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Abstract—Model-free learning-based control methods have 
recently shown significant advantages over traditional control 
methods in avoiding complex vehicle characteristic estimation and 
parameter tuning. As a primary policy learning method, imitation 
learning (IL) is capable of learning control policies directly from 
expert demonstrations. However, the performance of IL policies is 
highly dependent on the data sufficiency and quality of the 
demonstrations. To alleviate the above problems of IL-based 
policies, a lifelong policy learning (LLPL) framework is proposed 
in this paper, which extends the IL scheme with lifelong learning 
(LLL). First, a novel IL-based model-free control policy learning 
method for path tracking is introduced. Even with imperfect 
demonstration, the optimal control policy can be learned directly 
from historical driving data. Second, by using the LLL method, 
the pre-trained IL policy can be safely updated and fine-tuned 
with incremental execution knowledge. Third, a knowledge 
evaluation method for policy learning is introduced to avoid 
learning redundant or inferior knowledge, thus ensuring the 
performance improvement of online policy learning. Experiments 
are conducted using a high-fidelity vehicle dynamic model in 
various scenarios to evaluate the performance of the proposed 
method. The results show that the proposed LLPL framework can 
continuously improve the policy performance with collected 
incremental driving data, and achieves the best accuracy and 
control smoothness compared to other baseline methods after 
evolving on a 7 km curved road. Through learning and evaluation 
with noisy real-life data collected in an off-road environment, the 
proposed LLPL framework also demonstrates its applicability in 
learning and evolving in real-life scenarios. 

Index Terms—Autonomous driving, life-long learning, learning 
from demonstration, model-free control, path tracking,  

I. INTRODUCTION

CCURATE path tracking control is crucial for 
autonomous vehicles to drive safely in dynamic and 
complex environments [1-4]. Early path tracking 
control methods based on static linear models or expert 

knowledge, such as PID control, pure-pursuit control [5], and 
etc. [6, 7], can work well when driving at low speed. For driving 
with higher speed, model predictive control (MPC) [1, 8], 
preview control [1], and other optimal control methods [9] have 
gained more attention and application for their accurate 
modeling of vehicle dynamics. However, the model accuracy is 
still limited, where small-angle assumption and model 
linearization are performed to easy the computational burden. 
Such inaccuracy restricted intelligent vehicles from driving in 
dynamic and complex environments. To improve model 
accuracy and adapt to environmental changes, much research 
has focused on extracting and estimating the nonlinear and 
time-relevant model parameters using posterior or online 
knowledge. In [10, 11], fuzzy-based methods are employed to 
estimate the model uncertainty and improve the robustness. A 
recurrent neural network is applied in [12] to predict vehicle 
motion. And Gaussian process is also employed in [13] for 
system dynamics learning. By cooperating with expert 
knowledge and online observation, these methods can more 
accurately capture the model dynamics and thus achieve better 
control performance. However, these models require dedicated 
modelling for the driving environment, where the estimation 
may fail when the uncertain parameter exceeds or faces 
multiple uncertain parameter presence.  

Instead of estimating model parameters, many researchers 
also try to improve model adaptability by learning parametric 
models directly through imitation learning (IL) [14-17] or 
reinforcement learning (RL) [18-20]. Such parametric models 
can be highly adaptive to different environments, but they are 
naturally associated with high training costs and may introduce 
human error or driver difference [21] into the collected data. To 
eliminate human error from policy learning, a conditional 
imitation scheme is proposed in [22]. Instead of learning from 
human demonstrations, an end-to-end policy for high-speed 
off-road driving is proposed in [14], which is trained by 
imitating a state-of-the-art MPC controller. In [23], the authors 
used an actor-critic RL method to learn parameters for 
adaptively coordinating a PP and PID controller. In [19], a lane 
following method based on DDPG with double critic networks 
is proposed, which learns to drive on a circular road at high 
speed. DDPG is also combined with kernel learning for vehicle 
path tracking in [20] and achieves high accuracy and 
smoothness. Although these parametric policies are very 
adaptive to scenarios with rich training data, they degrade when 
faced with new scenarios, where their high learning cost also 
aggravates the burden of generalization to new scenarios.  
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Apart from enlarging the dataset for better scene coverage, 
enabling intelligent agents to learn and evolve with 
accumulative experience is shown to be a more appealing 
solution for policy generalization and improvement. RL-based 
methods naturally support continual learning in execution 
where their knowledge can be acquired by exploration and 
interaction with reward feedbacks. However, they require 
enormous trials and great learning costs, and the verge of a sub-
optimal policy through non-heuristic exploration can be 
extremely inefficient. Combining learning from demonstration 
with online fine-tuning for policy can on a level alleviate such 
problems as in [24, 25]. But random exploration and 
insufficient learning may still degrade the policy performance 
in the online learning process. A hypernetwork [26] and a 
dynamic confidence value [27] are proposed to alleviate the 
performance degradation that occurs in the online learning 
process of RL. However, they are task-specific and require 
explicit task discrimination and corresponding task labels, 
which can be difficult to acquire for continuous control tasks.  

Instead of learning through exploration and interaction, 
directly learning from incremental data can be more efficient 
and applicable for online tasks. This learning scheme is called 
life-long learning (LLL) or incremental learning [28, 29], where 
the agent can generalize to new tasks with incremental 
execution knowledge. Many solutions have been proposed to 
achieve the LLL scheme, where one main focus is to prevent 
the forgetting problem caused by network overfitting to 
incremental data [30]. The idea of LLL makes it very applicable 
to intelligent robots, where robots are expected to continually 
explore new environments or tasks and continually learn to 
adapt to new ones [31]. Several recent applications are 
presented in navigation [32], behavior prediction [33, 34], and 
place recognition [35]. These researches provide great insights 
into the practical benefits of employing LLL for continuous 
tasks, where the model can be improved continuously in 
execution. However, these proposed learning schemes need to 
learn from ground truth data in new tasks, which can be difficult 
to acquire in continuous control tasks online. In general, 
traditional LLL is not capable of learning policy with no ground 
truth data, while RL suffers from the inefficient learning 
process. 

To tackle the aforementioned problems and enable learning-
based path-tracking policy to evolve and fine-tune its 
performance with accumulated driving experience, this paper 
proposes a life-long policy learning (LLPL) framework that 
enables efficient and continuous policy learning and guaranteed 
performance improvement in online execution. To achieve such 
goals, an efficient imitation learning scheme is introduced for 
initializing policy for LLPL. The proposed scheme enables 
great adaptability with minimum tuning or data collection 
requirements, which is realized by learning the policy with 
mappings from historical state transition to action. To safely 
improve the policy with a small amount of incremental 
execution knowledge, an efficient LLL method that does not 
necessarily require task labels in the learning process is utilized. 
Thus, the LLPL can achieve continual policy learning for path 
tracking control with incremental data, which enables the policy 

to adapt and evolve with online execution knowledge. By 
cooperating with a knowledge evaluation scheme for the 
incremental knowledge in LLPL, redundant and inferior 
knowledge can be filtered to avoid performance degradation in 
the continuous learning process, hence guaranteeing policy 
performance improvement in the learning with incremental data. 
The main contributions of this paper are as follows: 
 An efficient model-based policy learning method for path

tracking is proposed. No explicit vehicle parameter nor
perfect demonstration is needed for policy training and a
sub-optimal policy can be learned with only minutes of
driving data, where the policy is formulated as an inverse
optimal control law that can be learned with only historical
IMU and steering data.

 The life-long policy learning (LLPL) framework for
vehicle control is proposed, which enables a pre-trained
policy to evolve safely and fine-tune in continuous driving
tasks. Thus, reducing the data required for policy
initialization and adapting the policy with realistic data
feedback.

 A knowledge evaluation and updating method for
optimized policy learning is proposed, enabling the policy
to evolve and adapt without performance degradation and
avoid control fluctuation. By employing the knowledge
evaluation method, both knowledge distribution and
optimality in incremental knowledge and memory are
managed and optimized for safe continual learning.

The LLPL framework architecture is shown in Fig.1, which 
contains two major parts, separately policy imitation learning 
and policy life-long learning. An initial policy is first learned 
from demonstration data. Then the initialized policy will be 
deployed in the execution environment and continuously 
improved with evaluated incremental knowledge. The paper is 
organized as follows. In section II, the policy initialization part 
is introduced. In section III, the policy life-long learning with 
knowledge evaluation part is introduced. Section IV presents 
the experiments and evaluation of LLPL. Finally, the 
conclusion and future directions are given in Section V. 

II. LEARNING POLICY FROM DEMONSTRATION

Generally, the vehicle lateral dynamics with vehicle state x
and steering angle   can be formulated as: 

 ,x f x  .    (1) 

In vehicle lateral control problems, the primary task of the 
control policy is to operate the vehicle to smoothly track a 
collision-free reference trajectory provided by the upper 
planner. Thus, given a reference trajectory refX , the cost 
function over an infinite time horizon is usually designed as: 

      
   

ref
0

0
0

,

Q R

t

J x t X t t dt

x t x f x dt






  

 




,  (2) 

where || ||Q  and || ||R  are separately the L-2 norm with Q  
and R  as the weight identity matrixes to balance the accuracy 
and the smoothness of the policy. The vehicle lateral control 
problem can then be formulated into an optimal control problem. 
Model predictive control methods are most commonly used in 
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practice to solve this problem numerically. However, the MPC 
methods are computationally costly, while their performances 
are highly reliant on the determination and estimation of 
algorithm and vehicle parameters. To ease the computational 
burden and free policy from parameter tuning, a policy learning 
method for learning a direct mapping from vehicle state to 
optimal control value will be proposed. By shrinking the 
optimal control problem to a time-discrete problem with a fixed 
time window t  , the corresponding receding horizon optimal 
control policy can be acquired: 

   *
ref

0
arg min ,

t

R
Q

x f x dt X t


  
      

  . (3) 

To approximate the policy from demonstration, the extracted 
vehicle lateral control knowledge can be described with a dataset 
containing historical vehicle state and corresponding control action 
with sampling time T : 

 ( , , ) 1, ,k k kx x k N    ,    (4) 

where ref ,k k kx X x    is the control target regarding reference 
trajectory ref .kX  and vehicle state kx  in step k , k  is the 
corresponding steering action, and N  represents the total 
amount of extracted samples from demonstrations. However, as 
shown in Fig.2, the actual control ( , )k k kx x    doesn’t always 
correspond to the optimal control * ( , )k k kx x    due to the 
imperfect demonstration. To avoid learning these errors, instead of 
imitating the control policy directly from the demonstration of 
tracking the reference trajectory, we can learn the policy directly 
from historical vehicle responses. Assume the lateral control to 
be constant in the fixed time window t , by integrating (1) we 
have: 

 / 0 ,t
k t T k k kx x f x dt
    ,  (5) 

By inverse (5), we can obtain: 

 1 * ,k k kf x x   ,              (6) 

where 1f   is the inverse dynamics function and 
*

/k k t T kx x x    represents the state transition in the fixed 
time window t . By replacing the vehicle’s historical control 
target kx  with the vehicle’s historical state difference *

kx , the 
cost of control k  in (3) can be described as: 

 , , 0k k k k
Q R

J x x    .  (7) 

Hence the optimal control * *( , )k k kx x    can be approximated 
by k  when control effort is not considered with R  0 . And 
vehicle historical operational trajectory can be regarded as ideal 
path tracking knowledge without tracking error. Thus, the optimal 
control policy can be approximated by learning the inverse 
dynamic function 1f  : 

   2
* *

2
1

1
arg min , , , ,

N

k k k k k k

k

x x x x
N




   


      .(8) 

By retracing the historical vehicle state space and action 
space, the proposed policy learning method is independent of 
corresponding task knowledge from demonstration and is 
capable of learning path tracking knowledge with imperfect 
demonstration. However, it is worth noting that the control 
smoothness cannot be guaranteed by the demonstration as 
indicated in (7), where control error is excluded but control 
effort is not minimized. To tackle this problem, the distribution 
of the demonstration can be modified to adjust the driving style 
if enough demonstrations are acquired.  

Fig.1. The illustration of the LLPL framework. First, demonstration data will be used for policy initialization through imitation 
learning. Through analyzing historical state transition and corresponding control, even unperfect demonstration can be used 
for policy initializing. Then, the initialized policy is deployed to the executing environment where the policy can be updated 
and evolved online through learning incremental driving knowledge collected in execution. By employing a knowledge 
evaluation scheme and maintaining an episodic memory of previously learned knowledge, the policy is updated with evaluated 
data and a gradient constraint that ensures performance improvement over updating. Thus, enabling the policy to adapt to the 
execution environment and continually fine-tune its performance with online execution knowledge. 
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Fig. 2. Vehicle path tracking control with amended tracking 
target. 

III. LIFE-LONG POLICY LEARNING WITH INCREMENTAL 

KNOWLEDGE 

To reduce the learning cost and fully exploit the online execution 
knowledge, we introduce the LLL scheme to supplement the IL-
based policy learning scheme in policy refining and updating. 
Ideally, similar to human drivers that can learn to drive better with 
increasing driving experience, the autonomous driving policy is 
expected to evolve and improve with execution knowledge 
acquired online and eventually verged on optimal performance 
over all scenarios. However, policy updating with incremental 
knowledge usually requires the policy to be retrained on overall 
data, including already learned knowledge and cumulative 
knowledge, which can be extremely time-consuming and 
inefficient. The inconvenience in previous policy updating and 
retraining is mainly due to the catastrophic forgetting problem that 
may happen in the process of learning incremental knowledge, 
where fitting the new distribution of incremental knowledge may 
result in a mismatch with previously learned knowledge, leading 
to the forgetting of learned knowledge.  

The LLPL framework is proposed in this section to ease the 
catastrophic forgetting problem and enable the policy to evolve 
with increasing driving experience efficiently. Specifically, a 
gradient descent constraint method is applied in the learning 
procedure to prevent the policy from forgetting already learned 
knowledge while learning new knowledge. A knowledge 
evaluation scheme is proposed to assess and optimize the 
incremental knowledge in order to guarantee performance 
improvement over policy iteration and reduce the learning cost. 

A. Average Gradient Episodic Memory

To avoid forgetting knowledge from previous tasks when
learning incremental knowledge, a life-long learning algorithm, 
Average Gradient Episodic Memory (A-GEM) [36], is 
employed in our framework. It is an improved version of 
Gradient Episodic Memory (GEM) [37] and is more 
computationally efficient than its predecessor, which makes it 
more applicable to on-platform learning that demands fast 

learning and a low computational cost.  
To avoid catastrophic forgetting, A-GEM maintains an 

episodic memory to store knowledge sampled from previous 
tasks. The episodic memory will be used to estimate the loss of 
previous knowledge when learning new knowledge. It is worth 
noting that incremental knowledge is separated by different 
labels into different tasks as A-GEM is initially oriented only 
for classification tasks, which is different from policy learning 
with continuous knowledge. In this study, the tasks are defined 
as a series of time-continuous knowledge collected under a 
specific time duration. And to avoid forgetting, the algorithm 
prevents the loss of previous knowledge from increasing when 
decreasing the training loss on the new tasks. Instead of 
computing the episodic memory loss of every previous task in 
the training process, A-GEM computes the average episodic 
memory loss to approximate the loss on all previous tasks, and 
the object of A-GEM for learning a new task t  can be expressed 
as: 

     1min , . . , ,t
t tl f s t l f l f  

   ,    (9) 

where f  is the model with parameter  , t  is the data from 
the new task t , and 1tf

  is the model trained till task 1t  ,
k t k    is a randomly sampled batch of the episodic 

memory of previous tasks in which k  is the episodic 
memory of the thk  learned task. The optimization problem of 
the loss in (9) can be reduced to the optimization of the model 
gradients, where the constraint on loss can be transferred to the 
constraint on gradient descent direction. The expected gradient 
g  for decreasing training loss should be in the same direction 

as the gradient for reducing episodic memory loss: 
2 T

ref
2

min . . 0
g

g g s t g g 

  ,   (10) 

where  , tg l f    is the gradient calculated in training 
the current task, and  ref ,g l f    is the reference 
gradient calculated using the randomly sampled batch of the 
episodic memory  . Compared to GEM, which solves the 
optimization problem in (10) through the quadratic program 
(QP), A-GEM adopts a more effective solution, which derives 
the solution when directions of two gradients contradict via: 

T
ref

ref
T

ref ref

g g
g g g

g g
  ,  (11) 

where the gradient can be directly computed and is very time-
efficient compared to solving a QP problem. 

B. Life-Long Policy Learning with Knowledge Evaluation

For the policy 1i
   pre-trained with demonstration data d , 

directly updating the policy with newly collected driving data i
may lead to forgetting of previously learning knowledge, which 
leads to direct performance degradation. To alleviate such problem, 
the A-GEM is integrated in our framework for safe policy 
incremental learning. To ensure the stability in updating policy 
with new driving data, an episodic memory 1i  will be first 
initialized with randomly sampled data from d . The episodic 
memory can be seen as a sparse representation of previously 
learned knowledge. And to fully exploit the usage of episodic 
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memory, we introduce a knowledge evaluation scheme to first 
evaluate the increment knowledge i  before policy updating to 
avoid repetitive learning and distribution conflict. To measure the 
distribution, Euclidian distance will be calculated between each 
sequence of data from episodic memory 1i  and incremental 

i : 
2

1
2

( , ) , ,k j k j k i j isim s s s s s s         (12) 

where  *,k k ks x x   represents the input state of policy. If data
in incremental data i  is similar to data in episodic memory 1i , 
then the quality of knowledge will be compared. The quality of 
knowledge refers to the control performance of corresponding 
historical data, where in this paper the performance is evaluated by 
control effort. As shown in (7), the initially learned policy is only 
approximately optimal for accurate trajectory tracking, which 
failed to minimize the control effort. To improve the policy 
performance and reduce control fluctuation, the data in i  with 
greater control effort than previously learned knowledge will be 
omitted. It is worth noting that other indicators, such as lateral 
acceleration, can also be chosen for different considerations like 
riding comfort. Thus, the data with different distributions or have 
lesser control effort are selected from the incremental data i : 

  
  

*
1

2 2
1

, ( , ) ,
, ( , ) , , ,

i k k k j D j i

k k k j D k j j i

s sim s s s
s sim s s s

 
   





   
   

 

 (13) 

where *
i  is the evaluated and screened incremental data, and 

D  is the similarity threshold to evaluate and screen the 
incremental data. By employing the A-GEM and *

i , the previous 
policy 1i

   can be updated safely with more samples from unseen 
state space or better performance: 

 

   

1 *

1 *
1

argmin ,

. . , ,

i i
i

i i
i i

l

s t l l

 


 

 

 












 
,     (14) 

where the goal is to update policy   with incremental data *
i  

while avoiding instability and forgetting in learning, and ( )l   is 
the mean square error loss in (9) as: 

     2
1 * 1 *

2
1

1
, , ,

N
i i

i k k k k i

k

l s s
N

     



    .(15) 

As shown in (14), the episodic memory from previous policy 
updating will be applied to constrain the learning direction in the 
following policy updating epoch. Thus, properly updating the 
episodic memory is vital to ensure the consistency of policy 
updates. Firstly, learned knowledge should be evenly distributed in 
episodic memory to ensure the fidelity of the episodic memory. 
Similar to the knowledge evaluation of incremental data i , 
Euclidian distance will be calculated between each sequence of 
data from episodic memory 1i  and *

i : 
2 *

1
2

( , ) , ,k j k j k i j isim s s s s s s         (16) 

Data are only sampled to episodic memory if they share no 
similar distribution with episodic memory 1i  or have better 
performance, so as to improve the storage efficiency and 
optimality of the episodic memory. By ensuring the optimality 
of episodic memory, the policy performance can be guaranteed 
to improve over iterations. The knowledge evaluation will be 

conducted when knowledge from incremental knowledge i  
contradicts prior knowledge stored in the episodic memory 1i , 
and the knowledge with a better evaluation score will be selected 
as: 

*

( , )
arg min ( ),  

j j k

j j
s S

s EVAL s
 

    (17) 

where ( )EVAL   is the evaluation function, and kS  is the set that 
stores knowledge that contradicts in distribution: 

  *
1, ( , ) , , ,j j j k j M j i k iS s sim s s s s         (18)

where M  is the similarity threshold to ensure the knowledge is 
evenly distributed in episodic memory, and can be adjusted 
according to the storage demand for episodic memory, the 
evaluation function is similar to the evaluation of incremental data: 

2

2
( )k kEVAL s  .     (19) 

Thus, by supplementing the knowledge that is not represented in 
1i , and the knowledge that has better performance, we can 

obtain new episodic memory after each batch of incremental 
knowledge: 

 * *
1 ,i j i j ks s S    .    (20) 

 With the constraint from the episodic memory in both 
knowledge distribution and knowledge quality, the proposed 
life-long policy learning method can evolve with accumulated 
incremental execution knowledge in both generalization ability 
and task performance. The whole procedure of LLPL is 
described in Algorithm 1.  

Algorithm 1: LLPL framework 
Input: Demonstration d ,  ks  with random 
initialized  ,   
// policy initialization through IL 
1:  arg min , dl     
2: initialize   with random samples from d
3: 0, it    
4: while policy execution do: 
5:     sample s  from environment 
6:     execute steering  s 
7:     collect incremental data  ,i i s     
// policy online updating through LLPL 
8:     if updatet t  do: 
9:     evaluate incremental data with   

  
  

*

2 2

, ( , ) ,
, ( , ) , ,

i k k k j D j

k k k j D k j j

s sim s s s
s sim s s s

 
   

   
   

 



10:       update the policy with life-long learning 

     * * * *arg min , . . , ,i il s t l l  


      

11:  * 
12:   updated with equation (14)-(18) 
13:   0t  , i   // clear for next update 
14:  end if 
15: end while 
Output:  , 
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IV. EXPERIMENT AND EVALUATION 

To evaluate the proposed LLPL framework, this section 
presents the procedure and results in three groups of 
experiments for validating policy learning performance. Firstly, 
the data collection procedure and the constructed experimental 
environment are described. Secondly, a group of experiments 
in two typical driving scenarios is presented. The policies are 
evaluated by revisiting the same scenario, and the results will 
be discussed from three major aspects concerning IL 
performance, LLL performance, and the aid of knowledge 
evaluation. Thirdly, the policy learning framework and the 
learned policy will be examined and evaluated in a more 
complex scenario where their performance will also be 
compared with an online reinforcement learning method and 
MPC. Lastly, we examine the applicability of LLPL by training 
the policy with noisy real-data, where the performance and 
continuous learning ability of LLPL is evaluated and discussed.  

A. Experimental Environment and Data Collection

Due to safety concerns for the potential policy failure, the
evaluation and comparison experiments will only be conducted 
in the simulated environment, and the experiment settings are 
shown in Fig.3. MATLAB/ SIMULINK is used for algorithm 
deployment and simulation. A human driver is asked to drive 
the vehicle in the simulated environment through a Logitech 
G29 steering input to acquire human demonstration for initial 
policy learning with IL. Enlightened by how human drivers 
learn to drive, the task for the driver is to cruise with statistical 
speeds of 5m/s, 10m/s, 15m/s, and 20m/s in a specific area, 
where he should operate as varied as possible to acquire as 
much control knowledge as possible. Since the proposed policy 
learning scheme does not necessarily require expert path 
tracking demonstration, the only requirement for the driver is to 
perform different control actions with varying vehicle states 
that can lead to more prosperous vehicle control knowledge 
distribution. The computing device used for experiments is 
equipped with Core i7-10875H and RTX2060 with 16G RAM. 
A neural network with two hidden layers and 64 units per layer 
is applied to approximate the policy  .  

Fig.3. The simulation environment and human demonstration 
data collection procedure. 

B. Evaluation of Policy Learning Performance

To evaluate the learning performance of LLPL, a double
lane-change driving scenarios shown in Fig.4 (a) is employed. 

As previously mentioned, 10 minutes of human driving 
demonstration are processed and applied for initial policy 
training. Firstly, to evaluate the effectiveness of the proposed 
IL scheme, the initial policy will be deployed to the testing 
scenario with a cruise speed of 12m/s, where the driving data at 
this speed is not included in demonstrations. As for evaluating 
the continual learning performance of the proposed LLL 
scheme, the initial policy is updated through the LLPL 
framework and deployed to revisit the same scenario. After the 
execution of the initial policy, the data of the first travel will be 
used to fine-tune the initial policy through LLPL. The fine-
tuned policies are then deployed to revisit the test scenario. The 
results are shown in Fig.4 (b)-(c), where the fine-tuned policy 
after execution of the initial policy is marked as 1st Revisit, and 
the fine-tuned policy after execution of 1st Revisit as 2nd 
Revisit. 

As the results show, the initial policy can perform well in the 
testing scenario. Despite the lack of demonstration in the testing 
cruising speed, the IL policy is capable of fitting the path 
tracking knowledge with few imperfect demonstrative data. 
This shows the capability of IL in efficient policy learning 
through direct mapping vehicle dynamic responses with 
reduced vehicle state space. However, few demonstrative data 
may lead to sub-optimal policy approximation, for which the 
LLPL framework is proposed further to improve the policy 
performance with incremental operation knowledge. As the 
results illustrate, the performance of the 1st and 2nd Revisit 
outrank the initial policy in both lateral and heading accuracy, 
which proves that the LLPL scheme can improve the policy 
performance with acquired incremental execution data after 
execution. As shown in Fig.4 (c), the lateral deviation of 1st 
Revisit is reduced compared to the initial policy. It can be 
further reduced in the 2nd Revisit, indicating that the policy can 
moderate itself through LLPL to better match the actual vehicle 
responses. The average deviation of the 2nd Revisit is reduced 
by 23.78% compared to the 1st policy and 66.76% compared to 
the initial policy. This ability of continual learning will enable 
the autonomous vehicle to learn and evolve on the go. The 
policy will only need a relatively small amount of data to 
initialize and can keep refining itself with actual execution data.  

As shown in equation (5) and (6), the IL method learns an 
inverse dynamics function, where the convergence of 

/k k t Tx x   can be guaranteed with *k  when the inverse 
dynamics function is properly trained for corresponding state 
and state transition. To evaluate the actual convergence 
performance, the policies trained in double lane change are 
evaluated, and results are presented in Fig.5. shows the stability 
and convergence performance of the IL and LLPL policy in 
continuous learning. The IL and LLPL can both converge 
smoothly and with incremental knowledge, LLPL can also 
present smoother performance than the initial IL policy.  
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Fig.4. The experimental results in the double lane change. 

Fig.5. The experimental results in the double lane change. 

To further analyze the continual learning performance of 
LLPL in policy updating, offline IL and traditional LLL norms 
are deployed and compared in the same double lane-changing 
scenario iteratively for six epochs. For the IL method, iteration 
means retraining the policy after each execution with initial 
training data and all collected execution data to avoid 
catastrophic forgetting. For LLL and LLPL, the policy will be 
updated with an LLL scheme that updates the policy with only 
newly acquired incremental execution data. Different from 
LLPL, LLL employs only A-GEM, where knowledge is not 
evaluated and episodic memory is randomly sampled from 
learned data. The specific settings of three compared different 
learning methods are:   
1) Offline imitation learning (IL): policy trained offline

with historical driving data and collected new data. After

each execution, the accumulated execution knowledge is 
supplemented with the collected human driving data, and 
the extended data are employed for policy retraining with 
the IL scheme to prevent forgetting. 

2) Direct life-long learning (LLL): Direct LLL scheme
using A-GEM, where the task is defined as each execution.
After initialized with IL, the policy is directly upgraded
through A-GEM with newly collected driving data. No
knowledge evaluation is applied and the memory is
randomly sampled from learned data, which means the
policy is updated with all knowledge collected in the
execution and try not forgetting even the worst of the
knowledge. The sample ratio is set to 10% (randomly
sample 10% data from execution data).

3) Proposed LLPL (LLPL): The proposed LLPL learning
framework with knowledge evaluation and memory
updating. IL will be used for initial policy training with
collected human driving data. After each execution, new
data acquired from execution is first evaluated and
screened before updating the policy through the learning
scheme shown in Algorithm 1.

Results of the three learning methods are presented in Fig.6, 
where we directly show the root mean squared error (RMSE) in 
each iteration epoch of the trajectory deviation for better 
visualization. All three methods achieved similar performance 
in the first execution with the same initial training data. 
Although all compared methods can prevent forgetting, both IL 
and LL methods cannot steadily benefit from incremental 
execution knowledge. Compared to the IL and LL methods, the 
LLPL method shows better steadiness in performance 
improvement with incremental knowledge. This difference 
between LLPL and traditional LLL methods is caused by the 
difference in their learning scheme. Aim to not forget, IL 
employs all driving data that include historical data and 
incremental data, where conflicted data and data with varied 
performance will undermine the policy performance. As for 
traditional LLL, it shows worse policy performance in the 
incremental learning process compared to IL, which traded the 
forgetting ratio for lower computational cost. Compared to the 
traditional “not to forget everything” LLL paradigm, the 
proposed LLPL is capable of evaluating incremental knowledge 
in order to avoid conflicted knowledge and evaluate 
incremental knowledge regarding performance, guaranteeing 
performance improvement in the online incremental learning 
process.  

Regarding data storage requirements, the size increment of 
data and memory used in each epoch are illustrated in Fig.7. For 
LLPL, the size increment of data storage (episodic memory size) 
is the execution data after knowledge evaluation in each epoch. 
As for LLL, the size increment is the fixed amount of randomly 
selected operation data in each epoch. As Fig.7 shows, the 
increment of knowledge for LLPL decreases after each epoch, 
while the other two compared methods do not. This result 
explains the ability of knowledge evaluation to adjust the 
distribution of incremental knowledge, where the learned 
knowledge will be excluded to avoid over-fitting and minimize 
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the storage requirement for data. As for learning efficiency, the 
policy initial training time of LLPL and LLL (about 400s) takes 
two times longer than the IL method (about 200s) since the 
initial episodic memory sampling with knowledge evaluation is 
conducted. However, since only execution data will be used, 
LLPL and LLL only need less than 4s to update the policy with 
about 16s of incremental data, which is 100 times faster than 
the IL-learning method. Furthermore, the policy updating time 
of LLPL decreases after each epoch, where the learning cost is 
lessened by knowledge evaluation in more mastered scenarios. 
The significantly reduced learning cost in operation also 
indicates the potential of our proposed LLPL in the application 
for online policy learning and updating. 

Fig.6.  Average lateral deviation of different policy iteration 
epochs in the double lane-change scenario. 

Fig.7. Data storage increment after execution of different policy 
iteration epochs in the double lane-change scenario. 

  
Fig.8. Policy training time cost of different policy iteration 
epochs in the double lane-change scenario.  

C. Policy Generalization in More Complex Scenario

In the previous part, we demonstrated that the policy could
better its performance by revisiting identical scenarios and 
learning from incremental execution knowledge. However, the 
actual operating environment can be more complex and wildly 
varied. The policy will need to adjust to different scenarios 
instead of revisiting the same scenarios repeatedly. Thus, to 
evaluate the generalization ability of the proposed LLPL 
framework to learn and evolve in more complex and continuous 
scenarios, a curved road environment is adopted for further 
policy deployment with rich road characteristics and a total 
length of over 7km. The reference trajectory is extracted based 
on interpolating a set of selected waypoints manually selected 
from the center of the inner lane, as shown in Fig.9. To apply 
the LLPL, and an initial policy is trained the same way as 
previously mentioned, which is learned through the proposed 
IL scheme with 10 minutes of human driving demonstration. 

Fig.9. The curved road environment with seven segmented road 
sections, (a)the bird view of the whole trajectory, (b) the road 
curvature of different segmented sections. 

The experimental environment and trajectory with 
segmentation are shown in Fig.9, where seven segmentations 
are separated and marked from Section 1 to Section 7 (for 
simplification, we use S1 – S7 to represent each section in the 
rest of the paper). Each section is approximately 1 km long, and 
the policy will be updated after each section with the execution 
knowledge obtained from the traveled section. For instance, the 
initial policy will be applied in S1, where the accumulated 
execution knowledge will be evaluated and used for updating 
the policy. The updated policy will then be applied in S2, and 
the execution knowledge from S2 will be used to update the 
policy for S3. Similarly, in other segments, the policy will be 
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updated with accumulated execution knowledge for execution 
in the following segments. 

As different sections of the curved road scenario vary greatly, 
the policy execution difficulty also differs. Thus, The IL-only 
method is also compared in this experiment to give a more 
straightforward reference for the proposed LLPL framework. In 
this experiment, the IL-only method shares the same initial 
policy as LLPL for better comparison in policy continual 
learning ability. A similar online RL framework used in [25] is 
also compared and analyzed in this experiment, which used 
offline demonstrations for policy initialization and fine-tuning 
the policy with online reinforcement learning. Similar to LLPL, 
the RL policy is also initialized with the same 10 minutes of 
human driving demonstration, and is updated after the 
execution of each section.  

The loss of the critic network is calculated as: 

      
1

1
, , , ,

N

C i k k k k k d i
k

L y Q s s
N

  


     ,(21) 

where   ' 1 ' 1 1, ,k k k k ky r Q s s       , Q  is the critic
network parameterized by   and   is the actor network 
parameterized by  , 2 2 2

, ,k ky k yaw kr e e      is the reward for 
each step,   is the discount factor, '  and '  are the 
parameter of the target network. The loss of actor is calculated 
as: 

     , , ,A i BC i PG iL L L       , (22) 

where  ,BC iL    and  ,PG iL    are separately the 
behavior cloning loss and policy gradient loss: 

     1 2
, , ,N

BC i k k k k d ikL s s        , (23) 

      1
2

, , , ,N
PG i k k k k d ikL Q s s s        (24) 

and   is the hypermeter to ensure the learning stability in fine-
tuning. The actor network is of the same structure as the LLPL, 
and critic network is composed of four layers of fully-connected 
neural network with 128 units of cells each. Worth noting that, 
we do not replicate the Q-filter used in the original work since 
we find it may lead to policy failure in a later section. To avoid 
the control fluctuation in online policy finetuning, the 
exploration noise is set to be 10% of the maximum steering 
value. And the policy updating in the first two sections employs 
the warm-up setting to ensure stability in finetuning, where 

0   and only behavior cloning loss will be used to update the
actor. We empirically chose 0.05  for policy learning since
larger   usually leads to policy failure when updating in later
sections.

Besides, a commonly used MPC method with a linearized 
vehicle dynamic model is also selected as the baseline method, 
which numerically solves the optimal control problem in (2) 
with a receding horizon scheme: 

       

     
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where T
ref ref ref ref[ ]y y y y           , PN is the 

predictive horizon, 4 4   and 4   are the coefficient 
matrices determined with vehicle parameters, 4 4   and 

4   are the positive definite weight matrices for balancing 
tracking accuracy and smoothness. The vehicle parameters used 
in coefficient matrices   and   are set as identical to the 
simulated vehicle platform, and the preview horizon PN  is set 
to 50 steps with a sampling period of 0.1s. 

The results of policy deployment in the curved road 
environment are presented in Fig.10, where the continuous 
results are separated with corresponding sections for better 
interpretation. All compared methods achieve similar 
performance in S1, which again proves the effectiveness of the 
proposed IL scheme in learning the vehicle control policy with 
only minutes of human demonstration. As S1 and S2 are both 
series of sharped curves with similar driving difficulty, the 
continual learning ability of LLPL can be straightforwardly 
evaluated by comparing with the IL-only method in S1 and S2. 
With incremental execution knowledge and knowledge 
evaluation, the lateral tracking deviation of LLPL policy is 
significantly reduced compared to the IL-only method in S2. 
The execution knowledge in S2 can further improve the policy 
performance through LLPL in S3, which can be observed more 
explicitly in Fig.11. Compared to the IL-only policy, lateral 
tracking error can be reduced by 85.6% and 75.7% in S2 and S3 
by applying the proposed LLPL scheme. Different from the 
LLPL, the performance of RL degrades after fine-tuning with 
incremental knowledge. The performance degradation of RL is 
likely caused by the inaccurate value estimation since the states 
for traveling in 12m/s are not shown in the demonstration and 
the amount of incremental driving data is insufficient for 
accurate value estimation. This indicates that LLPL is more 
efficient in learning and fine-tuning policy with small amount 
of incremental data.  

To further validate the adaptability of the proposed LLPL 
framework, the cruise speed is changed to 20m/s in more 
smoothed sections, including S4-S6. Although the IL-only 
policy reveals acceptable performance in middle-speed cruising 
on S1-S3, the policy begins to fluctuate when cruising at high 
speed on S4. As shown in Fig.10, the steering control of the IL-
only policy trembles on S4-S6, leading to significant deviation 
in the vehicle heading and large lateral acceleration. And as for 
RL, the policy can maintain a stable steering at high speed but 
holds a steady state error after speed increases. Although 
cruising at 20m/s has been shown in the demonstration, the 
historical knowledge may be forgotten in the fine-tuning 
process of RL. The RL lateral error increases in S5 after fine-
tuning with incremental data collected in S4, which may due to 
the inaccurate estimation of the value function and knowledge 
forgetting. Through knowledge evaluation of both data 
distribution and optimization, the proposed LLPL policy can 
avoid fluctuation and forgetting and provide a more stable 
performance than other methods. As Fig.10 shows, the LLPL 
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policy can control the vehicle with similar or even better 
performance as the MPC, and the control smoothness of the 
LLPL policy is greatly improved in S5-S6 compared to S4 as a 
result of policy fine-tuning.  

Regarding the data efficiency and effectiveness in the 
continuous road environment, more illustrative results are 
shown in Fig.11. Compared to IL-only, the RL policy after fine-
tuning with incremental knowledge continues to degrade in S1-
S5, and only sees some improvement in S5-S7, which is still 
worse than the initial policy. The cause of such performance 
degradation can be twofold. On the one hand, the initial policy 
performs well enough that any random exploration can 
undermine its performance. On the other hand, the low data 
efficiency severely limits the ability of the RL to improve in 
online fine-tuning. The large state-action space limits its ability 
to accurately approximate the value function for continuous 
control with only a small amount of demonstration and 

incremental data. Compared to the RL and IL methods, LLPL 
can safely improve the policy performance with a small amount 
of driving data and avoid fluctuation or forgetting. Compared 
to the initial policy, LLPL can reduce the overall average lateral 
and heading tracking error in the curved road by 46.82% and 
41.22%, respectively. The robust online incremental learning 
capability can efficiently evolve a suboptimal policy in 
execution, reducing the data requirement for initial policy 
training and improving the overall safety and performance in 
the incremental learning process. The high data efficiency can 
also enable the policy to adapt and generalize online to 
environments with greater uncertainty or perturbations, such as 
slippery roads with varying adhesion coefficients. However, 
such an application is beyond the scope of this paper, where the 
focus is mainly on introducing the LLPL framework for general 
environments.  

As shown in the above results, it is clear that LLPL has a 
better performance in continuous learning and adaptation to 

Fig.10. Experimental results of policy evaluation in curved road, where the results within corresponding sections are separated 
with dash lines for better visualization.  



11 

new road environments than RL. The superior performance of 
LLPL is achieved due to its better data efficiency, which 
benefits from the lifelong learning graph and the knowledge 
evaluation scheme. To further discuss the data efficiency of 
LLPL compared to RL or LLL without knowledge evaluation 
scheme, a fixed scene is selected to perform continuous 
learning for these policies, where they are updated and 
evaluated with data collected in each iteration. Thus, the data 
efficiency can be evaluated by improving the performance of 
the iterations required in the continuous learning. Section 4, 
shown in Figure 9, is used as the fixed scenario, and the 
corresponding experimental setup is identical to the previous 
experiment. All policies have the same initial policy, and the 
RMSE of the displacement in each iteration is shown in Fig.12. 

As the result shows, the LLPL can converge to a very low 
RMSE already in the second iterations, which means that it is 
able to adapt to the scenario with data from only one iteration. 
On the contrary, the RL degrades in the first few iterations, 
which is identical to the results shown in Fig.10 and Fig.11. 
Also, due to random exploration and overfitting, the 
performance of RL is more erratic than that of LLPL, although 
a demonstrative dataset is used for RL. In terms of data 
efficiency, it is clearly shown that RL can only evolve to a 
similar performance as LLPL after almost 100 epochs, using 
almost 100 times more data than LLPL. This further 
demonstrates that LLPL is more applicable compared to RL in 
policy continuous learning, where LLPL adapts the policy to its 
optimal performance in new tasks or environments faster than 
RL.  

The results also show that for continuous control tasks, the 
LLL learning scheme deteriorates in the first few iterations 
because the quality of the new knowledge is not guaranteed and 
the data distribution difference can be large. And LLL 
converges to a similar performance as LLPL with almost ten 
epochs, which is similar to Fig. 6. Thus, the performance of 
LLL only depends on the overall quality of all the knowledge 
learned for the policy, and the policy performance can also 
degrade when learning in a new scenario. This demonstrates the 
necessity and benefit of introducing the knowledge evaluation 
scheme in LLPL, which significantly improves the data 
efficiency and online learning capability for improving policy 
performance. Nevertheless, LLL is still much more data 
efficient than RL in continuous learning, proving that the IL-

based policies are potentially more efficient in online policy 
learning.  

Fig.12. The continual learning performance of policies in a 
fixed scenario. The dashed line indicates the RMSE of the 
current iteration and the solid line indicates the average RMSE 
from the beginning to the current iteration. 

D. Learning with Real-Life Data

Different from simulation, data collected by real-life vehicles
tend to be noisy and inaccurate, which may lead to inaccurate 
approximation in the policy online learning procedure. The 
difference may also prevent the policy from learning and 
evolving when deployed in realistic driving environments, even 
leading to critical policy failure. To address such concerns, this 
experiment is designed to evaluate the applicability of the 
proposed LLPL framework in learning and evolving with 
collected real-life data. To cover the most extreme scenarios, 
the employed data in this experiment is collected on off-road 
rough terrain with a Jeep Wrangler. Only IMU and steering data 
are needed for training and updating the policy. The sampling 
frequency of IMU and steering data are separately 100Hz and 
10Hz. A partial observation of the sampled data is presented in 
Fig. 13, where the noise and disturbance of the real-life data are 
presented. 

Policies are trained with real-life data and evaluated in 
simulation. One section of the collected traversed trajectory is 
extracted to replicate the scenario in simulation. The parameters 
of the simulated vehicle are set to mimic the real vehicle, for 
instance, the steering ratio, wheelbase, mass and et al. But 
certain characteristics such as tire model and mass center are 
estimated and may not be accurate. Two policies are trained and 

Fig.11. The average deviation of compared methods in different road sections, (a) lateral deviation, (b)heading deviation. 
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evaluated, which separately are trained with IL and LLPL 
framework. Both policies are initialized with 36 minutes of 
real-life driving data. As for the LLL procedure in LLPL, the 
policy is updated each 100s with real-life historical data from 
corresponding traversed trajectories to reproduce the 
deployment in real-life. The two policies are executed in the 
simulated environment, and the results are shown in Fig.14 (b)-
(c). Despite the noises in data and the dynamic differences 
between real vehicles and simulation platforms, both policies 
are capable of executing the path tracking task without failure. 
Although replayed real-life data are not equivalent to the true 
vehicle response in simulated evaluation environment, LLPL is 
still capable of exploiting the incremental data and improving 
the policy performance. The overall deviation of LLPL is 
reduced by 23.30% and 21.64% for lateral deviation and 
heading deviation compared to IL. Although the control 
fluctuation occurs due to data noises and mismatches between 
real-life data and simulation, it is significantly alleviated by 
LLPL through knowledge evaluation. 

Fig.13. A segment of collected real life data on off-road terrain. 

Fig.14. The performance of policy trained with real-life data in 
simulation: (a) the segment of the extracted path for policy 
evaluation, (b) the lateral deviation of evaluated policies, (c) the 
heading deviation of evaluated policies. 

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, the LLPL framework is proposed for 
autonomous vehicle path tracking control, which can efficiently 
learn an initial control policy from only a few minutes of 
demonstrations, and can also continuously update the policy 
with small amounts of incremental execution knowledge. By 
adopting the proposed knowledge evaluation method, the 
proposed LLPL can avoid learning redundant knowledge and 
improve control smoothness compared to IL. Experiments are 
conducted using a high-fidelity vehicle dynamic model to 
evaluate the continuous learning performance. Experimental 
results show that the proposed LLPL can efficiently learn an 
initial policy by IL and continuously improve it with a small 
amount of incremental knowledge. The LLPL policy is also 
evaluated on a curved road with a total length of over 7 km, 
where the LLPL is also compared with three baseline methods 
IL, RL and MPC. The results show that LLPL is able to safely 
learn and fine-tune with incremental driving data, while the 
performance of IL and RL may degrade. By using the 
knowledge evaluation scheme, the LLPL policy also achieves 
the best accuracy and control smoothness compared to other 
baseline methods. Real-world data collected in off-road terrain 
is also used to train the policy and evaluate it in simulation. 
Despite a slight performance degradation, the LLPL policy is 
able to learn and improve with incremental real-world data, 
demonstrating its applicability to real-world learning. 

The main goal of the proposed LLPL framework is to enable 
the autonomous driving system to efficiently learn a model-free 
driving policy and to continuously adapt and evolve during 
execution, thus enabling rapid policy deployment for different 
vehicles and environments and significantly reducing the policy 
learning cost. However, there are still some limitations of the 
current work, which would provide some interesting directions 
for future work. First, the implicit dynamic model introduced in 
this work may not be sufficient to represent more complex 
driving scenarios, such as off-road environments, where pitch 
angle and road characteristics should also be considered. 
Second, although the performance improvement is guaranteed 
by the knowledge evaluation in LLPL, the performance of the 
initial policy may fail in out-of-distribution cases. Ensuring a 
lower performance bound for the initial policy can greatly 
reduce the data requirements of the initial policy and increase 
the generalizability of the LLPL framework. Finally, the 
proposed LLPL framework can also be generalized to other 
continuous control or even decision-related tasks, where how to 
formulate an efficient policy model and corresponding 
knowledge evaluation scheme remains an interesting future 
direction. 
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