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Abstract. We study set selection problems where the weights are uncertain. Instead of
its exact weight, only an uncertainty interval containing its true weight is available for each
element. In some cases, some solutions are universally optimal; i.e., they are optimal for
every weight that lies within the uncertainty intervals. However, it may be that no universal
optimal solution exists, unless we are revealed additional information on the precise values
of some elements.

In the minimum cost admissible query problem, we are tasked to (non-adaptively) find
a minimum-cost subset of elements that, no matter how they are revealed, guarantee
the existence of a universally optimal solution. This belongs to the setting of explorable
uncertainty and while there is a significant body of work in the adaptive setting, non-adaptive
versions, such as the one in this paper, are far-less understood.

We introduce thresholds under uncertainty to analyze problems of minimum cost admissible
queries. Roughly speaking, for every element e, there is a threshold for its weight, below
which e is included in all optimal solutions and a second threshold above which e is excluded
from all optimal solutions.

We show that computing thresholds and finding minimum cost admissible queries are
essentially equivalent problems. Thus, the analysis of the minimum admissible query problem
reduces to the problem of computing thresholds.

We provide efficient algorithms for computing thresholds in the settings of minimum
spanning trees, matroids, and matchings in trees; and NP-hardness results in the settings of
s-t shortest paths and bipartite matching. By making use of the equivalence between the
two problems these results translate into efficient algorithms for minimum cost admissible
queries in the settings of minimum spanning trees, matroids, and matchings in trees; and
NP-hardness results in the settings of s-t shortest paths and bipartite matching.

1. Introduction

We study set selection problems under uncertain weights. Without uncertainty, an instance
of (min-weight) set selection consists of a ground set E, together with weights w : E → R,
and an (implicitly defined) collection of feasible sets F ⊆ 2E. The goal is to find a feasible
set S ∈ F which minimizes the total weight w(S) := ∑

e∈S w(e).
Set selection encodes many classical problems in combinatorial optimization. In particular,

it encodes the problems of finding minimum spanning trees, shortest paths, and minimum
weight perfect matching. Maximization problems can be similarly modeled by simply
multiplying the weights by −1.

In the uncertain setting, we are again given a ground set E and an implicitly defined
collection of feasible sets F ⊆ 2E. However, we do not have precise weights for each element
e ∈ E. Instead, for each element e ∈ E, we know an interval Ie := [ℓe, he] in which the
true weight we lies; i.e., we ∈ Ie (see Figure 1a). We call such an interval the uncertainty
interval of e and denote the collection of intervals by I := {Ie}e∈E. Note that it is possible

1

ar
X

iv
:2

40
4.

17
21

4v
1 

 [
cs

.D
S]

  2
6 

A
pr

 2
02

4



for these intervals to be singletons, in that case we call them trivial. Additionally, every
weight function w that obeys I is called a realization of I; i.e., w ∈ ∏

e∈E Ie (see Figure 1b
and 1c). Naturally, realizations of I are the possible true weights of an uncertain instance.
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Figure 1. (a) An instance of s-t paths with uncertain weights. (b)+(c) Two
realizations of the instance in (a) with different optimal solutions marked in
blue.

Under uncertainty, we again are interested in minimizing the weight of the chosen solution.
Note, however, that this could be realization dependent (see Figures 1b and 1c); i.e., solutions
could be optimal for some realizations and not for others. Thus, the best solution we could
hope for is a feasible set that has the best weight independently of the realization. More
formally, we say that a feasible set S∗ ∈ F is universally optimal if it holds that w(S∗) ≤ w(S)
for every feasible set S ∈ F and every weight realization w of I.

1.1. Minimum cost queries. Alas, not every uncertain set selection instance has universally
optimal solutions (e.g., Figure 1a). To counteract this, we consider the setting where we can
obtain more precise information about the weights at a cost. The reader can imagine that
the original uncertainty intervals represent a rough estimate of the true weights and that we
can spend additional resources to find out precise information about them.

The (non-adaptive) query problem models exactly the aforementioned situation: Combina-
torial optimization problems where the weights are uncertain, but can be queried at a cost.
Querying an element reveals its true weight, replacing the possible weights in can take by a
unique element. Here, our objective is to find the least costly set of queries that allows us to
compute aa universally optimal solution.

More specifically, we consider the setting where we can make exactly one (non-adaptive)
set of queries; i.e., we can select a set Q ⊆ E to be queried, and for every e ∈ E we will learn
its true weight we ∈ Ie. A set of elements Q ⊆ E is an admissible query if after obtaining any
possible answer to the queries in Q, there exists a universally optimal solution (see Figure 2a
for an illustration).1 Note that admissible queries always exist, as querying every element is
an admissible query. Querying everything, however, is costly: Querying an element e ∈ E
comes at a cost ce, which is known in advance. Thus, the objective is to find an admissible
query Q that minimizes the total cost c(Q).

We are particularly interested in algorithms that not only compute a minimum cost
admissible query, but also compute a universally optimal solution (using the additionally

1The standard term in the literature seems to be feasible queries. We use the term admissible queries, as
to make the distinction with the feasible sets S ∈ F .
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Figure 2. (a) A minimum-sized admissible query marked in green. (b)+(c)
Different true weights of the queried edges give rise to different universally
optimal solutions (marked in blue).

queried information, see Figure 2b and 2c). More concretely, these algorithms operate in the
following stages.

(1) Receive an instance (E,F , I).
(2) Query a set of elements Q ⊆ E.
(3) For the queried elements e ∈ Q, we obtain the true weights we ∈ Ie.
(4) Return a universally optimal solution S ⊆ E for the intervals I ′ given by {we}e∈Q ∪
{Ie}e∈E\Q; i.e., w(S∗) ≤ w(S) for all feasible sets S and for all weight realizations
w ∈ ∏

e∈Q{we} ×
∏

e∈E\Q Ie.
We highlight that it is not required that the algorithm knows the weight of the solution it

outputs in the end, only that is optimal. In particular, it is not required that the algorithm
has queried all elements in the returned solution.

This model is known as the explorable uncertainty model and was introduced by Kahan
in 1991 [Kah91]. Explorable uncertainty has attracted considerable attention since its
introduction; see e.g., the survey of Erlebach and Hoffmann [EH15]. Most of the work has
focused on adaptive algorithms; i.e., algorithms that can query a few elements, learn their
weights, decide whether they query more elements or can compute an optimal solution, and
repeat. We usually analyze these algorithms via competitive analysis; i.e., they compare
against an adversary that knows the true weights beforehand. Our understanding of the
adaptive setting is quite good; almost optimal constant competitive algorithms are known
for spanning trees [Erl+08; MMS17; MS19], matroids [EH15], geometric problems [Bru+05],
scheduling [LMS19; Dür+20; AE21; Duf+22; Zha23] for slightly different models, and many
other settings. Many of the results can even be obtained in a unified manner by using the
technique of witness sets as introduced by Bruce et al. [Bru+05]. Furthermore, for other
natural problems such as maximum weight matching, there are impossibility results showing
that no constant-competitive algorithms exist [Mei18, Chapter 3].

Surprisingly, we know very little about non-adaptive algorithms. They are used in settings
with a huge fixed setup cost for any number of queries. Merino and Soto [MS19] studied the
problem on matroids with uncertainty sets; i.e., not only intervals. They provide polynomial
time algorithms for finding minimum cost admissible queries. In particular, for minimum
spanning trees, they find minimum cost admissible queries in O(m2α(m, n)) time; here, n is
the number of vertices of the graph, m the number of edges, and α is the inverse Ackermann
function. Despite that, their techniques do not seem to easily generalize to other problems.
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In particular, they leave open whether one can find minimum cost admissible queries for s-t
shortest paths or minimum cost perfect matchings in polynomial time.

1.2. Thresholds of inclusion and exclusion. To better understand minimum admissible
queries, we study a related problem on set selection under uncertainty. Note that even if an
instance has no universally optimal solution, there are elements which belong to all optimal
solutions and some others which are in none for all realizations (see Figure 3a). Identifying
these key elements has proven useful to deal with uncertainty; see e.g., [Erl+08; MMS17;
MS19].

[1,2]

[0,1]1

[0,1] [2,3]

s t

(a)

1

11

0 ?

ts

(b)

[0,2]

[0,1]

[0,1] ?

[0,1]

ts

(c)

Figure 3. (a) This instance has no universally optimal solution. (b) If the
edge marked in green has weight less (resp. more) than 2, then it is contained
in every (resp. no) s-t shortest path. (c) If the green edge has weight smaller
than 1 (resp. larger than 2), then it is included in all (resp. no) shortest s-t
paths, regardless of the true weights.

In the setting without uncertainty, these ideas are captured by the concept of thresholds.
Here, we consider a fixed element e ∈ E and are given all weights except the weight of e.
Suppose that there are feasible sets with and without e: When is e contained in an optimal
solution? If the weight of e is very small, say we ≈ −∞, then e must be included in all
optimal solutions. Similarly, if the weight of e is very large, say we ≈ +∞, then every optimal
solution must avoid e. The point where this behavior changes is called the threshold of e,
denoted by Te (see Figure 3b). More formally, Te is the unique number such that

• if we > Te, then no optimal solution contains e,
• if we < Te, then e belongs to every optimal solution,
• if we = Te, there are optimal solutions with and without e.

Naturally, the threshold Te is a function of the weights of all other elements w−e. Furthermore,
it is not hard to see that Te is a piecewise linear function in each coordinate and can be easily
computed whenever you can solve the corresponding min-weight set selection problem (see
Section 2 for details).

In the uncertain setting, things are a bit more complicated, as we do not have a unique
threshold that marks the two regimes (see Figure 3c). For every item e ∈ E, we define the
threshold of inclusion T +

e and the threshold of exclusion T −
e as follows

T +
e := inf{Te(w−e) | w−e realization of I \ {Ie}}

T −
e := sup{Te(w−e) | w−e realization of I \ {Ie}}.

4



In other words, T +
e is the minimum possible threshold, and T −

e is the largest possible threshold.
Note that T +

e = T −
e = ∞ whenever e is in every feasible set; similarly, T +

e = T −
e = −∞

whenever e is in no feasible set. The interval [T +
e , T −

e ] indicates the possible behavior of e
with respect to optimal solutions.

• If he < T +
e , then e belongs to any optimal solution for every realization of I \ {Ie}.

• If ℓe > T −
e , then e does not belong to any optimal solution for every realization of

I \ {Ie}.
• Otherwise, there are optimal solutions with and without e for specific realizations of
I \ {Ie}.

Also, the union of Te(w−e) over all realizations w−e of I \ {Ie} is exactly the interval [T +
e , T −

e ].
The existence of thresholds is central to the isolation lemma, a technique from the 1980s to

guarantee uniqueness of optimal solutions; see, e.g., [Ta-15] and references therein. Despite its
notoriety, to the best of our knowledge, the problem of computing thresholds under uncertain
weights has not been studied prior to this work.

1.3. Our contribution. Our main contribution is the introduction of thresholds under
uncertainty and using them to analyze minimum cost admissible queries. As a first result, we
show that computing thresholds and finding minimum cost admissible queries are essentially
equivalent.

• Given the thresholds of inclusion and exclusion for every element, we can compute a
minimum cost admissible query in linear time. We can compute a universally optimal
solution by solving only one extra set selection problem. (See Theorem 10.)
• Computing thresholds up to a constant additive error reduces to solving a logarithmic

number of minimum cost admissible query problems (see Theorem 12).
After showing this equivalence, we turn towards computing thresholds in various settings.
• For the minimum spanning tree problem, we show a O(mα(m, n) + n) algorithm for

computing all 2m thresholds (see Theorem 19).
• For the maximum weight matching problem on trees, we show a linear time algorithm

that given element e ∈ E it computes its thresholds (see Theorem 25).
In other settings, we are able to show hardness. In particular, we show that computing the

thresholds is NP-complete for shortest paths on DAGs (see Theorem 20) and for bipartite
minimum cost perfect matching (see Theorem 23).

As a consequence of the equivalence, we can translate the aforementioned results into the
setting of minimum cost admissible queries, obtaining the following results.

• An O(mα(m, n) + n) time algorithm for finding minimum cost admissible queries in
the setting of minimum spanning trees, improving on the O(m2α(m, n)) algorithm of
Merino and Soto [MS19].
• A quadratic time algorithm for minimum cost admissible queries for maximum

matching on trees.
• Deciding whether a given set is an admissible query for s-t shortest paths is NP-

complete (see Observation 21)
• Deciding whether a given set is an admissible query for bipartite minimum cost perfect

matching is NP-complete (see Observation 24).
5



These last two points imply that there is no polynomial time algorithms for finding
minimum cost admissible queries in the setting of shortest paths and bipartite minimum cost
perfect matching (unless P = NP).

1.4. Further related work. Besides what was mentioned in Subsection 1.1, there are a
couple of other explorable uncertainty settings related to this work.

Stochastic uncertainty. In this model instead of working only with uncertainty intervals
as prior information on the weights, they are given additional stochastic information. Again,
the objective is to minimize the cost of querying while being able to compute an optimal
solution. Particularly relevant to us is the work of Megow and Schlöter that explores adaptive
algorithms for set selection problems [MS23].

Value-based models. There are models with the additional requirement that the produced
solution must belong to the set of queried element; see e.g., the work of Singla [Sin18]. In
other words, the algorithm not only needs to produce an optimal solution, but also the value
of the solution.

The optimality condition is sometimes relaxed, allowing to output a solution that is addi-
tively suboptimal by some pre-specified constant; see e.g., the work of Feder et. al. [Fed+00;
Fed+07]. We highlight that these last works are non-adaptive, however since their setting
requires finding the value, it has a very different flavor.

2. Threshold preliminaries

We begin by analyzing basic properties of the threshold functions in both without and
with uncertainty.

2.1. Thresholds without uncertainty. Note that for every e ∈ E can easily compute Te

as follows. Let OPT−e(w−e) be the weight of an optimal feasible set S under the constraint
e ̸∈ S, and let OPT+e(w−e) be the similar weight under the constraint e ∈ S and imposing
we = 0. (See Figure 4a.) We have

Te(w−e) = OPT−e(w−e)−OPT+e(w−e).

How does each of the terms OPT−e(w−e) and OPT+e(w−e) depend on the weight of another
element f ∈ E? Consider the optimal feasible set without e, f , and the optimal feasible set
without e but with f . The weight of the first is constant in wf , while the second is linear
(with slope 1) in wf . Thus, OPT−e(w−e) is a constant function of wf up to some point, from
which it has a unit slope. Similarly, OPT+e(w−e) is a similar function in wf , but with a
different constant part and different threshold. Hence, their difference Te(w−e) is a piecewise
linear function in wf , consisting of three parts. The first and third parts are constant, while
the second part has a slope of either +1 or −1, depending on how the thresholds compare to
each other (see Figure 4b). As a consequence, we have that Te is continuous and monotone
in each coordinate.

The next lemma states that OPT+e and OPT−e are structurally very similar. Intuitively,
this holds as we are optimizing a linear problem along the same direction and only making a
small change in the restrictions.

We formalize this in the context of polytopes. Given a set of vectors X ⊆ Rd its convex
hull conv(X) consists of all convex combinations of vectors in X. For F ⊆ E we denote by

6
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Figure 4. (a) Behaviour of OPT−e and OPT+e when we change the weight
of e. The threshold Te is exactly the point at which these two values are the
same. (b) Schematic view of this threshold as a function of the weight of some
other element f .

χF ∈ {0, 1}E the characteristic vector of F . For x, y ∈ {0, 1}n their Hamming distance is
d(x, y) = ∑n

i=1 |xi − yi|.

Lemma 1. Let P := conv({χF | F ∈ F}), w ∈ RE, and e ∈ E. There exists x′, y′ ∈ {0, 1}E

such that w · x′ = min{w · x | x ∈ P, xe = 0}, w · y′ = min{w · x | x ∈ P, xe = 1}, and xy is
an edge of the polytope P .

Proof. Choose two vertices x′, y′ ∈ {0, 1}E of P such that x′ ∈ argmin{w · x | x ∈ P, xe = 0},
y′ ∈ argmin{w · x | x ∈ P, xe = 1}, and the Hamming distance between x′ and y′ is
minimized. Suppose that x′ and y′ are not adjacent in P . Then, there exists µ ∈ (0, 1) such
that z := µx′ + (1− µ)y′ is a convex combination of the vertices of P except x′ and y′; i.e.,
z = ∑k

i=1 λiz
i where for every i ∈ [k] we have λi ∈ (0, 1) and that zi ∈ {0, 1}E is a vertex of

P different from x′ or y′.
Let us define I0 = {i ∈ [k] | zi

e = 0} and I1 = {i ∈ [k] | zi
e = 1}. Note that ∑

i∈I0 λi = µ
and ∑

i∈I1 λi = (1 − µ). Furthermore, for every i ∈ I0 we have that w · zi = w · x′ and for
every i ∈ I1 we have that w · zi = w · y′, as otherwise we have that

w · z = w ·

∑
i∈I0

λiz
i +

∑
i∈I1

λiz
i

 > µ(w · x) + (1− µ)(w · y) = w · z,

which is not possible. Thus, we conclude that zi ∈ argmin{w · x | x ∈ P, xe = 1} for i ∈ I1
and that zi ∈ argmin{w · x | x ∈ P, xe = 0} for i ∈ I0.

Let us define A as the coordinates in which x′ and y′ agree; i.e., A = {f ∈ E | x′
f = y′

f}.
Note that for f ∈ A we have that zi

f = x′
f = y′

f for every i ∈ [k]. Furthermore, zi = x′

whenever i ∈ I0; otherwise, there exists i∗ ∈ I0 such that zi∗ agrees in more than |A|
coordinates with y′, hence d(zi∗

, y′) < |E| − |A| = d(x′, y′) and contradicting the minimality
of d(x′, y′). A similar argument shows that zi = y′ whenever i ∈ I1. This contradicts the fact
that zi was not x′ nor y′ for every i ∈ [k]. □
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Lemma 1 has interesting consequences when looking at specific problems. In these problems
edges of the corresponding polytope are well-understood. For example, for minimum spanning
trees, a result due to Hausmann and Korte implies that two trees are adjacent if and only if
they differ in the exchange of two edges. Combining this with Lemma 1 we obtain that.

Corollary 2. Let G = (V, E) be a graph with weights. There exists an edge f ∈ E − e and a
spanning tree T + such that T + is a spanning tree that contains e ∈ E of minimum weight,
and T − := T + − e + f is a spanning tree that avoids e ∈ E of minimum weight.

Analogous statements also hold for other set selection problems; see e.g., matchings and
perfect matchings [Chv75], s-t paths and flows [GS78].

2.2. Thresholds with uncertainty. A weight realization w such that wf ∈ {ℓf , hf} for
every f ∈ E is said to be extreme. Observe that by monotonicity of Te — which can be
non-increasing or non-decreasing, see Figure 4 — we have T +

e = Te(w−e) for some extreme
realization w−e. The same holds for T −

e .
This means that the threshold of inclusion can be computed by minimizing over 2|E|

different extreme weights, which implies the following observation.

Observation 3. Suppose that the underlying optimization problem can be solved in polynomial
time for a fixed weight realization. The decision version of computing the threshold of inclusion
asks if T +

e is at most some given value. The decision version of computing the threshold of
exclusion asks if T −

e is at least some given value. Both problems are in NP, and the certificates
are the corresponding extremal realizations.

We can obtain an alternative characterization of the threshold of inclusion. For a given
realization w−e, let S− ∈ F be the feasible solution with optimal value OPT−e(w−e), and
S+ ∈ F be the feasible solution with optimal value OPT+e(w−e). Then we can assume
without loss of generality that the realization sets wf to its lower bound for all f ∈ S−, and
to its upper bound for all f ̸∈ S−. In other words T +

e is the minimum among all S ∈ F
with e ̸∈ S of ℓ(S) − OPT+e(w), where we = 0, and wf = ℓf for all f ∈ S and wf = hf

otherwise, conditioned on S being an optimal solution with respect to these weights w and
the constraint e ̸∈ S.

Similarly, the threshold of exclusion can be expressed as the maximum over all T ∈ F
with e ∈ T of the difference OPT−e(w) − ℓ(T ), where wf = ℓf for all f ∈ T and wf = hf

otherwise, conditioned on T being an optimal solution with respect to these weights w and
the constraint e ∈ T .

3. From thresholds to minimizing queries, and back

In this section, we prove that the problem of computing thresholds and finding minimum
cost admissible queries are effectively equivalent.

3.1. The query problem reduces to threshold computation. We begin by classifying
elements according to their relation to thresholds. We say that e ∈ E is blue if Ie is non-trivial
and he ≤ T +

e . Similarly, we say that e ∈ E is red whenever Ie is non-trivial and T −
e ≤ ℓe.

Intuitively, blue elements are safe to include in an optimal solution, and red elements are
safe to delete from optimal solutions.

We collect some simple observations.
8



Lemma 4. No element e ∈ E is blue and red.

Proof. Let e ∈ E be an element that is blue and red. Thus, he ≤ T +
e ≤ T −

e ≤ ℓe, which
implies that Ie is trivial, a contradiction. □

Therefore, the elements are partitioned into blue, red, trivial, and uncolored non-trivial.
We also note that colors are preserved under queries.

Lemma 5. Let Q ⊆ E be a set to be queried. If e /∈ Q was blue (resp. red) before querying
Q, then it is blue (resp. red) after querying Q.

Proof. We consider an instance with uncertainty intervals I = {Ie}e∈E. After querying a
set F ⊆ E and obtaining the true weights we ∈ Ie for e ∈ E, we have a new instance
with uncertainty intervals I ′ := {{we}}e∈F ∪ {Ie}e∈E\F . For every e ∈ E, let T +

e , T −
e (resp.

T +
e,Q, T −

e,Q) be the thresholds for e with intervals I (resp. I ′). Note that every realization of
I ′ is a realization of I. Thus, T +

e ≤ T +
e,Q and T −

e,Q ≤ T −
e and the lemma follows. □

Furthermore, as already noted by Merino and Soto [MS19], in the context of matroids,
supersets of admissible queries are admissible.

Lemma 6. If F ⊆ E is an admissible query, all its supersets F ⊆ F ′ are admissible queries.

The key observation is that uncolored non-trivial elements must be queried.

Lemma 7. If F ⊆ E is an admissible query, then it contains the set

Q = {e ∈ E | e is uncolored and Ie is non-trivial}.

Proof. Suppose, aiming at a contradiction, that there is an admissible query F and an
element e∗ ∈ Q \ F . Let Ae∗ = (ℓe∗ , he∗) ∩ [T +

e∗ , T −
e∗ ]. Since he∗ > T +

e∗ and ℓe∗ < T −
e∗ , the

set Ae∗ is nonempty. Choose w∗ ∈ Ae∗ and and ϵ > 0 such that (w∗ − ϵ, w∗ + ϵ) ⊆ Ie∗ .
Since T +

e∗ ≤ w∗ ≤ T −
e∗ , we have that there is a realization w ∈ RE such that e∗ is in an

optimal solution S+, e∗ avoids an optimal solution S−, and we∗ = w∗. Furthermore, we define
w− ∈ ∏

e∈E Ie as w except that in the coordinate e∗ we have that w−
e∗ = w∗ + ϵ. Similarly, we

define w+ ∈ ∏
e∈E Ie as w except that in the coordinate e∗ we have that w+

e∗ = w∗ − ϵ.
Suppose now we query E − e∗. Since F ⊆ E − e∗ was an admissible query, by Lemma 6

we obtain that E − e∗ is also admissible. Thus, even if we reveal the weights on E − e∗ to be
w−e, there exists a feasible set S ∈ F that is optimal independently of the value of e∗. If the
true value of e∗ is w∗, we have that w(S) = w(S−) = w(S+), as they are all optimal solutions.
Now, if the true value of e∗ is w∗ − ϵ, we have that e∗ ∈ S (otherwise w+(S+) < w+(S)).
Finally, if the true value of e∗ is w∗ + ϵ, we have that e∗ ̸∈ S (otherwise w−(S−) < w−(S)).
Thus, we have that e∗ ∈ S and e∗ /∈ S, a contradiction. □

In view of Lemma 7, we only need to figure out what to do with blue and red elements.
The next lemma shows that it is always safe to pick blue elements in optimal solutions and
avoid red elements.

Lemma 8. For every realization w ∈ ∏
e∈E Ie, there is a w-optimal solution S∗ such that

{e ∈ E | e is blue} ⊆ S∗ ⊆ {e ∈ E | e is not red}.
9



Proof. Let B := {e ∈ E | e is blue} and R := {e ∈ E | e is red}. Let S be a w-optimal
solution. We also define

g := min{w(S ′) | S ′ ⊆ E and B ⊆ S ′ ⊆ E \R} − w(S) ≥ 0.

Assume, for the sake of contradiction, that g > 0.
Let ϵ := g

4|E| . For e ∈ B, choose δe ∈ (−ϵ, ϵ) such that we + δe < T +
e and we + δe ∈ Ie.

Similarly, for e ∈ R, we choose δe ∈ (−ϵ, ϵ) such that we + δe > T −
e and we + δe ∈ Ie. For the

remaining elements e ∈ E \ (B ∪R), we set δe = 0.
We now define ŵ ∈ ∏

e∈E Ie as ŵ := w + δ. Let Ŝ be a ŵ-optimal solution. Since for e ∈ B

we have that ŵe < T +
e , this implies that B ⊆ Ŝ. Similarly, for e ∈ R we have that ŵe > T −

e ,
which implies that Ŝ ⊆ E \R. Therefore,
(1) w(Ŝ)− w(S) ≥ min{w(S) | S ⊆ E and B ⊆ S ⊆ E \R} − w(S) = g.

Since Ŝ is ŵ-optimal, we have that ŵ(Ŝ) ≤ ŵ(S). As a consequence, we have that w(Ŝ) +
δ(Ŝ) ≤ w(S) + δ(S). Thus,

(2) w(Ŝ)− w(S) ≤ δ(S)− δ(Ŝ) ≤ ϵ(|S|+ |Ŝ|) ≤ 2ϵ|E| = g

2 .

Combining (1) with (2) we obtain that g
2 ≥ g, a contradiction. □

We can combine Lemma 7 and Lemma 8 to show that the uncolored non-trivial elements
are the unique minimum-sized admissible query. Therefore, there is a natural algorithm for
finding minimum cost admissible queries: Query the uncolored non-trivial elements and every
element of negative cost. We can extend this to an algorithm that also computes universally
optimal solutions as follows.

Algorithm 9 (Minimum cost admissible queries and universally optimal solutions).
(1) For every e ∈ E, compute the thresholds T +

e , T −
e .

(2) Compute B ← {e ∈ E | e is blue}, R← {e ∈ E | e is blue},
T ← {e ∈ E | Ie is trivial} and Q← E \ (B ∪R ∪ T ).

(3) Query Q and every element of negative cost.
Obtain true weights we ∈ Ie for e ∈ Q.

(4) Let M ← ∑
e∈T ∪Q |we|+

∑
e∈B∪R |ℓe|+ |he|.

(5) For every e ∈ B assign we ← −M and for every e ∈ R assign we ←M .
(6) Return an element of argmin{w(S) | S ∈ F} as a universally optimal solution.

Theorem 10. Suppose all thresholds for (E,F , I) can be computed in time TT HR and that
the optimization problem on (E,F) can be solved in time TOP T . We can find a minimum
cost admissible query problem in time O(TT HR + |E|), and after the weights of the queries
are revealed we can find a universally optimal solution in time O(TOPT + |E|)

Proof. We show that Algorithm 9 solves the minimum cost admissible query problem, since
it is clear that Algorithm 9 runs in the desired running time.

We now show that Q is a admissible query. After Algorithm 9 queries Q, it obtains true
values we ∈ Ie. We aim to show that the algorithm returns an optimal solution for every
realization w of the intervals after querying I ′; that is I ′ := {Ie}e∈E\Q ∪ {{we}}e∈Q. Let
M := ∑

e∈T ∪Q |we|+
∑

e∈B∪R |ℓe|+ |he|. We also define we = −M for blue e and we = M for
10



red e as in Algorithm 9. Let S ′ be a w-optimal solution. It is easy to see that S ′ contains
every blue element, and it avoids every red element. Choose any w∗ ∈ I ′. By Lemma 8, we
have that there is a w∗-optimal solution S∗ such that

{e ∈ E | e is blue} ⊆ S∗ ⊆ {e ∈ E | e is not red}.

Note that since w|Q = w∗|Q and w|T = w∗|T , we have that

−M |B|+ w(S∗ ∩ (Q ∪ T )) = w(S∗) ≥ w(S ′) = −M |B|+ w(S ′ ∩ (Q ∪ T )).

We conclude that w∗(S ′ ∩ (Q ∪ T )) ≤ w∗(S∗ ∩ (Q ∪ T )). Using that we obtain

w∗(S ′) = w∗(B) + w∗(S ′ ∩ (Q ∪ T )) ≤ w∗(B) + w(S∗ ∩ (Q ∪ T )) = w∗(S∗).

Hence, S ′ is w∗-optimal, and in turn Q is an admissible query.
The fact that Q is of minimum cost follows directly from Lemma 7. □

3.2. Threshold computation reduces to the query problem. We show now how to
additively approximate thresholds by using minimum cost admissible queries. In particular,
we only use a weaker oracle that tests whether E − e is an admissible query. Naturally, this
oracle can be simulated with a minimum cost admissible query oracle by using the costs
ce = 1 and cf = 0 for f ∈ E − e.

We reason for T +
e in this section, as the arguments for computing T −

e are dual. The
main idea is that for a given e ∈ E and α ∈ R we can check whether T +

e < α by using the
aforementioned oracle. To this end, given uncertainty intervals If for f ∈ E − e, we define
K = −∑

f∈E−e |ℓf |+ |hf |, Iα
e = [K − 1, α] and Iα = {If}f∈E−e ∪ {Iα

e }. Note that T +
e is the

same for I and Iα. First, we show that we can assume that T − ̸= −∞.
Recall that we can test whether T −

e ̸= −∞ by running one optimization problem and
setting the weight of e to be very small, namely the negation of the total weight upper bounds.
Thus, we assume in the next lemma that T −

e ̸= −∞

Lemma 11. T +
e ≥ α for I if and only if E − e is an admissible query for Iα.

Proof. If T +
e ≥ α = he, then e is blue, and therefore E − e is an admissible query.

For the converse, note that T +
e < α = he, implies that e is not blue. Furthermore, since

T −
e ̸= −∞, then T −

e ≥ ℓ(E − e), implies that e is not red. Hence, e is uncolored and must be
queried, which implies that E − e is not admissible. □

As a consequence, we can simply apply Lemma 11 and obtain an algorithm that computes
thresholds with additive error.

Theorem 12. Suppose we can decide whether E − e is an admissible query in time T , and
that we can solve the corresponding optimization problem in time TOP T . For every e ∈ E
and every additive precision δ > 0, we can compute a, b ∈ [−K, K] such that T +

e ∈ [a, a + δ]
and T −

e ∈ [b, b + δ] (or decide whether T −
e , T +e = ±∞). This algorithm runs in time

O
(
T log(2K

δ
) + TOP T

)
.

Proof. We only need to check beforehand whether the thresholds are ±∞ and then run the
corresponding binary search. □

11



4. Minimum spanning trees

In this section we consider the classical minimum spanning tree problem (MST). A minimum
spanning tree of a graph G = (V, E) with weights w : E → R is a spanning tree T of G that
minimizes w(T ). We show algorithms for computing the thresholds of inclusion and exclusion
for MSTs. We assume that the edge e = uv for which we want to compute the weights is not
a bridge, also known as cut-edge, otherwise both thresholds are +∞.

4.1. Thresholds via greedy. We begin by giving a simple greedy-based algorithm for
computing thresholds.

First, we recall the classical red and blue rules for computing MSTs.
• Red rule: edge e is in no MST if and only if we > min

C cycle, e∈C
max

f∈C−e
wf .

• Blue rule: edge e belongs to all MST if and only if we < max
C cut, e∈C

min
f∈C−e

wf .

Direct application of the red rule implies that T +
e is the minimum over all cycles C containing

e of max ℓf over f ∈ C−e. Similarly, by applying the blue rule, we obtain T −
e is the maximum

over all cuts C containing e of min hf over f ∈ C − e. As a result one can compute T +
e and

T −
e via Kruskal’s algorithm and reverse-Kruskal.
The standard implementation of these procedures achieves a running time of O(m log n)

and O(m log n(log log n)3) for computing T −
e and T +

e respectively [Tho].
We note that the ideas in this subsection generalize straightforwardly to the matroid setting,

obtaining efficient algorithms for computing the thresholds of inclusion or inclusion.

4.2. Thresholds via bottleneck paths. Given an undirected graph G = (V, E) with
weights w ∈ RE and a path P , the bottleneck of the path P is given by maxe∈P we. A
bottleneck path P between u, v ∈ V is a path of minimum bottleneck. The bottleneck between
u and v is the bottleneck of a bottleneck u-v path. A classical result of Hu [Hu61] states that
the paths in a minimum spanning tree are bottleneck paths.

Theorem 13 ([Hu61]). Let G = (V, E) be a graph with weights w ∈ RE and let T be an
MST of G. For every u, v ∈ V the unique u-v path in T is a u-v bottleneck path.

We consider a slight variation of the bottleneck problem. We say that a path is trivial if it
is of length one, otherwise, we say it is non-trivial. The non-trivial bottleneck between u and
v, denoted by bw(u, v), is the minimum bottleneck of a non-trivial u-v path; i.e.,

bw(u, v) = min
P u-v nontrivial path

max
e∈P

we.

In other words, the non-trivial bottleneck between u and v in G, is the bottleneck between u
and v in G− uv.

We show that computing non-trivial bottlenecks is equivalent to computing thresholds.

Lemma 14. Let G = (V, E) be a graph with weights w. For every uv ∈ E, we have that
Tuv(w−uv) = bw(u, v).

Proof. Let T be a minimum spanning tree, we consider two cases.
• Case 1: e /∈ T . Let T ′ be OPT+e(w−e). By Corollary 2 we may assume that

T ′ = T + e− f . Let P be the unique u-v path in T . Furthermore, f must be an edge
of maximum weight in P . Otherwise, there is an edge f ′ ∈ P such that wf ′ > wf ,

12



which implies that w(T + e− f ′) < w(T + e− f), a contradiction. Since P was a u-v
bottleneck path by Theorem 13, we conclude that

Te(w−e) = OPT−e(w−e)−OPT+e(w−e) = wf = bw(u, v).
• Case 2: e ∈ T . Let T ′ be OPT−e(w−e). By Corollary 2 we may assume that

T ′ = T − e + f . Note that T ′ is an MST of G− e. Let P be the unique u-v path in T ′.
As before, f must be an edge of maximum weight in P . Otherwise, there is an edge
f ′ ∈ P such that wf ′ > wf , which implies that w(T ′ + e− f ′) < w(T ′ + e− f) = w(T ),
a contradiction. Since P was a u-v bottleneck path in G− e by Theorem 13, then it
is a non-trivial u-v path of minimum bottleneck in G. Thus, we conclude that

Te(w−e) = OPT−e(w−e)−OPT+e(w−e) = wf = bw(u, v). □

Combining Lemma 14 with the fact that bw(u, v) is increasing with respect to w, we obtain
that for every uv ∈ E it holds that T +

uv = bℓ(u, v) and T −
uv = bh(u, v). Thus, the problem of

computing the threshold for e ∈ E is equivalent to computing bℓ(u, v) and bh(u, v).
We now provide a fast algorithm for computing all thresholds in the minimum spanning

tree setting. Given a minimum spanning tree T and e ∈ T , we say that f is a replacement of
e in T if T +f−e is a minimum spanning tree of G−e. Furthermore, if the replacement of uv
is xy and x is connected to u in T − e, we say that x is the replacement of u. Replacements
can be computed very efficiently by using the technique of path compression, as shown by
Tarjan [Tar79].
Lemma 15. Given a weighted graph and a minimum spanning tree T , we can compute all
n− 1 replacements of T in time O(mα(m, n) + n).

We also make use of the computation of bottlenecks in a tree. This is usually a subroutine
of minimum spanning tree verification algorithms, originally shown to run in linear time
by Dixon, Rauch, and Tarjan [DRT92], with further simplifications by King [Kin97] and
Hagerup [Hag10].
Lemma 16. Given a tree T with weights on the edges and k pairs of vertices (u1, v1), . . . , (uk, vk),
we can compute the bottlenecks in T of the k pairs bT (u1, v1), . . . , bT (uk, vk) in time O(n + k).

The last ingredient we need is Chazelle’s algorithm for minimum spanning trees [Cha00].
Lemma 17. Given a weighted graph, its minimum spanning tree can be computed in time
O(mα(m, n)).

We combine the aforementioned algorithms to obtain the following algorithm for non-trivial
bottlenecks.

Algorithm 18 (Non-trivial bottlenecks).
(1) Compute a minimum spanning tree T via Chazelle’s algorithm.
(2) For every edge e ∈ T , compute its replacement rT (e) via path compression.
(3) Using the tree-bottleneck algorithm, we compute bT (u, v) for (u, v) ∈ E \ T , and

for every uv ∈ T we compute bT (x, u) where x is the replacement of u and y the
replacement of v.

(4) For uv /∈ T , return bT (u, v). Otherwise, let x be the replacement of u and y the
replacement of v, and return max{bT (u, x), w(xy), bT (v, y)}.
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We can use Algorithm 18 using ℓ (resp. h) as weights to compute all thresholds T + (resp.
T −) for every e ∈ E.

Theorem 19. For the minimum spanning tree problem, we can compute all thresholds of
inclusion and exclusion in time O(mα(m, n) + n).
Proof. By Lemma 14 it suffices to compute non-trivial bottlenecks for every e ∈ E with
weights h and ℓ. It is clear that Algorithm 18 runs in the desired time, thus we only prove
correctness.

Let T be the minimum spanning tree used by Algorithm 18. For uv /∈ T , it is clear that
T is a minimum spanning tree of G − uv. Thus, bT (u, v) is the non-trivial bottleneck for
uv by Theorem 13. If uv ∈ T , let x be the replacement of u in T and y the replacement of
v in T . Let P ux be the unique ux-path in T , and P yv be the unique yv-path in T . Then,
T ′ := T + xy − uv is a minimum spanning tree of G− uv and the unique uv path in T ′ is
P ′ := P uxP yv. Since the bottleneck of P ′ is max{bT (u, x), w(xy), bT (y, v)} we conclude by
Theorem 13. □

5. Shortest paths

We consider the problem of computing a shortest path between two given vertices s, t, with
non-negative uncertain edge weights. In [Fed+07] this problem has been studied in a model,
where the algorithm needs to compute the length of the shortest path using as few queries as
possible. However, in our setting it is enough to produce some path guaranteed to be the
shortest one, even though its exact length could be uncertain.

Consider an edge e = (u, v). The threshold of exclusion T −
e can be stated as the maximum

over all weight realizations w of the difference between the length ℓ of a shortest path from s
to t without using e and the length of a shortest path P from s to t forced to use e.

Without loss of generality we can assume that all edges of P have their weight at their
lower limit, and all edges not in P have their weight at their upper limit. The idea is that if
we increase the weight of an edge not in P , then the length of P does not change, while the ℓ
might increase, even though the corresponding path might change. Also if we decrease the
weight of an edge in P by some amount δ > 0, then the length of P decreases by δ, while ℓ
might decrease by at most δ.
Theorem 20. Computing the threshold of inclusion of an edge for the s− t shortest path
problem is NP-complete.
Proof. By Observation 3 we know that the problem is in NP.

The proof of NP-hardness is a reduction from 3-SAT, and is an adaption of the proof given
in [GMO76]. An instance of 3-SAT consists of n boolean variables X1, . . . , Xn, and m clauses.
Every clause Cj contains exactly 3 literals, where a literal is either a variable or its negation.
The goal is to find a boolean assignment to the variables which satisfies each clause. A clause
is satisfied if it at least one of its literal is True.

Given this 3-SAT instance we construct an instance to the shortest path problem with
uncertain edge weights, see Figure 5. There will be a vertex for every literal, and for each
occurrence of a literal in a clause. In addition we have the vertices s, u, v, t. The graph has
several layers. Layer 0 contains vertex s. Layer j = 1, . . . , m contains 3 vertices u1j, u2j, u3j

corresponding to the 3 literals in clause Cj . Layer m + 1 contains vertex u, layer m + 2 vertex
14



v. Then for every i = 1, . . . , n, layer m + 2 + i contains 2 vertices v0i and v1i, corresponding
respectively to Xi and Xi. Finally layer m + 3 + n contains vertex t. There are two type of
edges. Solid edges have lower weight 0 and upper weight 1, and connect all pairs of vertices
between two adjacent layers. The other type of edges are dashed and have weight 0 (same
lower and upper bound). There is a dashed edge between vertices ukj and vbi if and only if
the literal corresponding to ukj is the negation of the literal corresponding to vbi.

· · ·· · · · · · · · ·

u1mu11

u21s

u31 u32

u22

u12 u1j

u2j

u3j

u2m

u3m

u v

v01

v11 v12

v02 v0i

v1i v1n

v0n

t

Xi

Xi

Figure 5. Reduction from 3-SAT. Solid edges have uncertainty intervals [0, 1],
while dashed edges trivial uncertainty intervals 0.

Now we claim that the 3-SAT formula is satisfiable if and only if the threshold of inclusion
T +

uv of the edge uv is at least −1.
For this purpose we introduce the notion of consistency of an s−t path P going through edge

uv. We say that P is consistent if it traverses at most one of both endpoints of every dashed
edge, and if it traverses every layer exactly once. We can associate a satisfying assignment
to every consistent path. Formally, let P be a consistent path. For every i = 1, . . . , n it
traverses exactly one of the vertices v0i, v1i. If it traverses vbi, then we set Xi = 1− b. Now
each layer j = 1, . . . , m is traversed by P in at least one vertex, say ukj, and by consistency
this vertex corresponds to a true valued literal.

For one direction of the proof, suppose that the formula is satisfiable. Let P be a consistent
s− t path going through edge uv, corresponding to a satisfying assignment. This path has
weight 0. Now we consider the shortest s− t path Q not using edge uv. This path has to use
at least of the dashed edges, and by consistency of P has to use also at least one solid edge
not in P . Hence the weight of Q is at least 1.

The other direction of the proof is straightforward. If there is no s− t path P using edge
uv which can enforce weight at least 1, then there is no satisfying assignment. □

Observation 21. We actually prove that it is NP-hard to distinguish whether the threshold of
inclusion is 0 or at most −1. Combining this with Lemma 11, we obtain that is hard to decide
whether a set is an admissible query. As a consequence, we get hardness of approximation.
Also, this gap can be made as large a constant as we want by simply scaling the weights.

For the threshold of exclusion the reduction is much simpler.
Theorem 22. Computing the threshold of exclusion of an edge for the s− t shortest path
problem is NP-complete.
Proof. The proof is a reduction from the Hamiltonian path problem. Let H = (V, E) be a
graph with two vertices s, t ∈ V . The Hamiltonian path problem asks for the existence of a
path P from s to v, which visits all vertices of V exactly once. This problem is NP-complete.
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Denote by n the number of vertices in H. We construct a graph G from H. All edges in H,
which are now also in G, have lower weight ℓe = 1 and upper weight he = n. We complete the
construction by adding two vertices u, v, and edges su, uv, vt, all with zero weight (matching
lower and upper weight limit).

Now we claim that such that the threshold of inclusion in G for edge uv is at least n− 1,
if and only if H admits a Hamiltonian path. The shortest s− t path with edge uv has length
0. The shortest s− t path without edge uv has a total length which depends on the edge
weights. It can have total length n− 1 if and only if the set of edges having their weight at
the lower limit 1 forms a Hamiltonian path from s to t. This concludes the proof. □

6. Minimum cost perfect matching

We complement the previous NP-hardness proof by showing hardness of computing the
thresholds for matching.
Theorem 23. Computing the threshold of exclusion of an edge in the min cost perfect
matching problem is NP-complete already for bipartite graphs.
Proof. We make a reduction from 3-SAT, similar as in Theorem 20, see Figure 6.

For every variable Xi, there is a variable gadget consisting of a complete bipartite graph,
between vertices pi, ni on one side and vertices si, vi on the other side. Vertex pi corresponds
to the variable Xi and ni to its negation X̄i.

For every clause Cj there is a clause gadget in form of a bipartite graph between vertices
aj, bj, cj on one side and vertices c1j, c2j, c3j on the other side. Vertex ckj corresponds to the
k-th literal in Cj.

All edges inside these gadgets have uncertainty intervals of [0, 1]. In addition, there is a
single edge between two new vertices u, v. The construction is completed with additional
edges of trivial uncertainty interval 0 (same lower and upper bound), which are detailed
below. There is an edge from v to every vertex vi, and from u to every vertex cj . All vertices
ckj are connected to the corresponding literal vertex. Formally if the k-th literal in Cj is Xi,
then ckj is connected to pi. And if this literal is X̄i, then ckj is connected to ni.

We claim that the threshold of exclusion of edge uv is 1 if the formula is satisfiable and 0
if it is not.

Consider some edge weights w, and let M+ be a min cost perfect matching containing
edge uv and M− a min cost perfect matching not containing edge uv. Since u is matched
with v in M+, in every clause gadget, the vertex cj is matched with some vertex ckj, and
the vertices aj, bj are matched to the other two vertices. Similarly, all vertices inside the
variable gadgets are matched inside their gadget. These matching edges define a boolean
value assignment for the variables, in the sense that Xi = True if si is matched to pi, and
Xi = False if si is matched to ni. Also, it selects for every clause one of its literal, by the
vertex to which each cj is matched to. We say that M+ is satisfying, if it selects in every
clause a literal assigned to true.

The threshold of exclusion is the difference of the costs M−−M+, maximized over the edge
weights w. Without loss of generality we can assume that we = 0 for all edges in e ∈ M+,
and we = 1 for all other edges e ̸∈M+ and which are inside the gadgets. Remember, edges
that are not inside gadgets have weight 0; i.e., a matching lower and upper bound of zero.

We observe that M− has to match u to some cj and v to some vi. Also, these have to be
the only vertices of the type cj′ and vi′ which are matched outside of their gadgets. Since
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Figure 6. The graph obtained by the reduction from the 3-SAT formula
consisting of the clauses C1 = X1∨X2∨X3, C2 = X1∨X3∨X4, C3 = X1∨X2∨X3.
Edges in M \M ′ are represented by red lines, edges in M ′ \M by blue lines,
and edges in M ∩M ′ in purple lines. For convenience we replaced vertices of
the form ckj, ni, pi by their corresponding literal.

M− is min cost, by the choice of w, its matching has to coincide with M+ inside every clause
gadget but the j-th and inside every variable gadget but the i-th.

Combining all those observations shows that M− has zero cost if and only if in M+ one
clause selected a literal that it assigned to False. Say for example that M+ matches cj to a
vertex ckj corresponding to a literal Xi, and matches si to ni. Then M− can match aj, bj, si

as in M+ all at cost 0. However if M+ is satisfying, the cost of M− is 1. Indeed it can match
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aj, bj is in M+. Assume (ckj, pi) is matched in M−. The case (ckj, ni) is similar. Then si

must be matched to ni. However, since M+ is satisfying by assumption, the cost of this edge
is 1. This concludes the proof. □

Observation 24. We actually prove that it is NP-hard to distinguish whether the threshold
of exclusion is 1 or 0. Combining this with Lemma 11 we obtain that it is NP-hard to decide
whether a set is an admissible query. Furthermore, this gap can be made as large a constant
as we want by simply scaling the weights.

The NP-hardness of computing the threshold of inclusion can be shown with a similar
construction. Just replace the edge (u, v) by the path u− u′− v′− v, where edges (u, u′) and
(v′, v) have both lower and upper weight zero. Now every perfect matching with edge (u, v)
in the original graph corresponds to a perfect matching without edge (u′, v′) in the new graph
and vice-versa. Hence computing the threshold of inclusion of edge (u′, v′) is equivalent to
computing the threshold of exclusion of the edge (u, v) in the original graph.

7. Max weight matching in trees

We contrast the previous hardness result with a special matching problem for which the
thresholds can be computed efficiently.

Theorem 25. The thresholds of inclusion/exclusion can be computed in linear time for a
fixed edge e for the maximum weight matching problem on trees.

Proof. We only describe how to compute the threshold of inclusion, as computing the threshold
of exclusion follows the same approach.

Fix an edge e in tree. The edge separates the tree into say a left and a right subtree. By
Tu we denote the subtree rooted in some vertex u, where u is not necessarily an endpoint of
e. The tree Tu consists of all vertices v, such that the path from v to e contains vertex u.

The threshold of inclusion of edge e is the difference w(M−) − w(M+) minimized over
weight realizations w, with w(e) = 0. We can assume without loss of generality w(e′) = h(e′)
for all e′ ∈M+ \ {e} and w(e′) = ℓ(e′) for all edges e′ ̸∈M+.

For an arbitrary weight realization w, let M+ be a matching containing edge e and
maximizing total weight. Similarly let M− be a matching not containing edge e and
maximizing total weight. By breaking ties consistently between M+ and M− we obtain that
the symmetric difference M+∆M− consists of a single path P containing edge e. This path
P connects two vertices s, t where s is in the left subtree and t in the right subtree. By
neighboring edges of P we mean edges intersecting P at exactly one endpoint. The other
endpoint is called a neighboring vertex of P .

The vertices s and t determine in a unique manner the matchings M+ and M−. Here
is how: First the edges along the s − t path belong alternatively to M+ and to M−. The
alternation is defined with respect to the distance from the edge e in this path. Namely edges
e′ at odd distance to e belong to M+ and have weight h(e′), while edges at even distance to
e belong to M− and have weight ℓ(e′). Neighboring edges of the s− t path have low weight
and do not belong to M+ nor M−. Finally for every neighboring vertex u, we consider a
maximum weight matching Ou in Tu were edges in Ou have high weight and edges in Tu \Ou

have low weight. This sounds as an intricate definition, because the matching depends on
the weight and vice versa, but both can be computing by bottom up dynamic programming.
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Since M+ and M− coincide outside of the s− t path, the intersection of Tu with M+ is
exactly Ou, and so is the intersection of Tu with M−.

This observation leads to a simple polynomial time procedure for computing the threshold
of inclusion for e. Simply loop over all vertices s in the left subtree and over all vertices t
in the right subtree. For each s− t path compute the matchings M+ and M− as described
in the previous paragraph, and set the weights of all edges in M+ to their highest value
and the weights of all other edges to their lowest value. At this point we can check if M+

(respectively M−) is indeed a maximum weight matching under the condition that it contains
e (resp. does not contain e). In this case we call the s− t path a valid path. The minimum
difference w(M−)− w(M+) over all valid s− t paths is the threshold of inclusion of e.

However it is possible to compute the threshold in linear time using dynamical programming,
as it is often the case for problems defined on trees.

It is well known from matching theory, that matching M+ has maximum weight, if there
is no augmenting path with respect to M+. Such a path does not contain edge e, by the
requirement on e. Also such a path must intersect the s − t path by construction of M+

which is locally optimal outside of the s − t path. Hence we can verify the validity of the
s − t path independently on its portions in the left subtree and in the right subtree. The
same observation holds for M−. In that sense, an s− t path is valid of the portion from s to
e is valid and the portion from e to t is valid. These properties are independent. If they hold
we say that s and t are valid vertices. Now we describe how to enumerate in linear time all
valid vertices s in one of the subtrees.

For two vertices u, v, such that v lays on the path from u to e, we define Auv to be the
following alternating edge weight sum over the u− v path.

• If e′ is at even distance from e and at even distance from u, it counts with weight
−ℓ(e′).
• If e′ is at even distance from e and at odd distance from u, it counts with weight

+ℓ(e′).
• If e′ is at odd distance from e and at even distance from u, it counts with weight
−h(e′).
• If e′ is at odd distance from e and at odd distance from u, it counts with weight

+h(e′).

These quantities become handy when stating inequalities about paths alternating with respect
to M+ or M−. Note that if u, v are at odd distance we have Auv = Avu while if they are at
even distance we have Auv = −Avu.

First we focus on Ou, the maximum weight matching in the subtree rooted at vertex u. In
addition we define O−

u the weight of the maximum weight matching in this subtree, with the
restriction that u is unmatched. It could be that later in the whole tree u is matched, but
not inside the subtree.

At some moment we need to consider the tree Tu \ Tv for some direct descendant v of u.
We denote by O

−

u\v the maximum weight matching in Tu \ Tv, with the restriction that u is
unmatched. It is simply the sum of Ov′ over all direct descendants v′ of u but different from
v. These values can be computed in linear time using dynamic programming, in leaf to root
order of the tree. For example we have Ou = max{O−

u , maxv h(uv) + O−
v −Ov}.
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In addition we define Bu\v to be the maximum weight of an alternating u − v′ path in
Tu \Tv maximized over v′. Edges e′ have weight −h(e′) if they belong to the maximum weight
matching in Tu \ Tv and have weight +ℓ(e′) otherwise.

Before describing the actual algorithm, let’s better understand what it means that s is
valid. Consider the path P from s to e, and consider a path Q intersection P in a single
portion, namely between two vertices u and v. To fix the notation, assume that v is closer to
e than u. If Q is meant to be alternating with respect to M+ or M−, then u and v must be
at odd distance. Let v′ be the neighbor of v which is closes to u. Q is not an augmenting
path if the following condition hold. It depends on two cases.

• If u = s, we must have Bs + Asv + Bv\v′ ⩽ 0.
• If u ̸= s, let u′ the neighbor of u which is closes to s. Then we must have Bu\u′ +

Auv + Bv\v′ ⩽ 0.

M+

s s′ ev′ v

As′v

Ts

Ts\s′

Tv\v′

Bs\s′

Bv\v′ M−

M+ ∩M−

edge colors:

Figure 7. Technical aspects of verifying the validity of a path

While we are exploring in depth first manner the left subtree, we verify these conditions
along the way in the following manner. Let s be the current vertex of the tree exploration,
and s′ its ancestor.

If Bs′\s + Cs′ > 0 we abort the exploration of this edge (s′, s) as no path containing it is
valid. Otherwise we continue the tree exploration, but before mark s as being a valid vertex
in case if Bs + Cs > 0.

Let uu′ be the endpoints of e. Let v be a valid vertex which minimizes Avu and v′ be a valid
vertex which minimizes Av′u′ . The threshold of inclusion of e is precisely Avu + Av′u′ . □

8. Open Questions

We finish the paper by pointing out some open questions.
Further exploration of the non-adaptive explorable uncertain setting seems an interesting

direction. In particular, to better identify the boundary between polynomial time tractability
and NP-hardness of computing thresholds and finding minimum-cost admissible queries.
Interesting settings not covered in the paper are: Matching in planar graphs, and computing
the edit distance between two strings under uncertain edit costs. Another intriguing question
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is whether the tractability of the threshold of inclusion is related to the one of the threshold
of exclusion; in the sense that both can be solved in polynomial time or none.

Outside of the setting we study in the paper, it would be interesting to study models that
interpolate between being fully adaptive and no adaptivity at all; e.g., models with a fixed
number of rounds in which to perform the queries.
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[Dür+20] Christoph Dürr, Thomas Erlebach, Nicole Megow, and Julie Meißner. “An Adver-
sarial Model for Scheduling with Testing”. In: Algorithmica 82.12 (2020), pp. 3630–
3675. doi: 10.1007/s00453-020-00742-2.

[AE21] Susanne Albers and Alexander Eckl. “Explorable uncertainty in scheduling with
non-uniform testing times”. In: Approximation and Online Algorithms: 18th Inter-
national Workshop, WAOA 2020, Virtual Event, September 9–10, 2020, Revised
Selected Papers 18. Springer. 2021, pp. 127–142. doi: 10.1007/978- 3- 030-
80879-2_9.
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