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Abstract 

We propose hardware-oriented models of intrinsic plasticity (IP) and synaptic plasticity (SP) for 

spiking randomly connected recursive neural network (RNN). Although the potential of RNNs for 

temporal data processing has been demonstrated, randomness of the network architecture often 

causes performance degradation. Self-organization mechanism using IP and SP can mitigate the 

degradation, therefore, we compile these functions in a spiking neuronal model. To implement the 

function of IP, a variable firing threshold is introduced to each excitatory neuron in the RNN that 

changes stepwise in accordance with its activity. We also define other thresholds for SP that 

synchronize with the firing threshold, which determine the direction of stepwise synaptic update that 

is executed on receiving a pre-synaptic spike. We demonstrate the effectiveness of our model through 

simulations of temporal data learning and anomaly detection with a spiking RNN using publicly 

available electrocardiograms. Considering hardware implementation, we employ discretized 

thresholds and synaptic weights and show that these parameters can be reduced to binary if the RNN 

architecture is appropriately designed. This contributes to minimization of the circuit of the neuronal 

system having IP and SP. 

1 Introduction 

Randomly connected recursive neural networks (RNNs), which have been studied as a simplified 

theoretical model of the nervous system of biological brains (Sompolinsky et al., 1988; Kadmon and 

Lazar et al., 2009; Somopolinsky, 2014; Bourdoukan et al., 2015; Tetzlaff et al., 2015; Thalmeier et 

al., 2016; Landau and Somopolinsky, 2018; Frenkel et al., 2022), are attracting much attention as a 

promising artificial intelligence (AI) technique that can perform prediction and anomaly detection of 

time series data in real time without executing sophisticated AI algorithms (Jaeger, 2001; Maass et al., 

2002; Sussillo and Abbott, 2009; Nicola and Clopath, 2017; Das et al., 2018; Bauer et al., 2019). In 
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particular, hardware implementation of RNNs is expected to reduce the power consumption of time 

series data processing, enabling intelligent operations of edge systems in our society. While the 

potential of RNNs has been well demonstrated in previous works (Jaeger, 2001; Maass et al., 2002; 

Sussillo and Abbott, 2009; Nicola and Clopath, 2017; Das et al., 2018; Bauer et al., 2019; Covi et al., 

2021), inherent randomness sometimes causes uncontrollable data inference failures, leading to low 

reliability of the technique. Self-organization mechanism improves the reliability, which can be 

realized by including intrinsic plasticity (IP) and synaptic plasticity (SP) in the neuronal operation 

model (Lazar et al., 2009). IP is a homeostatic mechanism of biological neurons that controls neuron 

firing frequencies within a certain range. It has been shown to be indispensable for unsupervised 

learning in neuromorphic systems (Desai et al., 1999; Steil, 2007; Bartolozzi et al., 2008; Lazar et al., 

2009; Diehl and Cook, 2015; Qiao et al., 2017; Davies et al., 2018; Payvand et al., 2022). SP is a 

mechanism where a synapse changes its own weight in accordance with incoming signals and the post-

synaptic neuron’s activity, known as the fundamental principle of learning in biological brains 

(Legenstein et al., 2005; Pfister et al., 2006; Ponulak and Kasinski, 2010; Kuzum et al., 2012; Ning et 

al., 2015; Prezioso et al., 2015; Ambrogio et al., 2016; Covi et al., 2016; Kreiser et al., 2017; Srinivasan 

et al., 2017; Ambrogio et al, 2018; Faria et al., 2018; Li et al., 2018; Amirshahi et al., 2019; Cai et al., 

2020; Yongqiang et al., 2020; Dalgaty et al., 2021; Frenkel et al., 2023).  

Since computing resources may be limited at the edge, we focus on analog spiking neural network 

(SNN) hardware having ultimately high-power efficiency for edge AI devices (Qiao et al, 2015; Davies 

et al., 2018; Payvand et al., 2022). The most general neuron model for SNNs is the leaky integrate-

and-fire (LIF) model (Holt and Koch, 1997). For a LIF neuron, IP function may be added by adjusting 

its time constant of the membrane potential 𝑉𝑚𝑒𝑚 according to its own firing rate𝐹𝑓𝑖𝑟𝑒. If we are to 

design LIF neurons with analog circuitry, tunable capacitor and resistor are required to control the time 

constant. The former is difficult because no practical device element having variable capacitance has 

been invented. For the latter, Payvand et al. (Payvand et al., 2022) proposed an IP circuit using 

memristors, namely, variable resistors. However, this circuit requires an auxiliary unit for memristor 

control, whose details are not yet discussed. Considering large device-to-device variability of 

memristors, each unit must be tuned according to the respective memristor’s characteristics, which 

would result in a complicated circuit system with large overhead (Payvand et al., 2020; Demirag et al., 

2021; Moro et al., 2022; Payvand et al., 2023). 

Alternative method for controlling𝐹𝑓𝑖𝑟𝑒 is to adjust the firing threshold 𝑉𝑡ℎ𝑟 itself (Diehl and Cook. 

2015; Zhang and Li, 2019; Zhang et al., 2021). For a LIF neuron designed with analog circuitry, 𝑉𝑡ℎ𝑟 

is given as a reference voltage applied to a comparator connected to the neuron’s membrane capacitor 

(Chicca et al., 2014; Qiao et al, 2015; Chicca et al., 2020; Payvand et al., 2022), hence IP can be 

implemented by adding a circuit that can change the reference voltage in accordance with 𝐹𝑓𝑖𝑟𝑒. It 

would be straightforward to employ a variable voltage source, but we need a considerable effort to 

design such a compact voltage source as to be added to every neuron. Instead, we may prepare several 

fixed voltages and multiplex them to the comparator according to neuronal activity. This is the 

motivation of this study. What we are interested in are (i) whether or not stepwise control of the 

threshold voltage is effective for the IP function in a spiking RNN (SRNN) for temporal data learning 

and (ii) if it is, how far we can go in reducing the number of the voltage lines. 

When we introduce variable 𝑉𝑡ℎ𝑟, we need to care about SP for hardware design. With regard to SP 

implementation, spike-timing dependent plasticity (STDP) (Legenstein, et al., 2005; Ning, et al., 2015; 

Srinivasan, et al., 2017) is the most popular synaptic update rule. STDP is a comprehensive synaptic 

update rule that obeys Hebb’s law, but it is not hardware-friendly; it requires every synapse to have a 

mechanism to measure elapsed time from arrival of a spike. Alternatively, we employ spike-driven 



 
3 

synaptic plasticity (SDSP) (Brader et al., 2007; Mitra et al., 2009; Ning et al., 2015; Frenkel et al., 

2019; Gurunathan and Iyer, 2020; Payvand et al., 2022; Frenkel et al., 2023) which is much more 

convenient for hardware implementation. It is a rule where an incoming spike change the synaptic 

weight depending on whether 𝑉𝑚𝑒𝑚 of the post-synaptic neuron is higher than a threshold 𝑉𝐿𝑡ℎ𝑟
𝑈𝑃  or 

lower than another threshold 𝑉𝐿𝑡ℎ𝑟
𝐷𝑂𝑊𝑁.The magnitude relationship 𝑉𝐿𝑡ℎ𝑟

𝐷𝑂𝑊𝑁 ≤ 𝑉𝐿𝑡ℎ𝑟
𝑈𝑃 < 𝑉𝑡ℎ𝑟 is essential 

for correct learning hence 𝑉𝐿𝑡ℎ𝑟
𝐷𝑂𝑊𝑁 and 𝑉𝐿𝑡ℎ𝑟

𝑈𝑃 should be defined according to 𝑉𝑡ℎ𝑟.  

In this work we study an SRNN with IP and SP where 𝑉𝑡ℎ𝑟, 𝑉𝐿𝑡ℎ𝑟
𝑈𝑃  and 𝑉𝐿𝑡ℎ𝑟

𝐷𝑜𝑤𝑛 are discretized and 

synchronized. In order to make our model hardware-oriented, synaptic weights 𝑊 are also discretized 

so that we can assume conventional digital memory circuits for storing weights. We perform 

simulations of learning and anomaly detection tasks for publicly available electrocardiograms (ECGs) 

(Liu et al., 2013; Kiranyaz et al., 2016; Das et al., 2018; Amirshahi et al., 2019; Bauer et al., 2019; 

Wang et al., 2019) and show the effectiveness of our model. In particular, we discuss how much we 

can reduce the discretized levels of 𝑉𝑡ℎ𝑟  and 𝑊 , which is an essential aspect for hardware 

implementation. 

2 Methods 

2.1 LIF neuron model 

The neuron model we employ in this work is the LIF model (Holt and Koch, 1997), which is one of 

the best-known spiking neuron models due to its computational effectiveness and mathematical 

simplicity. The membrane potential 𝑉𝑚𝑒𝑚
𝑖  of neuron 𝑖 is given as 

𝐶
𝑑𝑉𝑚𝑒𝑚

𝑖

𝑑𝑡
= 𝐼𝑖𝑛 −

𝑉𝑚𝑒𝑚
𝑖

𝑅
 

where 𝐶, 𝑅 and 𝐼𝑖𝑛  denote the membrane capacitance, resistance, and the sum of the input current 

flowing into the neuron, respectively. If 𝑉𝑚𝑒𝑚
𝑖  exceeds the firing threshold 𝑉𝑡ℎ𝑟

𝑖 , neuron 𝑖 fires and 

transfers a spike signal to the next neurons connected via a synapse. Then, neuron 𝑖 resets 𝑉𝑚𝑒𝑚
𝑖  to 

𝑉𝑟𝑒𝑠𝑒𝑡 and enters a refractory state for time 𝑡𝑟𝑒𝑓, during which 𝑉𝑚𝑒𝑚
𝑖  stays at 𝑉𝑟𝑒𝑠𝑒𝑡 regardless of 𝐼𝑖𝑛. 

The LIF neuron is hardware-friendly because it can be implemented in analog circuits using industrially 

manufacturable complementary-metal-oxide-semiconductor (CMOS) devices (Indiveri et al., 2011), as 

illustrated in Figure. 1A. 

2.2 Synapse and SDSP 

A synapse receives spikes from neurons and external input nodes. When a spike comes, a synapse 

converts the spike into a synaptic current 𝐼𝑠𝑦𝑛 proportional to 𝑊 defined as 

𝜏𝑠𝑦𝑛

𝑑𝐼𝑠𝑦𝑛

𝑑𝑡
= −𝐼𝑠𝑦𝑛 + 𝛼𝑊𝛿(𝑡 − 𝑡𝑠𝑝𝑖𝑘𝑒), 

where 𝜏𝑠𝑦𝑛 and 𝑡𝑠𝑝𝑖𝑘𝑒 are a time constant, and 𝛼 is an appropriately defined constant. This synapse 

model is also compatible with the CMOS design. 

As mentioned above, we employ SDSP as the synaptic update rule for SP. The synaptic weight 

𝑊(𝑖, 𝑗) between pre-synaptic neuron 𝑖 and post-synaptic neuron 𝑗 increases or decreases if 𝑉𝑚𝑒𝑚
𝑗

 is 
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higher or lower than the learning threshold 𝑉𝐿𝑡ℎ𝑟
𝑈𝑃 (𝑗) or 𝑉𝐿𝑡ℎ𝑟

𝐷𝑂𝑊𝑁(𝑗) when the pre-synaptic neuron 𝑖 fires, 

as follows: 

𝑊(𝑖, 𝑗) = {
𝑊(𝑖, 𝑗) + 𝐿𝑅𝑆𝐷𝑆𝑃                𝑖𝑓   𝑉𝑚𝑒𝑚

𝑗
> 𝑉𝐿𝑡ℎ𝑟

𝑈𝑃 (𝑗)

𝑊(𝑖, 𝑗) − 𝐿𝑅𝑆𝐷𝑆𝑃             𝑖𝑓   𝑉𝑚𝑒𝑚
𝑗

< 𝑉𝐿𝑡ℎ𝑟
𝐷𝑂𝑊𝑁(𝑗)

    when a spike arrives, 

where 𝐿𝑅𝑆𝐷𝑆𝑃 is the learning step, which is set to a constant value, as illustrated in Figure. 1B. 

 In practice, the range of 𝑊 is finite, 0 ≤ 𝑊 ≤  𝑊𝑚𝑎𝑥, hence 𝐿𝑅𝑆𝐷𝑆𝑃 defines the resolution of 𝑊. 

Higher resolution is favorable for better performance in general, but this leads to a larger circuit area 

for storing 𝑊  values. Emerging memory elements such as memristors and phase change memory 

devices may be employed to avoid this issue (Lazar et al., 2009; Li and Li, 2013), but practical use of 

these emerging technologies is still a big challenge. In this work, we assume conventional CMOS 

digital memory cells for storing 𝑊, raising our interest in how much we can reduce the resolution of 

𝑊 for practical application task. In this view, we discuss the feasibility of binary 𝑊, which is ideal for 

hardware implementation, later in this work. 

 A circuit that determines whether 𝑊(𝑖, 𝑗) should be potentiated, depressed, or unchanged can be 

designed with two comparator circuits; the one compares 𝑉𝑚𝑒𝑚
𝑗

 with 𝑉𝐿𝑡ℎ𝑟
𝑈𝑃 (𝑗)  and the other with  

𝑉𝐿𝑡ℎ𝑟
𝐷𝑂𝑊𝑁(𝑗)  (see supplementary materials). Note that it is sufficient for each neuron to have a 

determinator; it is not necessary for each synapse to have it. 

2.3 Event-driven stepwise IP 

The IP model we employ executes a stepwise change of the firing threshold voltage 𝑉𝑡ℎ𝑟
𝑖  of neuron 𝑖 

in an event-driven manner as 

𝑉𝑡ℎ𝑟
𝑖 = {

𝑉𝑡ℎ𝑟
𝑖 + 𝐿𝑅𝑡ℎ𝑟     𝑖𝑓 𝐶𝑓𝑖𝑟𝑒

𝑖 > (1 + 𝜎/2)𝐶𝐼𝑃

𝑉𝑡ℎ𝑟
𝑖 − 𝐿𝑅𝑡ℎ𝑟     𝑖𝑓 𝐶𝑓𝑖𝑟𝑒

𝑖 <  (1 − 𝜎/2)𝐶𝐼𝑃

    when neuron 𝑖 fires, 

where 𝐿𝑅𝑡ℎ𝑟 denotes the changing step of 𝑉𝑡ℎ𝑟
𝑖  in a single IP operation, 𝐶𝑓𝑖𝑟𝑒

𝑖  a parameter that measures 

of the activity of neuron 𝑖, 𝐶𝐼𝑃 a constant corresponding to the target activity. 𝜎 is a parameter that 

defines a healthy regime of 𝐶𝑓𝑖𝑟𝑒
𝑖 , (1 − 𝜎/2)𝐶𝐼𝑃 < 𝐶𝑓𝑖𝑟𝑒

𝑖 < (1 + 𝜎/2)𝐶𝐼𝑃, where IP operation is not 

executed (see supplementary materials for details) (Payvand et al., 2022). 𝐶𝑓𝑖𝑟𝑒
𝑖  is often referred to as 

a calcium potential (Brader et al., 2007; Indiveri and Fusi, 2007; Qiao et al., 2015), defined as 

𝜏𝐼𝑃

𝑑𝐶𝑓𝑖𝑟𝑒
𝑖

𝑑𝑡
= −𝐶𝑓𝑖𝑟𝑒

𝑖 + ∑ 𝛿(𝑡 − 𝑡𝑓𝑖𝑟𝑒
𝑖 ),

𝐹𝑖𝑟𝑖𝑛𝑔𝑠 𝑜𝑓 𝑁𝑒𝑢𝑟𝑜𝑛 𝑖

 

where 𝜏𝐼𝑃 is a constant and 𝑡𝑓𝑖𝑟𝑒
𝑖  represents all the firing times of neuron 𝑖 (note that all the firing times 

are summed up). The behavior of  𝐶𝑓𝑖𝑟𝑒
𝑖  is illustrated in Figure.1C, showing that it can be used as an 

indicator of the neuron activity if the threshold 𝐶𝐼𝑃 is appropriately determined.  

The firing threshold of a LIF neuron is given as a reference voltage applied to a comparator 

connected to the membrane capacitor. Stepwise change of 𝑉𝑡ℎ𝑟
𝑖  is advantageous for hardware 

implementation because we do not need to design a compact voltage source circuit that can tune the 
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output continuously. Instead, we need to prepare several fixed voltage lines and select one of them 

using a multiplexer, which is not a difficult task. 

2.4 Synchronization of IP and SP thresholds 

If the SDSP thresholds 𝑉𝐿𝑡ℎ𝑟
𝑈𝑃/𝐷𝑂𝑊𝑁

 are fixed to be constants, the IP rule introduced above interfere with 

SP because it changes the magnitude relationship between 𝑉𝐿𝑡ℎ𝑟
𝑈𝑃/𝐷𝑂𝑊𝑁

 and 𝑉𝑡ℎ𝑟. For example, let us 

assume that 𝑉𝑡ℎ𝑟 is lowered by IP and comes below 𝑉𝐿𝑡ℎ𝑟
𝐷𝑂𝑊𝑁. In this case, 𝑊 decreases every time a 

spike comes and finally reaches zero because 𝑉𝑚𝑒𝑚 is always less than 𝑉𝐿𝑡ℎ𝑟
𝐷𝑂𝑊𝑁 and never exceeds 𝑉𝐿𝑡ℎ𝑟

𝑈𝑃 . 

This would lead to incorrect learning of the input information. 

To operate both IP and SP at the same time correctly, we synchronize the three thresholds of neuron 

𝑖 , that is, 𝑉𝑡ℎ𝑟
𝑖 , 𝑉𝐿𝑡ℎ𝑟

𝑈𝑃 (𝑖), and 𝑉𝐿𝑡ℎ𝑟
𝐷𝑂𝑊𝑁(𝑖) so that the magnitude relationship 𝑉𝐿𝑡ℎ𝑟

𝐷𝑂𝑊𝑁 < 𝑉𝐿𝑡ℎ𝑟
𝑈𝑃 < 𝑉𝑡ℎ𝑟 

should be kept during IP operations. Along with the firing threshold 𝑉𝑡ℎ𝑟
𝑖 , the learning thresholds 

𝑉𝐿𝑡ℎ𝑟
𝑈𝑃 (𝑖) and 𝑉𝐿𝑡ℎ𝑟

𝐷𝑂𝑊𝑁(𝑖) are updated by IP as follows, 

𝑉𝐿𝑡ℎ𝑟
𝑈𝑃/𝐷𝑂𝑊𝑁(𝑖) = {

𝑉𝐿𝑡ℎ𝑟
𝑈𝑃/𝐷𝑂𝑊𝑁(𝑖) + 𝐿𝑅𝐿𝑡ℎ𝑟

𝑈𝑃/𝐷𝑂𝑊𝑁
   𝑖𝑓 𝐶𝑓𝑖𝑟𝑒

𝑖 > (1 + 𝜎/2)𝐶𝐼𝑃

𝑉𝐿𝑡ℎ𝑟
𝑈𝑃/𝐷𝑂𝑊𝑁(𝑖) − 𝐿𝑅𝐿𝑡ℎ𝑟

𝑈𝑃/𝐷𝑂𝑊𝑁
  𝑖𝑓 𝐶𝑓𝑖𝑟𝑒

𝑖 > (1 − 𝜎/2)𝐶𝐼𝑃

  when neuron 𝑖 fires, 

where 𝐿𝑅𝑡ℎ𝑟
𝑈𝑃/𝐷𝑂𝑊𝑁

 are the change width of the learning thresholds. 

2.5 Network Model 

Figure 2A shows the architecture of the SRNN system we study in this work. It consists of an input 

layer, a middle layer, and an output layer. The middle layer (M-SRNN) is an RNN with random 

connections and synaptic weights, consisting of two neuron types which are excitatory and inhibitory 

neurons. The M-SRNN in this work consists of 80% excitatory and 20% inhibitory neurons. Input-

layer neurons send Poisson spikes to the neurons of the M-SRNN at a frequency corresponding to the 

value of the input data. The input-layer neurons connect with excitatory neurons of M-SRNN with a 

probability of 𝑃𝑖𝑛, which is 0.1 in this work. Note that they have no connections to inhibitory neurons. 

The excitatory neurons connect with other excitatory neurons with probability 𝑃𝐸𝐸  and with inhibitory 

neurons with probability 𝑃𝐸𝐼. Inhibitory neurons connect with excitatory neurons with probability 𝑃𝐼𝐸 

and do not connect with inhibitory neurons. Output-layer neurons are connected from all excitatory 

neurons of M-SRNN. Not all M-SRNNs will give the desired result because of the random nature, so 

parameters related to the structure of M-SRNN must be set carefully to obtain the desired results 

(Payvand et al., 2022). With self-organization mechanism by IP and SP, the M-SRNN reconstruction 

is automatically performed using spike signals from input layer neurons. 

The M-SRNN can be implemented as a crossbar architecture (Lazar et al., 2009) shown in Figure 

2B. There, each row line is connected to a neuron of the M-SRNN, and each column line is connected 

to either an input-neuron emitting spikes in response to external inputs or a recurrent input from an M-

SRNN neuron. A cross point is a synapse, where spikes from the column line are converted to synaptic 

current flowing into the row line. Some of the synapses are set inactive to realize the random connection 

of the RNN.  

3 Simulation and Results 



 
6 

This is a provisional file, not the final typeset article 

3.1 Simulation configuration and parameters 

The effectiveness of our SRNN model with IP and SP explained above is evaluated using Brian 

simulator (Goodman and Brette, 2008) by ECG anomaly detection benchmark (PhysioNet 1999; 

Goldberger et al., 2000; Moody and Mark, 2001) with parameters listed in Table 1. Input-layer neurons 

convert the ECG data to Poisson spikes and send them to excitatory neurons in the M-SRNN. The 

simulation consists of three phases. Phase 1 is the unsupervised learning phase of the M-SRNN by 

using the training data of the ECGs. Thresholds (𝑉𝑡ℎ𝑟 , and 𝑉𝐿𝑡ℎ𝑟
𝑈𝑃/𝐷𝑂𝑊𝑁

) of excitatory neurons and 

synaptic weights ( 𝑊 ) between excitatory neurons in the M-SRNN are learned by IP and SP, 

respectively. Phase 2 is a readout learning phase. Synaptic weights between neurons in the M-SRNN 

and those in the output layer are calculated by linear regression in a supervised fashion. Phase 3 is the 

test phase. Using test ECG data, anomaly detection performance of the SRNN determined in Phase 1 

and Phase 2 is evaluated. 

In the simulation, the learning step 𝐿𝑅𝑆𝐷𝑆𝑃 and the firing threshold change width 𝐿𝑅𝑡ℎ𝑟 are selected 

from 𝑆𝐿𝑅 = {0.1, 0.2, 0.5, 1.0, 2.0}  and 𝑃𝑡ℎ𝑟 = {0.025 𝑉, 0.05 𝑉, 0.1 𝑉, 0.3 𝑉} , respectively. The 

ranges of 𝑊  and 𝑉𝑡ℎ𝑟  are 0 ≤ 𝑊 ≤ 2  and 0.1 𝑉 ≤ 𝑉𝑡ℎ𝑟 ≤ 0.4 𝑉 . With regard to the SP 

synchronization with IP, we set 𝑉𝐿𝑡ℎ𝑟
𝑈𝑃 (𝑖) = 𝑉𝐿𝑡ℎ𝑟

𝐷𝑂𝑊𝑁(𝑖) = 𝑉𝑡ℎ𝑟
𝑖 /2  throughout this work, hence 

𝐿𝑅𝐿𝑡ℎ𝑟
𝑈𝑃 =𝐿𝑅𝐿𝑡ℎ𝑟

𝐷𝑂𝑊𝑁 = 𝐿𝑅𝑡ℎ𝑟/2. All initial synaptic weights between excitatory neurons are set to 1.0, 

and the initial firing threshold is set to 0.2V for all neurons. All other synaptic weights are set randomly. 

3.2 ECG anomaly detection 

For ECG anomaly detection, we use the MIT-BIH arrhythmia database (PhysioNet 1999; Goldberger 

et al., 2000; Moody and Mark, 2001). Using the PhysioBank ATM provided by PhysioNet (PhysioNet 

1999), we download and use MIT-BIT Long-Term ECG number 14046 for performance evaluation. 

Figure 3A shows normal waveform of the ECG used as training data. As test data, we use waveform 

data that partially include multiple abnormal waveforms, as shown in Figure 3B. To perform anomaly 

detection, the SRNN is used as an inference machine. Values of the data points of the ECG waveform 

are inputted to the SRNN one by one in the time order. At the 𝑘-th input, it predicts the next (𝑘 + 1)-

st. The firing frequency 𝐹𝑜𝑢𝑡(𝑘) of the output-layer neuron at the 𝑘-th input is compared to the firing 

frequency of the input neuron at the (𝑘 + 1) -st input 𝐹𝑖𝑛(𝑘 + 1) . When the absolute difference 

𝐷(𝑘 + 1) = |𝐹𝑜𝑢𝑡(𝑘) − 𝐹𝑖𝑛(𝑘 + 1)| is greater than the abnormality judgment threshold 𝐹𝑡ℎ𝑟 , the 
(𝑘 + 1)-st input data is regarded to be abnormal. 

Since the raw ECG data 𝐸𝑖𝑛𝑝𝑢𝑡 is given by time-series data of electrostatic potential in mV, the input-

layer neurons convert the potential 𝐸𝑖𝑛𝑝𝑢𝑡 to the firing frequency 𝐹𝑖𝑛 as follows,  

 

𝐹𝑖𝑛(𝑘) = 𝐹𝑝𝑜𝑖𝑠𝑠𝑜𝑛 ×
4 + 2 × 𝐸𝑖𝑛𝑝𝑢𝑡(𝑘)

5
 . 

where 𝐹𝑝𝑜𝑖𝑠𝑠𝑜𝑛 is the maximum frequency. Since an input-layer neuron fires with Poisson probability 

𝐹𝑖𝑛(𝑘), a single input is required to be kept for a certain duration (𝑇𝑏𝑖𝑛) to generate a desired Poisson 

spike train. 

For correct abnormality detection, the abnormality judgment threshold 𝐹𝑡ℎ𝑟 must be set within a 

range that is larger than the maximum difference 𝐷𝑛𝑜
𝑚𝑎𝑥 for normal data input and smaller than the 
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minimum difference 𝐷𝑎𝑏
𝑚𝑖𝑚  for abnormal data input. The threshold width 𝑊𝑡ℎ𝑟 = 𝐷𝑎𝑏

𝑚𝑖𝑚 − 𝐷𝑛𝑜
𝑚𝑎𝑥 

represents flexibility. If this threshold width is large, the judgment capability is high because it allows 

a margin for judgment, and if it is small, the judgment capability is low because it increases the 

possibility of misjudgment.  

3.3 Simulation Results 

Reduction of parameter resolutions toward hardware implementation 

Figure 4 shows anomaly detection results of the original M-SRNN, the M-SRNN reconstructed with 

SP and that with both SP and IP. Figures 4A, C and E show the difference 𝐷(𝑘) in the three cases 

respectively, when a normal ECG waveform in Figure 4G is used as a test data. Figures 4B, D, and F 

show the difference 𝐷(𝑘) when an abnormal ECG waveform in Figure 4H is used. It can be seen in 

Figure 4B that the initial M-SRNN cannot detect anomalous points because 𝐷𝑎𝑏
𝑚𝑖𝑚 is almost the same 

as 𝐷𝑛𝑜
𝑚𝑎𝑥, hence no window 𝑊𝑡ℎ𝑟. On the other hand, the M-SRNN reconstructed by SDSP shows clear 

𝑊𝑡ℎ𝑟, as shown in Figure 4D. Furthermore, if we add the IP function, we obtain larger 𝐷𝑎𝑏
𝑚𝑖𝑛 while 

𝐷𝑛𝑜
𝑚𝑎𝑥 is the same, hence larger 𝑊𝑡ℎ𝑟. This result clearly shows the effectiveness of the proposed SP 

and IP models in improving the anomaly detection performance. In particular, if the M-SRNN is 

reconstructed by using the synchronized SP and IP, a sufficient margin is obtained for anomaly 

detection without misdetection of normal data. Figure 5 shows a heat map of 𝑊𝑡ℎ𝑟  at each 

𝐿𝑅𝑆𝐷𝑆𝑃 ∈ 𝑆𝐿𝑅  and 𝐿𝑅𝑡ℎ𝑟 ∈ 𝑃𝑡ℎ𝑟  when the processing time 𝑇𝑏𝑖𝑛  per one ECG data point  for 

reconstruction is set to be 7 𝑚𝑠  (A), 150 𝑚𝑠  (B) and 600 𝑚𝑠  (C). These figures show that 𝑊𝑡ℎ𝑟 

becomes large as the operation time 𝑇𝑏𝑖𝑛 increases, which is a reasonable result because the longer 𝑇𝑏𝑖𝑛 

becomes, the more information is learned from the data point, leading to higher accuracy of the 

abnormal detection. In fact, as can be seen in Figure 6, which shows 𝐷(𝑘) patterns for an abnormal 

waveform obtained with the M-SRNN reconfigured by 𝐿𝑅𝑆𝐷𝑆𝑃 = 0.1 and 𝐿𝑅𝑡ℎ𝑟 = 0.3 𝑉 for each 𝑇𝑏𝑖𝑛, 

𝐷(𝑘) becomes smoother and 𝐷𝑛𝑜
𝑚𝑎𝑥 lower as  𝑇𝑏𝑖𝑛 is set longer. 

Real-time operation for practical applications 

 For practical application, it is desired that the abnormal data should be detected at the moment it occurs 

and thus real-time operation is highly expected. In this sense, 𝑇𝑏𝑖𝑛 is desired to be as short as possible. 

In the case of the ECG anomaly detection, data is collected at 128 steps/sec. Therefore, the learning 

process and anomaly detection must be performed within 𝑇𝑏𝑖𝑛 = 7 𝑚𝑠. However, as discussed above, 

such short 𝑇𝑏𝑖𝑛  leads to small 𝑊𝑡ℎ𝑟 because the learning duration for each data point is insufficient. 

 Now we assume that employing longer 𝑇𝑏𝑖𝑛  is equivalent to increasing the number of IP and SP 

operations within short 𝑇𝑏𝑖𝑛 . To increase the number of IP and SP operations, we have to enhance the 

activities of neurons, hence two options. The first one is to enhance the parallelism of the inputs; we 

increase the number of neurons in the input layer 𝑁𝑖𝑛𝑝𝑢𝑡  so that a neuron in the M-SRNN being 

connected to the input layer receive more spike signals during short 𝑇𝑏𝑖𝑛 . The other is to enhance the 

seriality of the input neuron signals; we increase the rate of Poisson spikes 𝐹𝑃𝑜𝑖𝑠𝑠𝑜𝑛 from the input layer. 

The effects of these two methods are verified by simulation. 

Figure 7 shows the heatmaps of 𝑊𝑡ℎ𝑟 for 𝑇𝑏𝑖𝑛 = 7 𝑚𝑠 in the cases of 𝑁𝑖𝑛𝑝𝑢𝑡 = 10, 100 and 200. 

We observe that 𝑊𝑡ℎ𝑟 increases with 𝑁𝑖𝑛𝑝𝑢𝑡 in general, indicating that our first idea is effective; real-

time anomaly detection without false positive detection is possible by increasing 𝑁𝑖𝑛𝑝𝑢𝑡. Note that the 

binary 𝑉𝑡ℎ𝑟  and 𝑊  i.e., 𝐿𝑅𝑆𝐷𝑆𝑃 = 2.0 and 𝐿𝑅𝑡ℎ𝑟 = 0.3 𝑉 result in sufficiently large 𝑊𝑡ℎ𝑟  even with 
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𝑇𝑏𝑖𝑛 = 7 𝑚𝑠 in the case of 𝑁𝑖𝑛𝑝𝑢𝑡 = 100. Thus, a highly parallelized input layer has been shown to be 

effective for performance improvement with short 𝑇𝑏𝑖𝑛. However, when 𝑁𝑖𝑛𝑝𝑢𝑡 is increased too much, 

the effect would be negative. As can be seen in Figure 7C, where 𝑁𝑖𝑛𝑝𝑢𝑡 = 200, the M-SRNN does 

not work appropriately when 𝐿𝑅𝑆𝐷𝑆𝑃 = 2.0  and 𝐿𝑅𝑡ℎ𝑟 ≥ 0.2 𝑉 . Since the M-SRNN neurons that 

receive input spikes are always very close to the saturation in the case of large 𝑁𝑖𝑛𝑝𝑢𝑡, precise control 

of the parameters such as 𝑉𝑡ℎ𝑟 and 𝑊 is required. 

 To examine the latter idea, we perform the anomaly detection tasks with 𝐹𝑃𝑜𝑖𝑠𝑠𝑜𝑛 being varied. In 

the center of Figure 8, we plot obtained 𝑊𝑡ℎ𝑟 as a function of 𝐹𝑃𝑜𝑖𝑠𝑠𝑜𝑛. If increasing 𝐹𝑃𝑜𝑖𝑠𝑠𝑜𝑛 does not play 

an effective role on performance improvement, 𝑊𝑡ℎ𝑟 increases just linearly with 𝐹𝑃𝑜𝑖𝑠𝑠𝑜𝑛, as indicated 

by a red dotted line. As a matter of the fact, however, we obtain 𝑊𝑡ℎ𝑟  above the red line up to 

𝐹𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = 1200 𝐻𝑧, indicating that raising 𝐹𝑃𝑜𝑖𝑠𝑠𝑜𝑛 improves the anomaly detection performance of 

an M-SRNN. 

We observe in Figures 8 A-C that increasing 𝐹𝑃𝑜𝑖𝑠𝑠𝑜𝑛 elevates the base line of 𝐷(𝑘) and magnify the 

peaks. This is reasonable because the more input spikes come, the more frequently the neurons in the 

M-SRNN fire, hence 𝐷(𝑘) being scaled with 𝐹𝑃𝑜𝑖𝑠𝑠𝑜𝑛. At the same time, it smoothens variation of 

𝐷(𝑘), indicating improved learning performance due to the increased IP and SP operations. This results 

in 𝑊𝑡ℎ𝑟 being larger than the red dotted line. When 𝐹𝑃𝑜𝑖𝑠𝑠𝑜𝑛 is increased further to 1500 𝐻𝑧, the peaks 

corresponding to the abnormal data in the original waveform saturate, as can be seen in Figure 8D. 

This is because of the refractory time of neurons. Since a neuron cannot fire faster than its refractory 

time, it has an upper limit in its firing frequency. The saturation observed in Figure 8D is interpreted 

as a case where the firing frequency at the anomaly data points reaches its limit. As a result, 𝑊𝑡ℎ𝑟 at 

𝐹𝑝𝑜𝑖𝑠𝑠𝑜𝑛 = 1500 𝐻𝑧 is suppressed and comes below the red dotted line. This discussion can be clearly 

seen in Figure 9, which shows the evolutions of 𝐷𝑛𝑜
𝑚𝑎𝑥 and 𝐷𝑎𝑏

𝑚𝑖𝑛 with 𝐹𝑝𝑜𝑖𝑠𝑠𝑜𝑛 of the input neurons. 

We observe that 𝐷𝑛𝑜
𝑚𝑎𝑥  increases linearly, while 𝐷𝑎𝑏

𝑚𝑖𝑛  increases only up to 𝐹𝑝𝑜𝑖𝑠𝑠𝑜𝑛 = 1200𝐻𝑧. For 

𝐹𝑝𝑜𝑖𝑠𝑠𝑜𝑛 ≥ 1200 𝐻𝑧, 𝐷𝑎𝑏
𝑚𝑖𝑛 reaches its limit and only  𝐷𝑛𝑜

𝑚𝑎𝑥 increases, hence smaller 𝑊𝑡ℎ𝑟. We note 

that the results shown in Figure 8 are obtained with 𝐿𝑅𝑆𝐷𝑆𝑃 = 2.0 and 𝐿𝑅𝑡ℎ𝑟 = 0.3 𝑉 i.e., binarized 

𝑉𝑡ℎ𝑟 and 𝑊. 

It is noteworthy that we have found that binary 𝑉𝑡ℎ𝑟 and 𝑊 may be employed if the input layer is 

optimized. This is highly advantageous for hardware implementation. For 𝑉𝑡ℎ𝑟 (and also for 𝑉𝐿𝑡ℎ𝑟
𝑈𝑃/𝐷𝑜𝑤𝑛

), 

we may prepare the smallest 2-input multiplexers and only two voltage lines (see supplementary 

materials). What is more conspicuous is that 𝑊 can be reduced to binary. This means that for synapses 

we have no need of using an area-hungry multi-bit SRAM array or waiting for analog emerging 

memories, but we may employ just small 1-bit latches (see supplementary materials). Since the number 

of synapses scales with square of the number of neurons, this result has a large impact on the SRNN 

chip size. 

Thus, optimization of the input gives a large impact on both performance and physical chip size of 

the SRNN. Whether we optimize 𝑁𝑖𝑝𝑢𝑡 or 𝐹𝑃𝑜𝑖𝑠𝑠𝑜𝑛 may be up to engineering convenience. It is possible 

to optimize both. As we have seen in Figures 7 and 8, the former has a better smoothing effect in the 

normal data area than the latter. Considering hardware implementation, on the other hand, the latter is 

more favorable because the former requires physical extension of the input layer system. For the latter, 

we only have to tune the conversion rate of raw input data to spike trains, which may be done externally. 

Therefore, the parameters in the input layer should be designed carefully taking those conditions 

discussed above into consideration. 
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4 Discussion 

Lazer et al. proposed to introduce two plasticity mechanisms, SP and IP, to an RNN to reconstruct its 

network structure in the training phase (Lazar et al., 2009). While software implementation of SP and 

IP seems to be quite simple, we need some effort for hardware implementation. 

With regard to the IP operation, Lazer et al. adjusted the firing threshold of each neuron according 

to its firing rate at every time step. In hardware implementation, constantly controlling the thresholds 

of all of the N neurons is not realistic. Therefore, we proposed a mechanism that regulate the threshold 

of a neuron in an event-driven way; each neuron changes its firing threshold when it fires in accordance 

with its activity being higher or lower than the predetermined levels. This event-driven mechanism 

releases us from designing a circuit for precise control of the thresholds. As discussed by Lazar et al., 

we need to control the thresholds with an accuracy of 1 1000⁄  if it is done constantly, which requires 

quite large hardware resource that consumes power as well. Our event-driven method, on the other 

hand, has been shown to allow us stepwise control of the thresholds with only a few gradations, which 

is highly advantageous for hardware implementation. 

Another way to realize the IP mechanism is to regulate the current of a LIF neuron (Holt and Koch, 

1997). The current value can be adjusted by changing the resistance values in the previous researches 

(Dalgaty et al., 2019, Zhang et al., 2022). This can be achieved by using variable resistors such as 

memristors (Dalgaty et al., 2019, Payvand et al., 2022) or by selecting several fixed resistors prepared 

in advance. For the former method, precise control of the resistance would be a central technical issue, 

but it is still a big challenge even today because the current memristor has large variation (Dalgaty et 

al., 2019). Payvand et al. discussed that variation and stochasticity of rewriting may lead to better 

performance, but further studies including practical hardware implementation and general verification 

are yet to be done. The latter requires a set of large resistors (~100 𝑀Ω) for each neuron, which is not 

favorable for hardware implementation because resistors occupy quite large chip area. We believe that 

stepwise change of the firing threshold is the most favorable implementation of IP. 

 For implementation of the SP mechanism, STDP (Legenstein, et al., 2005; Ning, et al., 2015; 

Srinivasan, et al., 2017) is widely known as a biologically plausible synaptic update rule, but it is not 

hardware friendly as discussed in the introduction. Hence recent neuromorphic chips tend to employ 

SDSP (Brader et al., 2007; Mitra et al., 2009; Ning et al., 2015; Frenkel et al., 2019; Gurunathan 

and Iyer, 2020; Payvand et al., 2022; Frenkel et al., 2023). However, SDSP cannot be implemented 

concurrently with threshold-controlled IP in its original form, because the latter may push down the 

upper limit of the membrane potential (i.e., the firing threshold) below the synaptic potentiation 

threshold. Our proposal that the synaptic update thresholds synchronize with the firing threshold 

realized the concurrent implementation of the two, and their interplay with each other led to successful 

learning and anomaly detection of ECG benchmark data (PhysioNet 1999; Goldberger et al., 2000; 

Moody and Mark, 2001) even with binary thresholds and weights if the parallelism and the seriality of 

the input are well optimized. This is highly advantageous for analog circuitry implementation from the 

viewpoints of circuit complexity and size. 

References 

Ambrogio, S., Ciocchini, N., Laudato, Mario., Milo, V., Pirovano, A., Fantini, P., Ielmini, D. (2016). 

Unsupervised learning by spike timing dependent plasticity in phase change memory (pcm) synapses. 

Front. Neuroscience. 10. https://doi.org/10.3389/fnins.2016.00056. 



 
10 

This is a provisional file, not the final typeset article 

Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., Nolfo, C., Sidler, S., Giordano, M., 

Bodini, M., Farinha, N. C. P., Killeen, B., Cheng, C., Jaoudi, Y., Burr, G. W. (2018).  Equivalent-

accuracy accelerated neural-network training using analogue memory. Nature. 558, 60–67. 

https://doi.org/10.1038/s41586-018-0180-5. 

Amirshahi, A., Hashemi, M. (2019). ECG classification algorithm based on STDP and R-STDP 

neural networks for real-time monitoring on ultra low-power personal wearable devices. IEEE Trans. 

on Biomedical Circuits and Systems. 13(6), 1483-1493. doi: 10.1109/TBCAS.2019.2948920 

Bartolozzi, C., Nikolayeva, O., Indiveri, G. (2008). Implementing homeostatic plasticity in VLSI 

networks of spiking neurons. Proc. of 15th IEEE International Conference on Electronics, Circuits 

and Systems. 682-685. doi: 10.1109/ICECS.2008.4674945. 

Bauer, F. C., Muir, D. R., Indiveri, G. (2019). Real-time ultra-low power ECG anomaly detection 

using an event-driven neuromorphic processor. IEEE transactions on biomedical circuits and 

systems. 13(6), 1575-1582. doi: 10.1109/TBCAS.2019.2953001. 

Bourdoukan, R., Deneve, S. (2015). Enforcing balance allows local supervised learning in spiking 

recurrent networks. Advances in Neural Information Processing Systems. 

Brader, J. M., Senn, W., Fusi, S. (2007). Learning Real-World Stimuli in a Neural Network with 

Spike-Driven Synaptic Dynamics. Neural Computation. 19(11), 2881-1912. 

https://doi.org/10.1162/neco.2007.19.11.2881. 

Cai, F., Kumar, S., Vaerenbergh, T. V., Sheng, X., Liu, R., Li, C., Liu, Z., Foltin, M., Yu, S., Xia, Q., 

Yang, J. J., Beausoleil, R., Lu, W. D. Strachan, J. P. (2020). Power-efficient combinatorial 

optimization using intrinsic noise in memristor hopfield neural networks. Nature Electronics. 3, 409–

418. https://doi.org/10.1038/s41928-020-0436-6. 

Chicca, E., Indiveri, G. (2020). A recipe for creating ideal hybrid memristive-CMOS neuromorphic 

processing systems. Appl. Phys. Lett. 116, 120501. https://doi.org/10.1063/1.5142089. 

Chicca, E., Stefanini, F., Bartolozzi, C., Indiveri, G. (2014). Neuromorphic electronic circuits for 

building autonomous cognitive systems. Proc. of IEEE. 102:9, 1367–1388. doi: 

10.1109/JPROC.2014.2313954 

Covi, E., Brivio, S., Serb, A., Prodromakis, T., Fanciulli, M., Spiga, S. (2016). Analog memristive 

synapse in spiking networks implementing unsupervised learning. Front. Neuroscience. 10. 

https://doi.org/10.3389/fnins.2016.00482. 

Dalgaty, T., Castellani, N., Turck, C., Harabi, K.-E., Querlioz, D. Vianello, E. (2021). In situ learning 

using intrinsic memristor variability via Markov chain Monte Carlo sampling. Nature Electronics. 4, 

151–161. https://doi.org/10.1038/s41928-020-00523-3. 

Dalgaty, T., Payvand, M., Moro, F., Ly, D. R. B., Pebay-Peyroula, F., Casas, J., Indiveri, G., 

Vianello, E. (2019). Hybrid neuromorphic circuits exploiting non-conventional properties of RRAM 

for massively parallel local plasticity mechanisms. APL Materials, 7(8). 

https://doi.org/10.1063/1.5108663. 

https://doi.org/10.1038/s41928-020-00523-3


 
11 

Das, A., Pradhapan, P., Groenendaal, W., Adiraju, P., Rajan, R. T., Catthoor, F., Schaafsma, S., 

Krichmar, J. L., Dutt, N., Hoof, C. V. (2018). Unsupervised heart-rate estimation in wearables with 

liquid states and a probabilistic readout. Neural Network. 99,134–147. 

https://doi.org/10.1016/j.neunet.2017.12.015. 

Davies, M. Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., Dimou, G., Joshi, P., Imam, 

N., Jain, S., Liao, Y., Lin, C. K., Lines, A., Liu, R., Mathaikutty, D., McCoy, S., Paul, A., Tse, J., 

Venkataramanan, G., Weng, Y. H., Wild, A., Yang, Y., Wang, H., (2018). Loihi: A neuromorphic 

manycore processor with on-chip learning. IEEE Micro. 38(1), 82–99. doi: 

10.1109/MM.2018.112130359. 

Demirag, Y., Moro, F., Dalgaty, T., Navarro, G., Frenkel, C., Indiveri, G., Vianello, E., Payvand, M. 

(2021). PCM-Trace: Scalable Synaptic Eligibility Traces with Resistivity Drift of Phase-Change 

Materials. Proc. of 2021 IEEE International Symposium on Circuits and Systems. 1-5. doi: 

10.1109/ISCAS51556.2021.9401446. 

Desai, N. S., Rutherford, L. C., Turrigiano, G. G. (1999). Plasticity in the intrinsic excitability of 

cortical pyramidal neurons. Nature Neuroscience. 2, 515–520. https://doi.org/10.1038/9165. 

Diehl, P.U. and Cook, M. (2015).  Unsupervised learning of digit recognition using spike-timing-

dependent plasticity. Front. In Computational Neuroscience. 

https://doi.org/10.3389/fncom.2015.00099 

Covi, E., Donati, E., Liang, X., Kappel, D., Heidari, H., Payvand, M., Wang, W. (2021). Adaptive 

Extreme Edge Computing for Wearable Devices. Frontiers in Neuroscience. 

https://doi.org/10.3389/fnins.2021.611300 

Faria, R., Camsari, K. Y., Datta, S. (2018). Implementing bayesian networks with embedded 

stochastic MRAM. AIP Advances. 8. https://doi.org/10.1063/1.5021332. 

Frenkel, C., Bol, D., Indiveri, G. (2023). Bottom-Up and Top-Down Neural Processing Systems 

Design: Neuromorphic Intelligence as the Convergence of Natural and Artificial Intelligence. Proc. 

of the IEEE. 28. https://doi.org/10.48550/arXiv.2106.01288. 

Frenkel, C., Indiveri, G. (2022). ReckOn: A 28nm Sub-mm2 Task-Agnostic Spiking Recurrent 

Neural Network Processor Enabling On-Chip learning over Second-Long Timescales. IEEE 

International Solid-State Circuits Conference. doi: 10.1109/ISSCC42614.2022.9731734. 

Frenkel, C., Lefebvre, M., Legat, J. D., Bol, D. (2019). A 0.086-mm² 12.7-pJ/SOP 64k-Synapse 256-

Neuron Online-Learning Digital Spiking Neuromorphic Processor in 28nm CMOS. IEEE 

Transaction on Biomedical Circuit and Systems. 13 (1), 145-158. 

DOI:10.1109/TBCAS.2018.2880425. 

Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P.C., Mark, R., Mietus, J.E., Moody, 

G.B., Peng, C.K. and Stanley, H.E., (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components 

of a new research resource for complex physiologic signals. Circulation. 101 (23), e215–e220. 

https://doi.org/10.1161/01.CIR.101.23.e215Circulation. 2000;101:e215–e220 

Goodman, D. F. M. and Brette, R. (2008). Brian: A simulator for spiking neural networks in python. 

Front. Neuroinform. 2. https://doi.org/10.3389/neuro.11.005.2008. 



 
12 

This is a provisional file, not the final typeset article 

Gurunathan A and Iyer L. Spurious learning in networks with Spike Driven Synaptic Plasticity. 

International Conference on Neuromorphic Systems 2020. (1-8). 

https://doi.org/10.1145/3407197.3407226 

Holt, G. R., and Koch, C. (1997). Shunting inhibition does not have a divisive effect on firing rates. 

Neural Computation. 9(5), 1001–1013. https://doi.org/10.1162/neco.1997.9.5.1001. 

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-Cummings, R., Delbruck, 

T., Liu, S. C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., 

Hynna, K., Folowosele, F., Saighi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K. 

(2011). Neuromorphic silicon neuron circuits. Frontiers in Neuroscience. 

https://doi.org/10.3389/fnins.2011.00073. 

Indiveri, G. and Fusi, S. (2007). Spike-based learning in VLSI networks of integrate-and-fire 

neurons. Proc. of 2007 IEEE International Symposium on Circuits and Systems. doi: 

10.1109/ISCAS.2007.378290. 

Jaeger, H. (2001) The echo state approach to analysing and training recurrent neural networks with 

an erratum note. GMD Report. 

Kadmon, J., and Somopolinsky, H. (2015). Transition to Chaos in Random Neuronal Networks. 

Physical Review X 5, 041030. https://doi.org/10.1103/PhysRevX.5.041030. 

Kiranyaz, S., Ince, T., Gabbouj, M. (2016). Real-time patient-specific ECG classification by 1-D 

convolutional neural networks. IEEE Trans. on Biomedical Engineering. 63(3), 664–675. doi: 

10.1109/TBME.2015.2468589. 

Kreiser, R., Moraitis, T., Sandamirskaya, Y., Indiveri, G., (2017). On-chip unsupervised learning in 

Winner-Take-All networks on spiking neurons. Proc. of 2017 IEEE Biomedical Circuits and Systems 

Conference. 1-4. doi: 10.1109/BIOCAS.2017.8325168. 

Kuzum, D., Jeyasingh, R.-G.-D., Lee, B., Wong, H.-S. P. (2012). Nanoelectronic programmable 

synapses based on phase change materials for brain-inspired computing. Nano Letters. 12, 2179–

2186. https://doi.org/10.1021/nl201040y. 

Landau, I. D., and Somopolinsky, H., (2018). Coherent chaos in a recurrent neural network with 

structured connectivity. PLOS computational Biology.  

Lazar, A., Pipa, G., Triesch, J. (2009). SORN: a self-organizing recurrent neural network. Front. 

Computational Neuroscience. 3. https://doi.org/10.3389/neuro.10.023.2009 

Legenstein, R., Naeger, C., Maass, W. (2005). What can a neuron learn with spike-timing-dependent 

plasticity? Neural computation, 17(11), 2337-2382. https://doi.org/10.1162/0899766054796888 

Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., Jiang, H., Montgomery, E., Lin, P., Wang, Z., 

Song, W., Strachan, J., Barnell, M., Wu, Q., Williams, R., Yang, J., Xia, Q. (2018). Efficient and 

self-adaptive in-situ learning in multilayer memristor neural networks. Nature Communications. 9, 

2385. https://doi.org/10.1038/s41467-018-04484-2. 



 
13 

Li, C., Li, Y. (2013). A spike-based model of neuronal intrinsic plasticity. IEEE Transactions on 

Autonomous Mental Development. 5(1), 62–73. doi:  10.1109/TAMD.2012.2211101. 

Liu, S.-H., Cheng, D.-C., Lin, C.-M. (2013). Arrhythmia identification with two-lead 

electrocardiograms using artificial neural networks and support vector machines for a portable ECG 

monitor system. Sensors 2013, 13(1), 813-828; https://doi.org/10.3390/s130100813. 

Maass, W., Natschlger, T., Markram, H. (2002). Real-time computing without stable states: A new 

framework for neural computation based on perturbations. Neural computation. 14(11), 2531-2560. 

Mitra, S., Fusi, D., Indiveri, G. (2009). Real-Time Classification of Complex Patterns Using Spike-

Based Learning in Neuromorphic VLSI. IEEE Transaction on Biomedical Circuit and Systems. 3 (1): 

32-42. https://doi.org/10.5167/uzh-32026. 

Moody, G. B., Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia database. IEEE 

Engineering in medicine and Biology Magazine, 20(3):45-50. doi: 10.1109/51.932724. 

Moro, F., Esmanhotto, E., Hirtzlin, T., Castellani, N., Trabelsi, A., Dalgaty, T., Molas, G., Andrieu, 

F., Brivio, S., Spiga, S., Indiveri, G., Payand, M., Vianello, E. (2022). Hardware calibrated learning 

to compensate heterogeneity in analog RRAM-based Spiking Neural Networks. IEEE International 

Symposium on Circuits and Systems (ISCAS). 380-383. doi: 10.1109/ISCAS48785.2022.9937820. 

Nicola, W., Clopath, C. (2017). Supervised learning in spiking neural networks with Force training. 

Nature Communications. 8, 2208. https://doi.org/10.1038/s41467-017-01827-3. 

Ning, Q., Hesham, M., Federico, C., Marc, O., Stefanini, F., Sumislawska, D., Indiveri, G. (2015). A 

reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K 

synapses. Front. Neuroscience. 9. https://doi.org/10.3389/fnins.2015.00141. 

Payvand, M., D’Agostino, S., Moro, F., Demirag, Y., Indiveri, G., Vianello, E. (2023). Dendritic 

Computation through Exploiting Resistive Memory as both Delays and Weights. Proc. of the 2023 

International Conference on Neuromorphic Systems. 27. https://doi.org/10.1145/3589737.3605977 

Payvand, M., Demirag, Y., Dalgathy, T., Vianello, E., Indiveri, G. (2020). Analog weight updates 

with compliance current modulation of binary ReRAMs for on-chip learning. Proc. of 2020 IEEE 

International Symposium on Circuits and Systems. 1-5. doi: 10.1109/ISCAS45731.2020.9180808. 

Payvand, M., Moro, F., Nomura, K., Dalgaty, T., Vianello, E., Nishi, Y., Indiveri, G. (2022). Self-

organization of an inhomogeneous memristive hardware for sequence learning. Nature 

Communications. 13, 5793. https://doi.org/10.1038/s41467-022-33476-6. 

Pfister, J., Toyoizumi, T., Barber, D., Gerstner, W. (2006). Optimal spike-timing-dependent plasticity 

for precise action potential firing in supervised learning. Neural computation. 18(6), 1318-1348. 

https://doi.org/10.1162/neco.2006.18.6.1318. 

PhysioNet. (1999). MITBIH Long-Term ECG Database (Version 1.0). 

https://physionet.org/content/ltdb/1.0.0/ [Published August 3, 1999]. 



 
14 

This is a provisional file, not the final typeset article 

Ponulak, F., Kasinski, A. (2010). Supervised learning in spiking neural networks with ReSuMe: 

sequence learning, classification, and spike shifting. Neural Computation. 22(2), 467-510. 

https://doi.org/10.1162/neco.2009.11-08-901. 

Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K. K., Strukov, D. B. 

(2015). Training and operation of an integrated neuromorphic network based on metal-oxide 

memristors. Nature. 521, 61–64. https://doi.org/10.1038/nature14441. 

Qiao, N., Bartolozzi, C., Indiveri, G. (2017). An Ultralow Leakage Synaptic scaling Homeostatic 

Plasticity Circuit With Configurable Time Scales up to 100ks. IEEE transaction on Biomedical 

Circuits and Systems. 11(6), 1271-1277. doi: 10.1109/TBCAS.2017.2754383. 

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., Indiveri, G. (2015). 

A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k 

synapses. Front. Neuroscience. 9. https://doi.org/10.3389/fnins.2015.00141. 

Somopolinsky, H., Crisanti, A., and Sommers, H. J. (1988). Chaos in Random Neural Networks. 

Physical review letter, 61, 259. 

Srinivasan, G., Roy, S., Raghunathan, V., Roy, K. (2017). Spike Timing Dependent plasticity based 

Enhanced Self-Learning for Efficient Pattern Recognition in Spiking Neural Networks. Proc. of 2017 

International Joint Conference on Neural Networks. 1847-1854. doi: 10.1109/IJCNN.2017.7966075. 

Steil, J. J. (2007). Online reservoir adaptation by intrinsic plasticity for backpropagation-

decorrelation and echo state learning. Neural Networks. 20(3), 353–364. 

https://doi.org/10.1016/j.neunet.2007.04.011. 

Sussillo, D., Abbott, L. F. (2009). Generating coherent patterns of activity from chaotic neural 

networks. Neuron. 63(4), 544-557. https://doi.org/10.1016/j.neuron.2009.07.018. 

Tetzlaff, C., Dasgupta, S., Kulvicius, T., Wörgötter, F. (2015). The Use of Hebbian Cell Assemblies 

for Nonlinear Computation. Scientific Reports. 5,12866. https://doi.org/10.1038/srep12866 

Thalmeier, D., Uhlmann, M., Kappen, J. H., Memmesheimer, R. M. (2016). Learning Universal 

Computations with Spikes. PLOS Computational Biology. 

https://doi.org/10.1371/journal.pcbi.1004895. 

Wang, N., Zhou, J., Dai, G., Huang, J., Xie, Y. (2019). Energy-efficient intelligent ECG monitoring 

for wearable devices. IEEE Transactions on Biomedical Circuits and Systems. 13(5), 1112–1121. 

doi: 10.1109/TBCAS.2019.2930215. 

Yongqiang, M., Donati, E., Chen, B., Ren, P., Zheng, N. Indiveri, G. (2020). Neuromorphic 

Implementation of a Recurrent Neural Network for EMG Classification. Proc. of 2nd IEEE 

International Conference on Artificial Intelligence Circuits and Systems (AICAS). 69-73. doi: 

10.1109/AICAS48895.2020.9073810. 

Zhang, A., Li, X., Gao, Y., Niu, Y. (2021). Event-Driven Intrinsic Plasticity for Spiking 

Convolutional Neural Networks”, IEEE Transactions on Neural Networks and Learning Systems. 

33(55), 1986-1995. doi: 10.1109/TNNLS.2021.3084955. 



 
15 

Zhang, W., Li, P. (2019). Information-Theoretic Intrinsic Plasticity for Online Unsupervised 

Learning in Spiking Neural Networks. Front. Neuroscience. 13. 

https://doi.org/10.3389/fnins.2019.00031. 

 

Neurons Synapses 

 Excitatory Inhibitory 𝑊 1.0 

# of Neurons 160 40 SRNN 

𝑅 (𝑀Ω) 400 400 𝑃𝐸𝐸  5% 

𝐶 (𝑝𝐹) 10 10 𝑃𝐼𝐼 0% 

𝜏𝐶𝑎 (𝑚𝑠) 100 100 𝑃𝐸𝐼 2% 

𝑉𝑡ℎ (𝑉) 0.2 0,2 𝑃𝐼𝐸 10% 

Table1. Initial values in SRNN simulations. 

 

Figure 1. Model and behavior of each component of SRNN. (A) LIF neuron circuit diagram. (B) 

Schematic diagram of synaptic weight variation. (C) Behavior of 𝐶𝑓𝑖𝑟𝑒
𝑖  and 𝑉𝑡ℎ𝑟

𝑖  depending on 𝐶𝐼𝑃.  

 

https://doi.org/10.3389/fnins.2019.00031
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Figure 2. Hardware implementation for an SRNN. (A) SRNN consists of input, middle (M-SRNN), 

and output layers. The M-SRNN consists of excitatory (E, black) and inhibitory (I, blue) sub-

population layers. (B) Hardware implementation for M-SRNN. 

 

Figure 3. ECG benchmark waveform (number 14046) used in the simulation. (A) Normal ECG 

waveform. (B) Abnormal ECG waveform. 

 

Figure 4. 𝐷(𝑘) with 𝑇𝑏𝑖𝑛 = 150 𝑚𝑠, 𝐿𝑅𝑆𝐷𝑆𝑃 = 2.0, 𝐿𝑅𝑡ℎ𝑟 = 0.025 𝑉, and 𝜎 = 0.3. (A)(B) Normal 

and abnormal cases by initial M-SRNN, (C)(D) by M-SRNN reconstructed by only SDSP learning, 

(E)(F) by M-SRNN reconstructed by SDSP and synchronized IP learning, and (G)(H) original data 

waveform, respectively. 
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Figure 5. Heatmaps of 𝑊𝑡ℎ𝑟. 𝑇𝑏𝑖𝑛 = (𝐀)7 𝑚𝑠, (𝐁) 150 𝑚𝑠, and (C) 600 𝑚𝑠, respectively. 

 

Figure 6.  𝐷(𝑘) when abnormal ECG waveform is detected in SRNN reconstructed with 𝐿𝑅𝑆𝐷𝑆𝑃 =
0.1 and 𝐿𝑅𝑡ℎ𝑟 = 0.3𝑉. 𝑇𝑏𝑖𝑛 = (𝐀) 7 𝑚𝑠, (𝐁) 150 𝑚𝑠, and (C) 600 𝑚𝑠, respectively. 

 

Figure 7. Heatmaps of 𝑊𝑡ℎ𝑟 in case of 𝑁𝑖𝑛𝑝𝑢𝑡 = (𝐀) 10, (𝐁) 100, and (𝐂) 200 (𝑇𝑏𝑖𝑛 = 7𝑚𝑠), 

respectively. 
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Figure 8. 𝑊𝑡ℎ𝑟 and 𝐷(𝑘) in the case of 𝐿𝑅𝑆𝐷𝑆𝑃 = 2.0 and 𝐿𝑅𝑡ℎ𝑟 = 0.3𝑉. The center graph shows the 

𝑊𝑡ℎ𝑟 against 𝐹𝑝𝑜𝑖𝑠𝑠𝑜𝑛. The outer diagrams represent 𝐷(𝑘) corresponding to (A)-(D) points in the 

center diagram. 𝐹𝑝𝑜𝑖𝑠𝑠𝑜𝑛 = (𝐀) 150, (𝐁) 750, (𝐂) 1200, and (D) 1500𝐻𝑧, respectively. 

 

Figure 9. 𝐷𝑎𝑏
𝑚𝑖𝑛 and 𝐷𝑛𝑜

𝑚𝑎𝑥 with 𝐿𝑅𝑆𝐷𝑆𝑃 = 2.0 and 𝐿𝑅𝑡ℎ𝑟 = 0.3𝑉 against 𝐹𝑝𝑜𝑖𝑠𝑠𝑜𝑛. 

 


