called càdlàg (for “continue à droite,
limite à gauche”, “right continuous with left limits”; some authors use the English
abbreviation “rcll”) if ft− exists for every t > 0, and ft = ft+ for every t ≥ 0. A
stochastic process g : Ω× R≥0 → E is called càdlàg if every path g(ω, ·) is a càdlàg
function.

Theorem 6.1 (Regularization, see e.g. [Kal21, Theorem 9.28]). Let F = (Ft)t∈R≥0

be a right-continuous filtration. If g is a martingale with respect to F , then there
exists a càdlàg martingale g̃ with respect to F such that, for every t ≥ 0, we have

g(·, t) = g̃(·, t) a.e.

For an adapted partition π, we write

⌊t, π⌋ := max{s ∈ π | s ≤ t}, 0 ≤ t < ∞. (6.1)

For a càdlàg adapted process f = (ft)t≥0, a càdlàg martingale g = (gt)t≥0, and an
adapted partition π, we consider the following Riemann–Stieltjes sums:

Ππ(f, g)t,t′ :=
∑

t<πj<t′

δf⌊t,π⌋,πj
δgπj ,πj+1∧t′ , 0 ≤ t ≤ t′ < ∞. (6.2)

In each summand, the integrand f is evaluated at the left endpoint of the interval
[πj , πj+1] on which we consider the increment of the integrator g (and also at ⌊t, π⌋,
which is even further to the left). This is the distinguishing feature of the Itô integral
that makes it a martingale in the t′ variable.

Unlike in Riemann(–Stieltjes) integration with a bounded variation integrator,
evaluating t at other points in general produces different results (e.g. Stratonovich
integral, where f is averaged over πj and πj+1).

Most classical treatments involve sums
∑

πj<t′

fπj
δgπj ,πj+1∧t′ ,

which corerspond to fixing t = 0, but this obscures the observation of the natural
regularity of the Itô integral that fits nicely with rough path theory.

For an adpated process f and an adapted partition π, we write

f
(π)
t := f⌊t,π⌋. (6.3)
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Proposition 6.2. Let 0 < q1 ≤ ∞, 1 ≤ q0 < ∞, and 0 < r, p1 ≤ ∞. Suppose

1/r < 1/p1 + 1/2, 1/q = 1/q0 + 1/q1. (6.4)

Let (ft) be a càdlàg adapted process and (gt) a càdlàg martingale.
Then, for every adapted partition π, we have the estimate

∥

∥V rΠπ(f, g)
∥

∥

Lq . ‖V p1f (π)‖Lq1‖V ∞g‖Lq0 . (6.5)

Proof of Proposition 6.2. Since Ππ(F, g)t,t′ is càdlàg in both t and t′, we have

V rΠπ(F, g) = lim
n→∞

sup
lmax,u0<···<ulmax ,ul∈π(n)

(

lmax
∑

l=1

|Ππ(F, g)ul−1 ,ul
|r
)1/r

,

where π(n) = π∪2−n
N. By the monotone convergence theorem, it suffices to consider

a fixed π(n), as long as the bound does not depend on n.
For any adapted partitions π ⊆ τ , we have

Ππ(f, g)t,t′ =
∑

k:t<πk<t′

δf⌊t,π⌋,πk
δgπk ,πk+1∧t′

=
∑

k:t<πk<t′

δf⌊t,π⌋,πk

∑

l:πk≤τl<πk+1∧t′

δgτl ,τl+1∧t′

=
∑

k:t<πk<t′

∑

l:πk≤τl<πk+1∧t′

δf⌊t,π⌋,⌊τl ,π⌋δgτl ,τl+1∧t′

=
∑

l:t<τl<t′

δf
(π)
⌊t,τ⌋,τl

δgτl ,τl+1∧t′

= Πτ (f (π), g)t,t′ ,

(6.6)

where f (π) is given by (6.3). Define discrete time processes f
(π)
τ , gτ by

(f (π)
τ )j = f (π)

τj , (gτ )j = gτj .

Then, we have

Ππ(f, g)τj ,τj′ = Πτ (f (π), g)τj ,τj′

=
∑

l:τj<τl<τj′

δf
(π)
⌊τj ,τ⌋,τl

δgτl,τl+1∧τj′

=
∑

l:j<l<j′

δf (π)
τj ,τl

δgτl,τl+1

= Π(f (π)
τ , gτ )j,j′,

where the last line is the discrete time paraproduct defined in (5.3). By Theorem 5.7
and the BDG inequality (Corollary 1.13) for the discrete time martingale gτ , we
obtain

‖V rΠ(f (π)
τ , gτ )‖q . ‖V r1f (π)

τ ‖q1‖Sgτ‖q0 . ‖V r1f (π)
τ ‖q1‖V ∞gτ‖q0 ≤ ‖V r1f‖q1‖V ∞g‖q0 .

Lemma 6.3. Let (ft)t≥0 be a càdlàg adapted process. Suppose that V p1f ∈ Lq1 for
some p1, q1 ∈ (0,∞]. Then, for every p̃1 ∈ (p1,∞) ∪ {∞}, we have

lim
π
‖V p̃1(f − f (π))‖Lq1 = 0.
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Proof. We have V p1f (π) ≤ V p1f and, by Hölder’s inequality,

V p̃1(f − f (π)) ≤ V p1(f − f (π))1−θV ∞(f − f (π))θ

with some θ ∈ (0, 1], so it suffices to consider p̃1 = ∞.
Let ε > 0 and define a sequence of stopping times recursively, starting with

π0 := 0, by

πj+1 := inf
{

t > πj

∣

∣

∣
|δfπj ,t| ≥ ε

}

.

Since f is càdlàg, the infimum is either +∞ or a minimum, so that this is indeed
a stopping time. Also by the càdlàg assumption, this sequence of stopping times
is strictly monotonically increasing in the sense that πj < ∞ =⇒ πj < πj+1.
Moreover, if T := supj πj < ∞, then the left limit fT− does not exist, contradicting
the càdlàg hypothesis. Therefore, πj → ∞, so that π is an adapted partition.

Then, by (4.18), for any adapted partition π′ ⊇ π and s ≤ t, we have

|δfs,t − δf
(π′)
s,t | ≤ |ft − f⌊t,π′⌋|+ |fs − f⌊s,π′⌋|

≤ 2ε+ 2ε.

Theorem 6.4 (Itô integral). In the situation of Proposition 6.2, suppose that the
right-hand side of (6.8) is finite. Then

Π(f, g) := lim
π

Ππ(f, g) (6.7)

exists in Lq(Ω, V r), satisfies the bound

∥

∥V rΠ(f, g)
∥

∥

Lq . ‖V p1f‖Lq1‖V ∞g‖Lq0 , (6.8)

and, for any 0 ≤ t ≤ t′ ≤ t′′ < ∞, Chen’s relation

Π(f, g)t,t′′ −Π(f, g)t,t′ −Π(f, g)t′,t′′ = δft,t′δgt′,t′′ . (6.9)

The limit (6.7) is called the Itô integral (with integrand f and integrator g).

Proof of Theorem 6.4. By the Cauchy criterion for net convergence, the existence of
the limit (6.7) will follow if we can show that

lim
π

sup
τ⊇π

∥

∥V r(Ππ(f, g)−Πτ (f, g))
∥

∥

Lq = 0. (6.10)

To this end, we use that, by (6.6), we have

Ππ(f, g)−Πτ (f, g) = Πτ (f (π) − f (τ), g).

Let p̃1 ∈ (p1,∞] ∪ {∞} be such that 1/r < 1/p̃1 + 1/2. By Proposition 6.2 with f
replaced by f (π) − f (τ), we obtain

∥

∥V rΠτ (f (π) − f (τ), g)
∥

∥

Lq

. ‖V p̃1(f (π) − f (τ))(τ)‖Lq1‖V ∞g‖Lq0

This converges to 0 by Lemma 6.3.
In order to show the Chen relation (6.9), we first show that the corresponding

relation holds pointwise for the discretized paraproducts Ππ. Indeed, by definition
(6.2), for t ≤ t′ ≤ t′′, we have

Ππ(f, g)t,t′′ −Ππ(f, g)t,t′ −Ππ(f, g)t′,t′′ (6.11)
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=
∑

t<πj<t′′

δf⌊t,π⌋,πj
δgπj ,πj+1∧t′′ −

∑

t<πj<t′

δf⌊t,π⌋,πj
δgπj ,πj+1∧t′

−
∑

t′<πj<t′′

δf⌊t′,π⌋,πj
δgπj ,πj+1∧t′′

=
∑

t<πj<t′

f⌊t,π⌋,πj
(δgπj ,πj+1∧t′′ − δgπj ,πj+1∧t′) +

∑

t<πj=t′<t′′

δf⌊t,π⌋,πj
δgπj ,πj+1∧t′′

+
∑

t′<πj<t′′

(δf⌊t,π⌋,πj
− δf⌊t′,π⌋,πj

)δgπj ,πj+1∧t′′

=
∑

t<πj<t′

f⌊t,π⌋,πj
δgπj+1∧t′,πj+1∧t′′ +

∑

t<πj=t′<t′′

δf⌊t,π⌋,πj
δgπj ,πj+1∧t′′

+ δf⌊t,π⌋,⌊t′,π⌋
∑

t′<πj<t′′

δgπj ,πj+1∧t′′

All summands except possibly the one with πj < t′ < πj+1 in the first sum vanish,
and it follows that

· · · = δf⌊t,π⌋,⌊t′,π⌋

(

∑

t<πj<t′<πj+1

δgπj+1∧t′,πj+1∧t′′

+
∑

t<πj=t′<t′′

δgπj ,πj+1∧t′′ +
∑

t′<πj<t′′

δgπj ,πj+1∧t′′

)

= δf⌊t,π⌋,⌊t′,π⌋

(

∑

t<πj≤t′<πj+1∧t′′

δgt′,πj+1∧t′′ +
∑

t′<πj<t′′

δgπj ,πj+1∧t′′

)

= δf
(π)
t,t′ δgt′,t′′ .

By the already known conclusion (6.7), the process (6.11) converges to the left-hand
side of (6.9). By Lemma 6.3, the last expression in the above chain of equalities
converges to the right-hand side of (6.9).

6.1 Quadratic covariation

Proposition 6.5. Let q0, q1 ∈ [1,∞), 1/q = 1/q0 + 1/q1, and r > 1. For càdlàg
martingales f, g with V ∞f ∈ Lq0, V ∞g ∈ Lq1 , let

[f, g]πt,t′ :=
∑

⌊t,π⌋≤πj<⌊t′,π⌋

δfπj ,πj+1δgπj ,πj+1 .

Then,
[f, g]t,t′ := lim

π
[f, g]πt,t′ (6.12)

exists in Lq(V r). Moreover, we have the integration by parts formula

δft,t′δgt,t′ = Π(f, g)t,t′ +Π(g, f)t,t′ + [f, g]t,t′ . (6.13)

The process (6.12) is called the quadratic covariation of f and g. Here are a few
facts about it that easily follow from the definition:

∀t ≤ t′ ≤ t′′, [f, g]t,t′′ = [f, g]t,t′ + [f, g]t′,t′′ a.s.

To see this, note that the same identity holds for [·, ·]π for any adapted partition π
that contains the times t, t′, t′′.

∀t ≤ t′, Et[f, f ]t,t′ = Et|δft,t′ |2.

To see this, note that the same identity holds for [·, ·]π for any adapted partition π
that contains the times t, t′, because, by the optinal sampling theorem, δfπj ,πj+1 are
martingale increments, and therefore orthogonal in L2.
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Proof of Proposition 6.5. First, we compute

δf⌊t,π⌋,t′δg⌊t,π⌋,t′ −Ππ(f, g)t,t′ −Ππ(g, f)t,t′

=
(

∑

⌊t,π⌋≤πk<t′

δfπk,πk+1∧t′
)(

∑

⌊t,π⌋≤πj<t′

δgπj ,πj+1∧t′
)

−
∑

⌊t,π⌋<πj<t′

δf⌊t,π⌋,πj
δgπj ,πj+1∧t′ −

∑

⌊t,π⌋<πk<t′

δg⌊t,π⌋,πk
δfπk,πk+1∧t′

=
∑

⌊t,π⌋≤πj<t′

δfπj ,πj+1∧t′δgπj ,πj+1∧t′

+
∑

⌊t,π⌋≤πk<πj<t′

δfπk,πk+1∧t′δgπj ,πj+1∧t′ −
∑

⌊t,π⌋<πj<t′

δf⌊t,π⌋,πj
δgπj ,πj+1∧t′

+
∑

⌊t,π⌋≤πj<πk<t′

δfπk,πk+1∧t′δgπj ,πj+1∧t′ −
∑

⌊t,π⌋<πk<t′

δg⌊t,π⌋,πk
δfπk,πk+1∧t′ .

Each of the last two lines vanishes identically.
In particular, replacing t′ by ⌊t′, π⌋, we obtain

δf⌊t,π⌋,⌊t′,π⌋δg⌊t,π⌋,⌊t′ ,π⌋−Ππ(f, g)t,⌊t′,π⌋−Ππ(g, f)t,⌊t′,π⌋ =
∑

⌊t,π⌋≤πj<⌊t′,π⌋

δfπj ,πj+1δgπj ,πj+1 .

(6.14)
Note that

Ππ(f, g)t,⌊t′ ,π⌋ = Ππ(f, g)t,t′ −
∑

πj<t′<πj+1

δf⌊t,π⌋,πj
δgπj ,t′ , (6.15)

where the sum consists of either 0 or 1 summands. For any inrcreasing sequence
u0 ≤ . . . ≤ uK , we have In particular, with any α ∈ (0, r − 1), we have

K−1
∑

k=0

∣

∣

∣

∑

πj<uk+1<πj+1

δf⌊uk ,π⌋,πj
δgπj ,uk+1

∣

∣

∣

r

=
∑

k:⌊uk,π⌋<⌊uk+1,π⌋

|δf⌊uk ,π⌋,⌊uk+1,π⌋δg⌊uk+1,π⌋,uk+1
|r

≤
(

∑

k:⌊uk,π⌋<⌊uk+1,π⌋

|δf⌊uk ,π⌋,⌊uk+1,π⌋|2r
)1/2( ∑

k:⌊uk,π⌋<⌊uk+1,π⌋

|δg⌊uk+1,π⌋,uk+1
|2r

)1/2

≤ (V 2rf)r sup
t
|δg⌊t,π⌋,t|α(V 2(r−α)g)r−α.

This expression no longer depends on the sequence (uk). By Lépingle’s and Hölder’s
inequalities, this is bounded in Lq, and, taking into account Lemma 6.3, this con-
verges to 0 in Lq. Hence, the second term on the right-hand side of (6.15) converges
to 0 in LqV r. Theorem 6.4 and Lépingle’s inequality for f now imply

lim
π

Ππ(f, g)t,⌊t′,π⌋ = Π(f, g)t,t′ in LqV r.

Writing (6.14) as

[f, g]πt,t′ = δf
(π)
t,t′ δg

(π)
t,t′ −Ππ(f, g)t,⌊t′ ,π⌋ −Ππ(g, f)t,⌊t′⌋, (6.16)

we see that the first summand on the right-hand side converges to δfδg in LqV r by
Lemma 6.3, and the remaining summands to Itô integrals by the above discussion.
Hence, the left hand side converges, as was claimed in (6.12). The identity (6.13) is
the limit of the above equality.
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7 A sharp inequality for the square function

The proof of the BDG inequality that we have seen in this notes was quite indirect:
we started with some L2 identities and used the Davis decomposition to lower the
Lp exponent. In this section, we will take a look at a more direct method for proving
martingale inequalities. In this special case, it will yield an inequality with an optimal
constant.

This section follows [Bur02].

Theorem 7.1. Let (fn)n∈N be a real-valued martingale. Then, for every N ∈ N, we
have

E

(

3|f0|+
N
∑

n=1

|dfn|2
f∗
n

)

≤ E

(

2f∗
N +

|fN |2
f∗
N

)

. (7.1)

We will see later that the inequality (7.1) implies the Davis inequality for the
martingale square function with the sharp constant. In applications, one replaces
(7.1) by the slightly weaker inequality

E

(

3|f0|+
N
∑

n=1

|dfn|2
f∗
n

)

≤ 3Ef∗
N .

However, the preculiar form of the right-hand side of (7.1) permits to show this result
by induction on N .

7.1 A Bellman function

The inductive step in the proof of Theorem 7.1 is usually stated as a concavity
property of a special function. Functions used in such arguments are called “Bellman
functions”; many more examples can be found in the books [Osę12; VV20].

Thoroughout this section,

D := {(x, t, z) ∈ R× R≥0 × R≥0 | |x| ≤ z}.

We define U : D → R by

U(x, y,m) := y − |x|2 + (γ − 1)m2

m
,

where γ = 3. The main feature of this function is the following concavity property.

Proposition 7.2. For any x, h ∈ R and y,m ∈ R≥0 with |x| ≤ m, we have

U(x+ h, y +
|h|2

(|x+ h| ∨m)
, |x+ h| ∨m) ≤ U(x, y,m) − 2(x)h

m
. (7.2)

Proof of Theorem 7.1 assuming Proposition 7.2. Using (7.2) with

x = fn, y = S̃n := γ|f0|+
n
∑

j=1

|dfj|2
f∗
j

, m = f∗
n, h = dfn+1,

we obtain

U(fn+1, S̃n+1, f
∗
n+1) ≤ U(fn, S̃n, f

∗
n)−

2fndfn+1

f∗
n

. (7.3)

By conditional independence, we have

E(
2fndfn+1

f∗
n

|Fn) =
2fn
f∗
n

E(dfn+1|Fn) = 0.
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Taking expectations, we obtain

EU(fn+1, S̃n+1, f
∗
n+1) ≤ EU(fn, S̃n, f

∗
n).

Iterating this inequality, we obtain

E

(

3|f0|+
N
∑

n=1

|dfn|2
(f∗

n)
− |fN |2

f∗
N

− 2f∗
N

)

= EU(fN , S̃N , f∗
N ) ≤ EU(f0, S̃0, f

∗
0 ) = 0.

Remark. The above proof in fact shows the pathwise inequality

3|f0|+
N
∑

n=1

|dfn|2
(f∗

n)
≤ 2f∗

N +
|fN |2
f∗
N

−
N
∑

n=1

2(fn)dfn+1

(f∗
n)

.

Proof of Proposition 7.2. If |x+ h| ≤ m, then

U(x+ h, y +
|h|2

(|x+ h| ∨m)
, |x+ h| ∨m)

= (y +
|h|2
m

)− |x+ h|2 + (γ − 1)m2

m

= y +
|h|2
m

− |x|2 + 2xh+ |h|2 + (γ − 1)m2

m

= y − |x|2 + (γ − 1)m2

m
− 2xh

m

= U(x, y,m)− 2(x)h

m
.

If |x+ h| > m, then we need to show

(y +
|h|2

|x+ h| )−
|x+ h|2 + (γ − 1)|x+ h|2

|x+ h| ≤ y − |x|2 + (γ − 1)m2

m
− 2xh

m
. (7.4)

This is equivalent to

|h|2 − γ|x+ h|2
|x+ h| ≤ −|x|2 − (γ − 1)m2

m
− 2xh

m
. (7.5)

The inequality (7.5) is equivalent to

|h|2m
m2|x+ h| − γ

|x+ h|
m

≤ −|x+ h|2 + |h|2
m2

− (γ − 1).

Let t := |x+h|/m > 1 and t̃ := |h|/m. Note that |t−t̃| = ||x+h|−|h||/m ≤ |x|/m ≤ 1.
With this notation, (7.5) is equivalent to

t̃2/t− γt ≤ −t2 + t̃2 − (γ − 1),

or

γ ≥ 1

t− 1

(

t2 − 1− t̃2(1− 1/t)
)

= (t+ 1)− t̃2/t.

Hence, it suffices to ensure

γ ≥ sup
t>1,|t−t̃|≤1

(t+ 1)− t̃2/t.

The supremum in t̃ is assumed for t̃ = (t− 1), so this condition becomes

γ ≥ sup
t>1

t+ 1− (t− 1)2/t = sup
t>1

3− 1/t = 3.
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7.2 Sharp constant in the Davis inequality for the square function

Proposition 7.3. Let f be a real-valued martingale. Then

ESf ≤
√
3Ef∗.

Proof. By Hölder’s inequality and (7.1), we obtain

ESf ≤ E
(

(f∗)1/2
(

N
∑

n=1

|dfn|2
f∗
n

)1/2)

≤
(

Ef∗
)1/2(

E
(

N
∑

n=1

|dfn|2
f∗
n

))1/2

≤
√
3Ef∗.

The next result shows that
√
3 is the best possible constant in Proposition 7.3.

Proposition 7.4. Let γ ≥ 0. Suppose that the inequality

ESf ≤ γEf∗ (7.6)

holds for all real-valued simple martingales f with f0 = 0. Then γ ≥
√
3.

Proof. Let V : D → R be given by

V (x, t, z) :=
√
t− γz.

Define U : D → (−∞,∞] by

U(x, t, z) := sup
{

EV (f∞, t+ S2(f), f∗ ∨ z)
∣

∣

∣
f0 = x

}

, (7.7)

where the supremum is taken over all simple martingales (that is, martingales f that
take only finitely many values). This function will play the role of the “best” Bellman
function for the inequality (7.6).

Substituting the constant martingale into the definition (7.7), we see that, for
any (x, t, z) ∈ D, we have

V (x, t, z) ≤ U(x, t, z), (7.8)

We claim that, for any simple measurable function d : Ω → R with Ed = 0, we have

EU(x+ d, t+ |d|2, |x+ d| ∨ z) ≤ U(x, t, z). (7.9)

Proof of (7.9). Fix x ∈ R with |x| ≤ z. Let d : Ω → R be a simple function with
Ed = 0 and P(d = sj) = pj ∈ (0, 1] for 1 ≤ j ≤ m, where

∑m
j=1 pj = 1. Choose

bj ∈ R so that
U
(

x+ sj , t+ |sj|2, |x+ sj| ∨ z
)

> bj .

Then, by the definition of U , there exists a martingale f j with f j
0 = x+ sj satisfying

EV
(

f j
∞, t+ |sj|2 + S2

(

f j
)

, (f j)∗ ∨ z
)

> bj .

Let f be a martingale with f1 = x + d which continues with the same distribution
as f j (rescaled by pj in measure) on the set {d = sj}. Because |x| ≤ z, we have
f∗ ∨ z = (f j)∗ ∨ z on {d = sj}. By (7.7), we have

U(x, t, z) ≥ EV
(

f∞, t+ S2(f), f∗ ∨ z
)

=

m
∑

j=1

∫

{d=sj}
V
(

f∞, t+ |sj|2 + |df2|2 + · · · , f∗ ∨ z
)

dP

=
m
∑

j=1

pjEV
(

f j
∞, t+ |sj |2 + S2(f j), (f j)∗ ∨ z

)

≥
m
∑

j=1

pjbj.

Using the freedom in the choice of bj’s, this implies (7.9).
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For every λ > 0, we have

V (x, t, z) = λV (x/λ, t/λ2, z/λ), U(x, t, z) = λU(x/λ, t/λ2, z/λ).

Define u, v : [−1, 1]× R≥0 → (−∞,∞] by

v(x, t) := V (x, t, 1), u(x, t) = U(x, t, 1).

Since t 7→ V (x, t, z) is nondecreasing, the same holds for t 7→ u(x, t), so left limits
exist. We claim that

u(1, 1−) ≥ u(0, 2−) + u(1, 1−). (7.10)

To see this, let 0 < s < 1 < r. Let d be a random variable such that P(d = −1) =
r/(r + 1) and P(d = r) = 1/(r + 1). Then, (7.9) and scaling imply that

u(1, s) = U(1, s, 1)

≥ r

r + 1
U(0, s + 1, 1) +

1

1 + r
U(1 + r, s+ r2, 1 + r)

=
r

r + 1
u(0, s + 1) + u(1, (s + r2)/(1 + r)2)

≥ r

r + 1
u(0, s + 1) + u(1, r2/(1 + r)2),

where we used monotonicity of u in the second variable in the last step. Both
summands on the RHS are increasing in both variables s, r. Taking r → ∞ and
s → 1, we obtain (7.10).

If f is a simple martingale with f0 = 0, then, by the hypothesis (7.6), we have

EV (f∞, 0 + S2f, f∗ ∨ 1) = ESf − γE(f∗ ∨ 1) ≤ ESf − γEf∗ ≤ 0.

By the definition (7.7), this implies that u(0, 0) = U(0, 0, 1) ≤ 0.
Let d be a random variable with P(d = 1) = P(d = −1) = 1/2. Using (7.9) and

the fact that u(x, t) = u(−x, t), we obtain

0 ≥ u(0, 0) ≥ 1

2
[u(1, 1) + u(−1, 1)] = u(1, 1) ≥ u(1, 1−) ≥ v(1, 1−) = 1− γ.

This implies that u(1, 1−) is finite. So (7.10) yields u(0, 2−) ≤ 0. Let d be a random
variable with P(d = 1) = P(d = −1) = 1/2. By (7.9), for every ε > 0, we obtain

0 ≥ u(0, 2−) ≥ u(0, 2 − ε) ≥ 1

2
[u(1, 3 − ε) + u(−1, 3 − ε)]

= u(1, 3− ε) ≥ v(1, 3 − ε) =
√
3− ε− γ

Therefore, γ ≥
√
3− ε. Since ε > 0 was arbitrary, this implies γ ≥

√
3.
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