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Abstract. The aim of this expository paper is twofold. We start with a con-

cise overview of the theory of invariant slow manifolds for fast-slow dynamical

systems starting with the work by Tikhonov and Fenichel to the most recent
works on infinite-dimensional fast-slow systems. The main part focuses on a

class of linear fast-reaction PDE, which are particular forms of fast-reaction
systems. The first result shows the convergence of solutions of the linear sys-

tem to the limit system as the time-scale parameter ε goes to zero. Moreover,

from the explicit solutions the slow manifold is constructed and the conver-
gence to the critical manifold is proven. The subsequent result, then, states a

generalized version of the Fenichel-Tikhonov theorem for linear fast-reaction

systems.

1. Introduction

In all natural sciences, one frequently observes dynamical systems that exhibit
a multiple timescale behaviour. The fundamental reason for this is that natural
systems tend to be influenced by many different processes, and the more processes
are taken into account, the more likely it is to obtain systems that evolve on differ-
ent timescales. The involved timescales can range, depending on the application,
from nanoseconds, for example, due to fluctuations on atomic levels to years due to,
for example, seasonal variability of the earth. The modeling of such systems often
results in a coupled system of differential equations with many variables. These
system can be computationally challenging, especially if the system is resolved on
the fastest timescale.

One building block to model these multi-scale systems is to consider the case
two timescales, so-called fast-slow systems. These differential equations can be
written in their standard form abstractly as

ε∂tu
ε = F (uε, vε, ε),

∂tv
ε = G(uε, vε, ε),

(1.1)
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where uε = uε(t) ∈ X is the fast variable and vε = vε(t) ∈ Y the slow variable.
The variables depend on time t belonging to some interval I with 0 ∈ I. The state
spaces X and Y are often assumed to be Banach spaces, while the system (1.1) is
an ODE if state spaces are finite dimensional, while PDEs are the most common
examples if X and/or Y are infinite dimensional. With F,G we denote general
maps, that may contain (differential) operators, which determine the evolution of
the variables. The time scale parameter ε > 0 formally determines the quantitative
amount of time scale separation between the two variables. Furthermore, suitable
initial conditions can be added to the fast-slow system. We write the variables
uε, vε with a superscript ε to indicate the dependence of solutions on ε.

Since in many applications ε is assumed to be very small, it is natural to
consider the limit ε → 0 of system (1.1) and try to reduce the system at hand. We
obtain in this singular limit the system

0 = F (u0, v0, 0),

∂tv
0 = G(u0, v0, 0).

(1.2)

This equation is a differential-algebraic differential equation, which is defined on
the critical set

C0 := {(u0, v0) ∈ X × Y : F (u0, v0, 0) = 0}.

This limit system ignores the fast parts of the original system and only focuses on
the dynamics of the slow variable and via this complexity reduction is therefore
in general easier to study. For ODEs, the theory is quite well-understood and we
briefly review it below. Yet, one major problem with this procedure for PDEs is
that most differential operators that are defined on infinite dimensional spaces are
not bounded, so taking the limit ε → 0 on the right-hand side of (1.1) may simply
not be justified. The simplest example is the Laplace operator that is often used to
model systems involving diffusion processes. Therefore, in the case of PDEs one has
to be careful with obtaining the limit system, since taking the limit can potentially
be much more singular than the ODE analog.

Next, we present a brief overview of the literature on fast-slow dynamical sys-
tems with a focus on the results in infinite dimensions. The theory for bounded
operators, which leads to fast-slow ODEs dates back to the work by Tikhonov [20]
and Fenichel [11, 10] and is known in the literature as geometric singular pertur-
bation theory (GSPT). Suppose S0 ⊆ C0 is a compact and normally hyperbolic
submanifold, i.e., it is a sufficiently smooth manifold and the eigenvalues of the
operator A in the fast direction have nonzero real values for all p ∈ S0. Then the so
called Fenichel-Tikhonov theory guarantees the existence of locally invariant slow
manifolds Sε. For more details and applications of this theory we refer to the books
by Jones [17] and Kuehn [18]. Yet, for infinite-dimensional systems new methods
are required since applying the classical theory to PDEs does not hold and leads to
problems as shown in [15].

One idea to overcome these problems is to adapt the theory of inertial manifolds
[5, 12]. The main goal of this theory is to construct a lower/finite-dimensional
attracting invariant manifold. However, this approach requires a global dissipative
structure of the PDE and compact embeddings to construct these lower-dimensional
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invariant manifolds. In addition, the inertial manifold theory relies on a spectral-
gap type condition that allows the splitting of the underlying space into a finite-
dimensional subspace and its complement.

The next approach which is more along the lines of the classical fast-slow theory
for ODEs is due to Bates et al. [2, 4, 3]. Here, for the case of semiflows the authors
prove a local existence and persistence result of the so called slow manifold. In
particular, their theory includes the case of partially dissipative systems, where the
dynamics for the fast variable u can be a PDE while the slow variable dynamics
is an ODE. However, for fast-slow systems where both components are PDEs, this
idea cannot be applied as was shown in [15]. A different approach focusing on the
construction of a slow manifold for differential inclusions can be found in [13, 1].

In recent years progress was made for several classes of fast-slow PDEs. In
[15] a general theory is developed for the case of F (u, v, ε) = Au + f(u, v) and
G(u, v, ε) = Bu+ g(u, v) with A,B being closed linear (differential) operators and
f, g nonlinear functions. By introducing a modified notion of normal hyperbolic-
ity the authors can prove, with few assumptions, the convergence of solutions of
the system (1.1) to solutions of (1.2) in a suitable Banach space. Under slightly
more stringent assumptions, one of which is a spectral-gap type condition for the
operator B, the authors can also show the existence and persistence of slow man-
ifolds. The assumption of normal hyperbolicity is key as was shown in [8] and
some applications of the general theory can be found in [6, 15, 7]. For the class of
fast-slow PDEs of the form F (u, v, ε) = εAu+ f(u, v) and G(u, v, ε) = Bu+ g(u, v)
the generalization of the classical results by Tikhonov and Fenichel was proven in
[19]. In this work notion of normal hyperbolicity is adapted to account for the fact
that the fast dynamics in this case are driven by the nonlinearity f . But again, a
spectral-gap type condition is required to prove the existence and persistence of a
slow invariant manifold.
In dynamical systems theory, understanding nonlinear systems is generally hard.
However, the linear case is often easier to understand and it is usually a useful first
step to gain deeper insights into the behavior of a system. In this work we study the
linear case of the fast-slow systems analyzed in [19], so called fast-reaction systems.
Here we want to provide an explicit example, where all objects can be identified
via formulas in contrast to the far more abstract setting in [19], which turns out to
be quite instructive to learn about the problems arising in the geometric analysis
of multiscale fast-reaction systems. These fast-reaction equations are an important
subclass of fast-slow systems and occur in combination with diffusion operators for
example in biology, chemistry or population dynamics. The mathematical study of
fast-reaction systems dates back at least to the work by Hilhorst et al. [14]. Over
the last years there have been many results concerning the existence and uniqueness
of solutions and the convergence to a limit system from a global functional-analytic
perspective. A review on this topic can be found in [16].

Now, for the linear case of an infinite dimensional fast-reaction system we
assume f, g to be linear functions. Then, the aim of this work is to construct
explicit solutions via Fourier methods and to show the convergence of solutions
towards solutions of the limit system as the time scale parameter ε goes to zero. To
do this we use typical Gronwall inequality estimates. Moreover, the slow manifold
is explicitly constructed, without requiring a spectral gap condition on the operator,
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and it converges to the critical manifold on the space of Fourier coefficients. This
shows clearly that the nonlinear terms generate the difficulty regarding the mixing
of different scales in the problem, which one would also conjecture intuitively from
a physical perspective.

2. Analysis of a linear fast-reaction system

In the following, we present in detail the functional setting of the linear fast-
reaction system at hand. As state spaces we choose X := Y := L2(Rn) and for
the linear operators we set A := ∆ − µI : H2(Rn) → L2(Rn) and B := ∆ − νI :
H2(Rn) → L2(Rn), where I denotes the identity on the Sobolev space H2(Rn) and
µ, ν ∈ R are additional parameters. As initial conditions we take u0 and v0, which
are assumed to be in H2(Rn). Hence, we obtain a fully linear fast-reaction system
the form

ε∂tu
ε(t) = ε(∆− µI)uε(t) + αuε(t) + βvε(t),

∂tv
ε(t) = (∆− νI)vε(t) + γuε(t) + δvε(t),

uε(0) = u0 ∈ H2(Rn), vε(0) = v0 ∈ H2(Rn),

(2.1)

for t ≥ 0, where the non zero parameters β, γ, δ ∈ R\{0} and α < 0 characterise
the in this case linear functions f and g. The associated limit system for ε → 0 is
a differential-algebraic equation of the form

0 = αu0(t) + βv0(t),

∂tv
0(t) = (∆− νI)v0(t) + γu0(t) + δv0(t),

u0(0) = −α−1βv0(0) ∈ H2(Rn), v0(0) = v0 ∈ H2(Rn)

(2.2)

defined on a linear critical set

S0 := {(u, v) ∈ H2(Rn)×H2(Rn) : αu+ βv = 0} ⊂ L2(Rn)× L2(Rn).

2.1. Explicit solutions of the linear system. Since both systems (2.1) and
(2.2) are linear in uε and vε, the existence and uniqueness of solutions follows in a
straightforward way and we refer to [9] for more details on the existence theory for
linear PDEs. However, using Fourier analysis we can easily write down the explicit
solutions of the systems. We start with the simpler system, the limit system.

Lemma 2.1. The explicit solution to the limit system (2.2) has the form(
u0(t)
v0(t)

)
=

(
−α−1βv0(t)
eκtKn(t) ∗ v0

)
,

where κ := −ν − α−1βγ + δ. Here, Kn(t) := (4πt)−
n
2 e

−|k|2
4t denotes the n-

dimensional heat kernel, where ∗ is the usual convolution of measurable functions.

Proof. Since α ̸= 0 the first equation of (2.2) gives u0(t) = −α−1βv0(t). The
Fourier transform to some integrable function w = w(t, x) is defined as

(Fw)(t) :=

∫
Rn

w(t, x)e−2πikxdx.

Applying this to the equation for v0 yields

∂t(Fv0)(t) = (−4π2|k|2 − ν − α−1βγ + δ)Fv0(t)



INFINITE DIMENSIONAL SLOW MANIFOLDS FOR A LINEAR FAST-REACTION SYSTEM 5

for all k ∈ Rn, since F(∆v0) = −4π2|k|2F(v0). So, we can infer that

(Fv0)(t) = e(−4π2|k|2+κ)t(Fv0),

where κ := −ν−α−1βγ+δ and which leads upon an inverse Fourier transformation
to the claimed form. Recall that the space H2(Rn) can be defined via Fourier
transforms

H2(Rn) := {f ∈ L2(Rn) : (1 + |k|2)Ff ∈ L2(Rn)}.
Hence applying Plancherel’s identity in the upcoming estimates it is sufficient to
show that ∥(1+ |k|2)Ff∥L2(Rn) remains bounded. Then, from the regularity of the

heat kernel and the initial data v0 it follows that v0(t), u0(t) ∈ H2(Rn).
□

Lemma 2.2. For small enough ε > 0 the explicit solution to the complete system
(2.1) is given by(

uε(t)
vε(t)

)
=

(
[ρε1L

ε
+(t) + ρε2L

ε
−(t)] ∗ u0 + [ρε3L

ε
+(t) + ρε4L

ε
−(t)] ∗ v0

[ρε5L
ε
+(t) + ρε6L

ε
−(t)] ∗ u0 + [ρε7L

ε
+(t) + ρε8L

ε
−(t)] ∗ v0

)
,

with
Lε
±(t) := e(ε

−1α−µ+δ−ν±Ωε) t
2Kn(t)

and where
Ωε :=

√
(δ − ν − ε−1α+ µ)2 + 4ε−1βγ ∈ R\{0}.

The coefficients ρεi ∈ R for i ∈ {1, ..., 8} depend only on the constants α, β, γ, δ, µ, ν
and the parameter ε.

Proof. First, applying the Fourier transform to the linear system (2.1) yields
for t > 0

ε∂t(Fuε)(t) = (−ε4π2|k|2 − µε+ α)(Fuε)(t) + β(Fvε)(t),

∂t(Fvε)(t) = γ(Fuε)(t) + (δ − 4π2|k|2 − ν)(Fvε)(t)

(Fuε)(0) = (Fu0) ∈ H2(Rn), (Fvε)(0) = (Fv0) ∈ H2(Rn)

(2.3)

for all k ∈ Rn. To simplify the notation write the above system as a two-dimensional
ODE for each Fourier coefficient k, where we set

wε
k(t) :=

(
(Fuε)(t)
(Fvε)(t)

)
∈ R2.

Then, multiplying the first equation of system (2.3) by ε−1, we can reformulate the
system as

∂tw
ε
k(t) = Mε

kw
ε
k(t)

where

Mε
k :=

(
ε−1α− µ− 4π2|k|2 ε−1β

γ δ − ν − 4π2|k|2
)

∈ R2×2.

The eigenvalues of Mε
k are given by

λε
±(k) :=

1

2

(
ε−1α− µ+ δ − ν − 8π2|k|2 ∓ Ωε

)
∈ R.

with
Ωε :=

√
(δ − ν − ε−1α+ µ)2 + 4ε−1βγ.

Regardless of the values of the parameters, one can always ensure that

(δ − ν − ε−1α+ µ)2 > −4ε−1βγ
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for all sufficiently small ε. Hence, we can assume that ε is small enough such that

Ωε ∈ R+ and λε
± ∈ R. Now, if |k|2 = ε−1α−µ+δ−ν∓Ωε

8π2 =: ρε± we have λε
±(k) = 0.

But since the sets

Q± := {k ∈ Rn : |k|2 = ρε∓}
are (n − 1)-dimensional spheres of radius

√
ρε± if ρεi > 0, Q± are null sets with

respect to the Lebesgue measure in Rn. So in the following we can assume that we
have non-zero eigenvalues for almost every k ∈ R.
Therefore, we can derive a formula for the solution of system (2.3) using matrix
diagonalization of Mε

k , i.e. we can write for almost every k

Mε
k = SεJε

k(S
ε)−1

with

Sε :=
1

2γ

(
ε−1α− µ− δ + ν − Ωε ε−1α− µ− δ + ν +Ωε

2γ 2γ

)
∈ R2×2

and

Jε
k :=

(
λε
−(k) 0
0 λε

+(k)

)
∈ R2×2.

Using the diagonalization the solution of system (2.3) can be written as(
(Fuε)(t)
(Fvε)(t)

)
= SεeJ

ε
kt(Sε)−1

(
(Fu0)
(Fv0)

)
.

After performing the matrix multiplications we get

(Fuε)(t) =
1

2Ωε

(
(ε−1α− µ− δ + ν +Ωε)eλ

ε
−(k)t

− (ε−1α− µ− δ + ν − Ωε)eλ
ε
+(k)t

)
(Fu0)

−ε−1β

Ωε

(
eλ

ε
−(k)t − eλ

ε
+(k)t

)
(Fv0)

and

(Fvε)(t) =
γ

Ωε

(
eλ

ε
−(k)t − eλ

ε
+(k)t

)
(Fu0)

+
1

2Ωε

(
−(ε−1α− µ− δ + ν +Ωε)eλ

ε
−(k)t

− (ε−1α− µ− δ + ν − Ωε)eλ
ε
+(k)t

)
(Fv0).

Note that except for the initial conditions Fu0 and Fv0, the only term in the above
expressions that depends on k is the exponential term eλ

ε
±(k)t. Thus, all that re-

mains is to perform the inverse Fourier transform of this function, which evaluates
to be Lε

±(t). By the linearity of the Fourier transform, we obtain the claimed so-
lution for system (2.1). Since the Fourier transform involves integration over Rn,
we can neglect that the solution formula for the Fourier transform is valid only for
almost every k ∈ Rn.
Moreover, we observe that (1 + |k|2)ρεi eλ

ε
±(t)F(u0) ∈ L2(Rn) for t > 0 and, respec-

tively, the same holds for v0. Hence the solution satisfies uε(t), vε(t) ∈ H2(Rn). □
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Remark 2.3. We note that all coefficients ρεi introduced in the previous proof
are well defined in the limit as ε → 0. Indeed, we have limε→0(Ω

ε)−1 = 0
limε→0 ε

−1(Ωε)−1 = α−1, which yields the desired bounds for the coefficients.

2.2. Convergence of solutions. As in [15] and [19] in order to solve the
limit system (2.2) we have introduced a function

h0 : H2(Rn) → H2(Rn), y 7→ h0(y)

such that the critical manifold S0 can be written as

S0 = {(h0(y), y) : y ∈ H2(Rn)}.

In the case of system (2.2) the function h0 is linear and given by h0(v0) := α−1βv0 =
u0.
In addition, we observe that the two systems are autonomous and hence we can
write the solutions (uε, vε) and (u0, v0) as semi-flows. That is, there exist continuous
mappings

Tε : [0, T ]×H2(Rn)×H2(Rn) → H2(Rn)×H2(Rn) and T0 : [0, T ]× S0 → S0

for any T > 0 such that the solutions can be written as(
uε(t)
vε(t)

)
= Tε(t)

(
u0

v0

)
and

(
u0(t)
v0(t)

)
= T0(t)

(
h0(v0)
v0

)
.

The following theorem provides a convergence result of the semi-flows of the
linear system (2.1) towards solutions of the limit system (2.2) as ε → 0.

Theorem 2.4. Let ε0 > 0 be small enough such that ε−1
0 α− µ < 0 and T > 0.

Then, for all ε ∈ (0, ε0] there exist a positive increasing function Cν,κ(t) depending
on the parameters ν and κ := −ν − α−1βγ + δ such that∥∥∥∥Tε(t)

(
u0

v0

)
− T0(t)

(
h0(v0)
v0

)∥∥∥∥
H2(Rn)×H2(Rn)

≤

≤ εCν,κ(t)

(
∥u0 − h0(v0)∥H2(Rn) + ∥v0∥H2(Rn)

)
,

for all t ∈ (0, T ). In the case ν > 0 and κ < 0 we can set Cν,κ(t) = C > 0.

Proof of Theorem 2.4. The proof of Theorem 2.4 is split into several steps.
The overall idea is to introduce two auxiliary systems that in some sense interpolate
between the equation of the fast variable and its algebraic limit. Then, by using a
variation of constants method in combination with the Fourier transform we obtain
estimates for the Fourier coefficients and thus for the solutions themselves.

In the first step we introduce the two approximate systems in the fast compo-
nent uε. That is, we have uε,0 as the solution to

ε∂tu
ε,0(t) = ε(∆− µI)uε,0(t) + αuε,0(t) + βv0(t) + ε(∂t −∆+ µI)h0(v0(t))(2.4)

and ũε solving

ε∂tũ
ε(t) = ε(∆− µI)ũε(t) + αũε(t) + βv0(t),(2.5)

where in both cases the equation in the slow variable v is given by

∂tv
0(t) = (∆− νI)v0(t)− γβα−1v0(t) + δv0(t)(2.6)
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and the initial data satisfy

uε,0(0) = u0, ũε(0) = u0, v0(0) = v0.

The motivation behind introducing this approximate system uε,0 is that the solution
gets close to the solution of the limit system (2.2). A formal way to see this is to
consider the different powers of ε in the equation. In O(1) we have

αuε,0(t) + βv0(t) = 0

and in O(ε) we get

∂t(u
ε,0 − h0(v0(t))) = (∆− µI)(uε,0 − h0(v0(t)))

which can be viewed as αuε,0+βv0 = 0, since for small ε it holds that uε,0 ≈ h0(v0).
Thus, in both orders of ε we obtain an equation corresponding to an equation
characterizing the critical manifold of system (2.2).

The well-posedness of the auxiliary systems follows from using the linearity of
the systems and by noting that the equation in v is independent of the fast variable
u. Therefore, one can first solve the v-equation and then the equation in uε,0 and
ũε respectively.

The next step of the proof is to estimate the fast variable. By applying a
triangle inequality we have

∥uε − h0(v0)∥H2(Rn)≤ ∥uε − ũε∥H2(Rn)+ ∥ũε − uε,0∥H2(Rn)+ ∥uε,0 − h0(v0)∥H2(Rn).

In the following proposition we give further estimates for each term.

Proposition 2.5. Let α < 0 and assume that ε > 0 is small enough such
that ε−1α < µ. Then if uε is the solution of equation (2.1) and ũε the solution to
equation (2.5) it holds for t ≥ 0

∥uε(t)− ũε(t)∥H2(Rn) ≤ C sup
s∈[0,t]

∥vε(s)− v0(s)∥H2(Rn),

for some constant C > 0.

Proof. Applying the Fourier transform to the first equation in (2.1) and mul-
tiplying by ε−1 gives

∂t(Fuε)(t) = (−4π2|k|2 − µ+ ε−1α)(Fuε)(t) + ε−1β(Fvε)(t)

for k ∈ Rn. By variation of constants we have

(Fuε)(t) = e(−4π2|k|2−µ+ε−1α)t(Fu0) + ε−1β

∫ t

0

e(−4π2|k|2−µ+ε−1α)(t−s)(Fvε)(s)ds.

On the other hand,

(F ũε)(t) = e(−4π2|k|2−µ+ε−1α)t(Fu0) + ε−1β

∫ t

0

e(−4π2|k|2−µ+ε−1α)(t−s)(Fv0)(s)ds.
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So by Plancherel’s theorem and a generalized Hölder’s inequality we obtain

∥uε(t)− ũε(t)∥H2(Rn) = ∥(1 + |k|2)
(
(Fuε)(t)− (F ũε)(t)

)
∥L2(Rn)

≤ |β|ε−1

∫ t

0

(
∥e(−4π2|k|2−µ+ε−1α)(t−s)∥L∞(Rn)

× ∥(1 + |k|2)
(
(Fvε)(s)− (Fv0)(s)

)
∥L2(Rn)

)
ds

≤ |β| sup
s∈[0,t]

∥(1 + |k|2)
(
(Fvε)(s)− (Fv0)(s)

)
∥L2(Rn)

× ε−1

∫ t

0

e(−µ+ε−1α)(t−s)ds

= |β| sup
s∈[0,t]

∥(1 + |k|2)
(
(Fvε)(s)− (Fv0)(s)

)
∥L2(Rn)

× 1− e(−µ+ε−1α)t

µ− ε−1α

≤ |β|
µ− ε−1α

sup
s∈[0,t]

∥vε(s)− v0(s)∥H2(Rn)

≤ C sup
s∈[0,t]

∥vε(s)− v0(s)∥H2(Rn).

□

Proposition 2.6. Let α < 0 and assume that ε > 0 is small enough such that
−µ+ ε−1α < κ := −ν − βα−1γ + δ. Then for t ≥ 0 there is a C > 0 such that

∥uε,0(t)− ũε(t)∥H2(Rn) ≤ εCeκt∥v0∥H2(Rn).

Proof. Since by equation (2.6) (∂t−∆)v0(t) = (−ν−βα−1γ+δ)v0(t) = κv0(t),
equation (2.4) can be written as

ε∂tu
ε,0(t) = ε(∆− µI)uε,0(t) + αuε,0(t) +

(
β − εβα−1(µ+ κ)

)
v0(t).

Applying the Fourier transform and multiplying with ε−1 gives

∂t(Fuε,0)(t) = (−4π2|k|2 − µ+ ε−1α)(Fuε,0)(t)

+
(
ε−1β − βα−1(µ+ κ)

)
e(−4π2|k|2+κ)t(Fv0)

for all k ∈ Rn. By variation of constants we get

(Fuε,0)(t) = e(−4π2|k|2−µ+ε−1α)t(Fu0)

+
(
βε−1 − α−1β(µ+ κ)

) ∫ t

0

e(−4π2|k|2−µ+ε−1α)(t−s)e(−4π2|k|2+κ)sds(Fv0).

By performing the integration in the latter expression we obtain∫ t

0

e(−4π2|k|2−µ+ε−1α)(t−s)e(−4π2|k|2+κ)sds = e(−4π2|k|2−µ+ε−1α)t

∫ t

0

e(−ε−1α+µ+κ)sds

=
e(−4π2|k|2−µ+ε−1α)t

−ε−1α+ µ+ κ

(
e(−ε−1α+µ+κ)t − 1

)
=

e−4π2|k|2t

−ε−1α+ µ+ κ

(
eκt − e(−µ+ε−1α)t

)
.
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Therefore, after an inverse Fourier transformation we obtain

uε,0(t)= e(−µ+ε−1α)tKn(t)∗u0 +
β − εα−1β(µ+ κ)

−α+ εµ+ εκ

(
eκt − e(−µ+ε−1α)t

)
Kn(t)∗v0.

By similar calculations we can derive from equation (2.5) that

ũε(t) = e(−µ+ε−1α)tKn(t) ∗ u0 +
β

−α+ εµ+ εκ

(
eκt − e(−µ+ε−1α)t

)
Kn(t) ∗ v0.

Hence, using that we have −µ+ ε−1α < κ yields

∥uε,0(t)− ũε(t)∥H2(Rn) =
ε| − α−1β(µ+ κ)|
| − α+ εµ+ εκ|

∣∣∣eκt − e(−µ+ε−1α)t
∣∣∣ ∥v0∥H2(Rn)

≤ C
ε| − α−1β(µ+ κ)|
| − α+ εµ+ εκ|

eκt∥v0∥H2(Rn)

≤ εCeκt∥v0∥H2(Rn).

for some positive constant C. □

Proposition 2.7. Let ε > 0 be small enough such that −µ+ ε−1α < 0 . Then
there exists a constant C > 0 such that

∥uε,0(t)− h0(v0(t))∥H2(Rn) ≤ Ce(−µ+ε−1α)t∥u0 − h0(v0)∥H2(Rn).

Proof. As in the previous proof we apply the variation of constant method
along with the Fourier transform. Hence, we rewrite the solution uε,0 as

uε,0(t) = e(−µ+ε−1α)tKn(t) ∗ u0 − α−1β
(
eκt − e(−µ+ε−1α)t

)
Kn(t) ∗ v0

and obtain

∥uε,0(t)− h0(v0(t))∥H2(Rn) =

= ∥e(−µ+ε−1α)t(1 + |k|2)Kn(t)∗u0 − α−1β
(
eκt − e(−µ+ε−1α)t

)
(1 + |k|2)Kn(t)∗v0

+ α−1βeκt(1 + |k|2)Kn(t) ∗ v0∥L2(Rn)

= ∥e(−µ+ε−1α)t(1 + |k|2)Kn(t) ∗
[
u0 + α−1βv0

]
∥L2(Rn)

≤ Ce(−µ+ε−1α)t∥u0 − h0(v0)∥H2(Rn).

□

Combining the three estimates from the previous propositions with ε small
enough to fulfil the required conditions and α < 0 yields for a C > 0

∥uε(t)− h0(v0(t))∥H2(Rn) ≤ C sup
s∈[0,t]

∥vε(s)− v0(s)∥H2(Rn) + εCeκt∥v0∥H2(Rn)

+ Ce(−µ+ε−1α)t∥u0 − h0(v0)∥H2(Rn).

(2.7)

The next step in the proof is to estimate ∥vε(t) − v0(t)∥H2(Rn). By variations
of constants we obtain

(Fvε)(t) = e(−4π2|k|2−ν)t(Fv0) +

∫ t

0

e(−4π2|k|2−ν)(t−s)(γ(Fuε)(s) + δ(Fvε)(s))ds
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and

(Fv0)(t) = e(−4π2|k|2−ν)t(Fv0) +

∫ t

0

e(−4π2|k|2−ν)(t−s)(δ − γα−1β)(Fv0)(s)ds.

Hence,

∥vε(t)− v0(t)∥H2(Rn) ≤
∫ t

0

(
∥e(−4π2|k|2−ν)(t−s)∥L∞(Rn)|δ|∥vε(s)− v0(s)∥H2(Rn))

+ ∥e(−4π2|k|2−ν)(t−s)∥L∞(Rn)(|γ|∥uε(s)− h0(v0(s))∥H2(Rn)

)
ds.

Inserting the estimate for the fast variable (2.7) yields

∥vε(t)− v0(t)∥H2(Rn) ≤

≤
∫ t

0

e−ν(t−s)

(
Ce(−µ+ε−1α)s∥u0 − h0(v0)∥H2(Rn) + εCeκs∥v0∥H2(Rn)

+ |δ|∥vε(s)− v0(s)∥H2(Rn) + C sup
r∈[0,s]

∥vε(r)− v0(r)∥H2(Rn)

)
ds.

Since the right-hand side of the inequality is increasing in time, we obtain

sup
s∈[0,t]

∥vε(s)− v0(s)∥H2(Rn)

≤ C

∫ t

0

e−ν(t−s)
(
e(−µ+ε−1α)s∥u0 − h0(v0)∥H2(Rn) + εeκs∥v0∥H2(Rn)

)
ds

+ C

∫ t

0

e−ν(t−s) sup
r∈[0,s]

∥vε(r)− v0(r)∥H2(Rn)ds.

This expression can be further simplified to

sup
s∈[0,t]

∥vε(s)− v0(s)∥H2(Rn) ≤

≤ Ce−νt

(
∥u0 − h0(v0)∥H2(Rn)

e(ε
−1α−µ+ν)t − 1

ε−1α− µ+ ν
+ ε∥v0∥H2(Rn)

e(−α−1βγ+δ)t − 1

−α−1βγ + δ

)
+ Ce−νt

∫ t

0

eνs sup
r∈[0,s]

∥vε(r)− v0(r)∥H2(Rn)ds.

This estimate is of the form

z(t) ≤ A(t) +

∫ t

0

B(s)z(s)ds.

Hence, applying Gronwall’s inequality yields

z(t) ≤ A(t) +

∫ t

0

A(s)B(s) exp

(∫ t

s

B(r)dr

)
ds.

We observe that for 0 ≤ s ≤ t

exp

(
C

∫ t

s

e−ν(t−r)dr

)
= expCν−1

(
1− e−ν(t−s)

)
≤ expCν−1

(
1− e−νt

)
≤ Cν(t),
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where Cν(t) = Cν ≥ 0 is a constant if ν > 0 and otherwise Cν(t) is a positive
increasing function. Therefore, we can estimate∫ t

0

A(s)B(s) exp

(∫ t

s

B(r)dr

)
ds ≤

≤ Cν(t)

∫ t

0

∥u0 − h0(v0)∥H2(Rn)
e(ε

−1α−µ)s − e−νs

ε−1α− µ+ ν
ds

+ Cν(t)

∫ t

0

e−νs

(
ε∥v0∥H2(Rn)

e(−α−1βγ+δ)s − 1

−α−1βγ + δ

)
ds

≤ I1 + I2.

Evaluating each integral yields

I1 ≤ εCν(t)

|α− εµ+ εν|
∥u0 − h0(v0)∥H2(Rn)

(
1− e(ε

−1α−µ)t

µ− ε−1α
+

e−νt − 1

ν

)
and

I2 ≤ εCν(t)

| − α−1βγ + δ|
∥v0∥H2(Rn)

(
eκt − 1

κ
+

e−νt − 1

ν

)
.

Hence we obtain

sup
s∈[0,t]

∥vε(s)− v0(s)∥H2(Rn) ≤

≤ εCν(t)∥u0 − h0(v0)∥H2(Rn)

(
e(ε

−1α−µ+ν)t − e−νt

α− εµ+ εν
+

1− e(ε
−1α−µ)t

µ− ε−1α
+

e−νt − 1

ν

)
+ εCν(t)∥v0∥H2(Rn)

(
eκt − e−νt

−α−1βγ + δ
+

eκt − 1

κ
+

e−νt − 1

ν

)
.

Again depending on the sign of ν and κ we can write this estimate as

sup
s∈[0,t]

∥vε(s)− v0(s)∥H2(Rn) ≤ εCν,κ(t)
(
∥u0 − h0(v0)∥H2(Rn) + ∥v0∥H2(Rn)

)
,

where Cν,κ(t) is a positive increasing function. In the case that nu > 0 and κ < 0
we have Cν,κ(t) = C. Moreover, we observe that the right hand side is increasing
in time and thus

∥vε(t)− v0(t)∥H2(Rn) ≤ εCν,κ(t)
(
∥u0 − h0(v0)∥H2(Rn) + ∥v0∥H2(Rn)

)
.

Plugging this into the estimate for the fast variable (2.7) yields

∥uε(t)− h0(v0(t))∥H2(Rn) ≤

≤ εCν,κ

(
∥u0 − h0(v0)∥H2(Rn) + ∥v0∥H2(Rn)

)
+ e(ε

−1α−µ)t∥u0 − h0(v0)∥H2(Rn).

The final step in the proof is to combine the two estimates, resulting in∥∥∥∥Tε(t)

(
u0

v0

)
− T0(t)

(
h0(v0)
v0

)∥∥∥∥
H2(Rn)×H2(Rn)

≤

≤ εCν,κ

((
1 + ε−1e(ε

−1α−µ)t
)
∥u0 − h0(v0)∥H2(Rn) + ∥v0∥H2(Rn)

)
,

for t > 0. This completes the proof of Theorem 2.4.
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3. Dynamics of a linear fast-reaction system

As mentioned in the introduction finite dimensional fast-slow systems tend to
have, under certain hyperbolicity assumptions, so called slow manifolds. These slow
manifolds are a family Sε of locally invariant manifolds that converge to the critical
manifold as ε → 0 with respect to the Hausdorff-distance, while also preserving
the regularity. Moreover, the flow on those manifolds converges to the flow of the
limit system as ε → 0. This means that the existence of slow manifolds imply that
the limit system is a reasonable good approximation of the whole system near the
critical manifold.
It is therefore desirable to also have slow manifolds in the case of infinite dimensional
systems. However, one should be reminded that infinite dimensional manifolds are
much more difficult to handle.

In this section we show that slow manifolds can be obtained for the linear
fast-reaction system (2.1) and provide an explicit formula. This means that the re-
sults from finite dimensional fast-slow systems generalize to the infinite dimensional
linear fast-reaction systems.

The first step of adapting the Fenichel-Tikhonov theory to this linear fast-
reaction system is to construct the invariant slow manifold of the system. To
bridge the gap between the finite-dimensional theory and its infinite-dimensional
extension, we apply the Fourier transform to the linear system (2.1) and construct
the slow manifolds for each Fourier coefficient k ∈ R. Then, the following lemma
holds.

Lemma 3.1. Let α < 0. Then, for all ε > 0 small enough satisfying ε−1α−µ <
0 the slow manifolds of system (2.3) are given by

(3.1) CF
ε := {(x, y) ∈ R2 : (ε(δ − ν + µ)− α− εΩε)x− 2βy = 0},

where Ωε :=
√
(δ − ν − ε−1α+ µ)2 + 4ε−1βγ ∈ R.

Proof. Recall that after applying a Fourier transform to system (2.1) we can
write the system as

∂tw
ε
k(t) = Mε

kw
ε
k(t),(3.2)

where

Mε
k :=

(
ε−1α− µ− 4π2|k|2 ε−1β

γ δ − ν − 4π2|k|2
)

∈ R2×2.

The existence of slow manifolds follows directly from the theory for fast-slow ODEs,
since in this case we have that the normal hyperbolicity condition is fulfilled since
ε−1α − µ < 0. Moreover, we can explicitly construct the slow manifolds by com-
puting the eigenspaces corresponding to the linear ODE system. Since system (3.2)
is linear and finite-dimensional, the only locally invariant manifolds are submani-
folds of the two eigenspaces Eε

+ and Eε
− of Mε

k . As we have seen in the proof of
Lemma 2.2, for ε small enough there exist two non identical eigenspaces of Mε

k for
almost every k. One possible representation of basis vectors wε

+ and wε
− such that

Eε
+ = span{wε

+} and Eε
− = span{wε

−} is given by

wε
± =

(
2ε−1β

δ − ν − ε−1α+ µ± Ωε

)
,
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where Ωε :=
√
(δ − ν − ε−1α+ µ)2 + 4ε−1βγ. We recall that the corresponding

eigenvalues are given by

λε
±(k) :=

1

2

(
ε−1α− µ+ δ − ν − 8π2|k|2 ∓ Ωε

)
∈ R.

From this we deduce that the attracting invariant slow manifold is given by wε
−. □

Since the eigenvectors completely determine the behaviour of system (3.2) we
desire to compute limε→0 w

ε
±. In order for the eigenspaces to maintain a finite

basis, even in the limit as ε → 0 we scale wε
± with ε. Now, we can take the limit

and obtain

εwε
± =

(
2β

εδ − α± εΩε

)
=

(
2β

ε(δ − ν + µ)− α±
√
(εδ − εν + εµ− α)2 + 4εβγ

)
→

(
2β

−α± |α|

)
:= w0

±

as ε → 0. That is we obtain

w0
− =

(
2β
−2α

)
, w0

+ =

(
2β
0

)
.

Thus, w0
− spans a linear subspace corresponding to

CF
0 := {(x, y) ∈ R2 : αx+ βy = 0} ⊂ R2,

which is the critical manifold of system (3.2) in the limit as ε → 0. We have
therefore found a family of invariant manifolds CF

ε := Eε
+, which is one eigenspace

of Mε
k , such that CF

ε → CF
0 for ε → 0 for almost every k.

This exact finite dimensional relation can be shown to also hold infinite di-
mensions. Due to the identical structure of the solutions of (2.1) and (2.3) these
systems have the same linear invariant manifolds. We summarize this fact in the
following lemma.

Lemma 3.2. Let a, b ∈ R\{0}, H := H2(Rn) and ε small enough such that
Ωε ∈ R\{0}. Then, the following two statements are equivalent.

(1) There exists an invariant manifold, called the slow manifold, Sε ⊂ H ×H
to system (2.1);

(2) CF
ε := {(x, y) ∈ R2 : (ε(δ− ν+µ)−α− εΩε)x− 2βy = 0} is an invariant

manifold of system (2.3) for almost every k ∈ Rn.

Proof. Note that (0, 0) is a steady state in both systems. We can therefore
exclude it in what follows, since we are only interested in nontrivial invariant man-
ifolds. We only show that (2) implies (1), but the other direction works exactly the
same.
Let w := (u, v) ∈ CF

ε \{0} and choose any k ∈ Rn such that we can construct the
explicit solution via Fourier transforms. Denote ϕt

k(u, v) as the flow of this system
(3.2). Due to invariance, we have that ϕt

k(u, v) ∈ CF
ε for all t > 0. Expressed in

formulas this means

a[(ρε1e
λε
+(k)t + ρε2e

λε
−(k)t)u+ (ρε3e

λε
+(k)t + ρε4e

λε
−t(k))v]

+b[(ρε5e
λε
+(k)t + ρε6e

λε
−(k)t)u+ (ρε7e

λε
+(k)t + ρε8e

λε
−(k)t)v] = 0
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for all t > 0. Since λ+(k) ̸= λ−(k) it follows by equating coefficients that

(aρε1 + bρε5)u+ (aρε3 + bρε7)v = (aρε2 + bρε6)u+ (aρε4 + bρε8)v = 0.

Since we have u = − b
av, so we can also write the above equation as(

−bρε1 −
b2

a
ρε5 + aρε3 + bρε7

)
v =

(
−bρε2 −

b2

a
ρε6 + aρε4 + bρε8

)
v = 0.

Since w ̸= (0, 0) we can assume v ̸= 0. So we can deduce from the last equation
that (

−bρε1 −
b2

a
ρε5 + aρε2 + bρε7

)
=

(
−bρε2 −

b2

a
ρε6 + aρε4 + bρε8

)
= 0.

Therefore, for any ṽ ∈ H2(Rn) we also have(
−bρε1 −

b2

a
ρε5 + aρε3 + bρε7

)
∗ ṽ =

(
−bρε2 −

b2

a
ρε6 + aρε4 + bρε8

)
∗ ṽ = 0

and by defining ũ := − b
a ṽ ∈ H2(Rn) we can follow

(aρε1 + bρε5) ∗ ũ+ (aρε3 + bρε7) ∗ ṽ = (aρε2 + bρε6) ∗ ũ+ (aρε4 + bρε8) ∗ ṽ = 0

for all (ũ, ṽ) ∈ S0. From this it follows that

a[(ρε1L
ε
+(x, t) + ρε2L

ε
−(x, t)) ∗ ũ+ (ρε3L

ε
+(x, t) + ρε4L

ε
−(x, t)) ∗ ṽ]

+b[(ρε5L
ε
+(x, t) + ρε6L

ε
−(x, t) ∗ ũ+ (ρε7L

ε
+(x, t) + ρε8L

ε
−(x, t)) ∗ ṽ] = 0

for all t > 0. So we have shown that Sε is invariant. □

Similarly, we obtain that C0 := {(u, v) ∈ R2 : au + bv = 0} ⊂ R2 and S0 :=
{(u, v) ∈ H2(Rn) × H2(Rn) : au + bv = 0} ⊂ H × H are equivalent in the above
sense. In addition, from the above lemma it can be concluded that two maximal
invariant manifolds of system (2.1) are given by

C±
ε := {(u, v) ∈ H ×H : (εδ − α± εΩε)u− 2βv = 0}.

As in the finite dimensional case C−
ε converges to the critical attracting manifold

of the linear fast-reaction system (2.1) as ε → 0 if α < 0. This along with the other
properties of slow manifolds can be summarized in the following result which is an
extension of the classical Fenichel-Tikhonov theory.

Theorem 3.3. Let α < 0 and ε small enough such that ε−1α − µ < 0 and
Ωε ∈ R\{0}. Then the following is true

i) C−
ε is the attracting slow manifold of the linear fast-reaction system (2.1)

which is invariant under the semi flow Tε. Moreover, the slow manifold
has the same regularity as the critical manifold;

ii) The slow manifold C−
ε converges to the critical manifold C0 as ε → 0.

In addition, on bounded subsets the distance between these two objects is
given by dH(C−

ε , C0) = O(ε) with dH being the Hausdorff-distance;
iii) The semi flow Tε restricted to C−

ε converges to the semi flow T0 on C0 as
ε → 0.

Proof. i) The invariance follows from Lemma 3.2 and regularity properties
holds due to the linearity of the manifolds.

ii) Since εδ − α − εΩε → −2α as ε → 0, the equation describing the attracting
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slow manifold C−
ε converges to the equation describing C0. Next, we define the

Hausdorff distance as

dH(C0, C
−
ε ) := inf{λ ≥ 0 : C0 ⊂ C−

ε +Bλ(0), C
−
ε ⊂ C0 +Bλ(0)}.

Here + denotes the Minkowski sum between sets. That is for U, V ⊂ H2(Rn) we
define

U + V := {u+ v : u ∈ U, v ∈ V } ⊂ H2(Rn).

We first want to show C−
ε ⊂ C0 + Bλ(0). To this end, let wε = (u, vε) ∈ C−

ε such
that ∥u∥H2(Rn) ≤ M . Due to the convergence of C−

ε → C0, we can find ε̃ > 0 such

that | ε̃δ−α−ε̃Ωε̃

2β + α
β | < ε2. Let w0 = (u,−β

αu) ∈ C0. Since we consider an element

on the slow manifold we have vε = ε̃δ−α−ε̃Ωε̃

2β u and thus we can compute

∥wε − w0∥2H2(Rn)×H2(Rn) : = ∥u− u∥2H2(Rn) + ∥ − β

α
u− vε∥2H2(Rn)

=

∣∣∣∣ ε̃δ − α− ε̃Ωε̃

2β
+

α

β

∣∣∣∣ ∥u∥2H2(Rn)

< ε2∥u∥2H2(Rn) ≤ ε2M2.

Hence we have shown that C0 ⊂ C−
ε + Bλ(0) for λ = εM = O(ε). The other

inclusion can be shown in a similar way.

iii) If (u0, v0) ∈ C−
ε we know that the semi flow Tε(t)(u0, v0) ∈ C−

ε for all t > 0 due
to i). Therefore, we can eliminate uε in the second equation of system (2.1) and
obtain

∂tv
ε(t) = (∆− νI)vε(t) +

(
γ

2β

εδ − α− εΩε
+ δ

)
vε(t).

Passing to the limit we obtain limε→0 v
ε = v0, where v0 is the second component

of the semi flow T0. Then,

uε =
2β

εδ − α− εΩε
vε → −β

α
v0 = h0(v0) as ε → 0.

□

4. Conclusion

The first observation we make is that the general results presented in [19] also
apply in this linear fast-reaction setting. However, the advantage of this work is
that the slow manifold is explicitly constructed and the convergence to the critical
manifold only depends on the separation of time scales parameter ε but not on any
spectral gap type parameter. Moreover, the results presented here hold for any
dimension N ∈ N and can also be applied to bounded domains with either zero
Dirichlet or periodic boundary conditions.

Secondly, we want to compare the normal hyperbolicity assumptions used in
this work. When working on the level of Fourier transforms the PDE system turns
into a two dimensional ODE in each of the Fourier coefficients. Here, we can apply
the normal hyperbolicity condition that the eigenvalues of the linearized matrix
in the fast direction have a non-zero real part. After taking the inverse Fourier
transform, this translates to the normal hyperbolicity condition in the abstract
Banach space setting, presented in [19].
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Thirdly, we comment on the influence of the parameter α. For α < 0 the
critical manifold is attracting normally hyperbolic and so is the slow manifold. In
addition, the convergence of solutions and the convergence of the semi flow on the
manifolds holds for any t ∈ (0, T ) for any T > 0. Now, since this is a linear system,
the results would also hold for α > 0 leading to a repelling slow manifold.

Lastly, note carefully that we could only disregard the loss of normal hyper-
bolicity in the Fourier domain for some modes k in our proofs as the measure of
these modes is zero so it is not visible for the Fourier inversion. For nonlinear sys-
tems with a spectral gap, a similar mechanism is making the existence of invariant
manifolds possible [19]. Yet, if the failure of formal hyperbolicity occurs on a set of
positive measure in the Fourier domain, we conjecture that it is no longer possible
by standard methods to derive invariant manifolds. In particular, this emphasizes
the role of a nonlinearity in contrast to the expository linear case we have discussed
here: the nonlinearity provides a possibility for mixing of the Fourier modes so that
a positive measure set in the Fourier domain lacks normal hyperbolicity.
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