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A defect density which quantifies the deviation from the spin ground state characterizes non-
equilibrium dynamics during phase transitions. The widely recognized Kibble-Zurek scaling pre-
dicts how the defect density evolves during phase transitions. However, it can be perturbed by
noise, leading to anti-Kibble-Zurek scaling. In this research, we analytically investigate the effect
of Gaussian white noise on the transition probabilities of the Landau–Zener model. We apply this
model to the one-dimensional transverse field Ising model and derive an analytical approximation
for the defect density. Our analysis reveals that under small noise conditions, the model follows an
anti-Kibble–Zurek scaling. As the noise increases, a new scaling behavior emerges, showing higher
accuracy than previously reported. Furthermore, we identify the parameters that optimize the de-
fect density based on the new scaling. This allows for the refinement of optimized parameters with
greater precision and provides further validations of previously established scaling.

I. INTRODUCTION

In modern quantum physics, understanding the dy-
namics of phase transitions is essential for quantum infor-
mation and quantum technology. Notably, the Quantum
Kibble–Zurek mechanism (QKZM) has attracted con-
siderable attention [1–4]. QKZM serves as a theoreti-
cal framework that provides scaling laws for quantum
phase transitions in the adiabatic limit. QKZM is an
application of the Kibble–Zurek mechanism to quantum
systems, which was originally proposed within cosmol-
ogy [5, 6] and later applied to condensed matter sys-
tems [7–9].

The transverse field XY-chain model and the trans-
verse field Ising model are systems where the spins are
excited by an external magnetic field. The QKZM sug-
gests that quantum phase transitions follow particular
scaling laws in the adiabatic regime [1–4, 10]. It allows
us to predict the defect density, which represents devia-
tions from the ground state.

In the context of quantum control, it is desirable to
minimize defects. According to the QKZM law, as the
driving speed v decreases, the number of defects de-
creases as well. The limit as v approaches zero is re-
ferred to as the adiabatic limit. However, recent study
have observed an interesting phenomenon called the anti-
Kibble–Zurek mechanism (anti-KZM) [11–15], where the
scaling breaks down in the adiabatic region when exter-
nal noise is introduced into the system. Anti-KZM may
be effective in some experiments deriving scaling with the
transverse Ising chain [16–20] or with other systems [21–
27]. The scaling law proposed by anti-KZM argues that
defects become larger when the driving speed v is small,
contrary to the QKZM. This suggests that there exists
a specific non-zero optimized driving speed, denoted by
vopt, which minimizes defects. Therefore, clarifying the
scaling based on anti-KZM is important and it is neces-
sary to conduct theoretical research.

In previous research simulating the defect density in
the transverse field XY-chain model with a Gaussian
white noise [12], the Hamiltonian has been considered

HXY (t) = −
N
∑

j=1

(

Jxσ
x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + hσz

j

)

,

=− K

2

N
∑

j=1

(

(1 + φ)σx
j σ

x
j+1 + (1 − φ)σy

j σ
y
j+1

)

− h
N
∑

j=1

σz
j .

Here, K = Jx + Jy, φ =
Jx−Jy

K . The number of spins N
is assumed to be sufficiently large, implying a thermody-
namic limit. The parameter t takes from an infinite past
to an infinite future. The system evolves from the initial
state, which is the ground state. At the final time, the de-
fect density which is the deviation from the ground state
is calculated numerically. The time-dependence is intro-
duced through either h(t) = vt+ γ(t), Jx(t) = vt+ γ(t),
or φ(t) = vt+γ(t). Here, v is the driving speed, and γ(t)
denotes Gaussian noise with zero mean and the second
moment that satisfies γ(t) = 0, γ(t)γ(t′) = W 2δ(t− t′).
The scaling of the defect density n for small W is repre-
sented as [12]

n ∼ cvβ + rv−1. (1)

Here, c, r, and β are coefficients determined by the choice
of the system and the parameters. The first term repre-
sents the well-known term identified in QKZM, while the
second term which is proper to v−1 emerges due to the
introduction of noise. The mechanism is referred to as
anti-KZM, where n increases as v decreases. This is a
numerically established result and are not analytically
demonstrated.
The defect density is derived by transforming the

system into a time-dependent quantum two-level sys-
tem through the Jordan–Wigner transformation. Models
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such as the one-dimensional transverse field XY-chain
model and the one-dimensional transverse field Ising
model, which incorporate noise, are transformed into
noise-induced Landau–Zener models. When introducing
the Gaussian white noise γ(t), it is established that the
density matrix follows a master equation [13, 28, 29]. The
density matrix derives the transition probability and the
defect density.
In a numerical research on the noise-induced transverse

field Ising model with Gaussian white noise [13], corre-
sponding to the case of Jx(t) = vt+γ(t), Jy = 0, h(t) =
J − vt − γ(t), t ∈ [0, J/v], the similar anti-KZM scal-
ing as in Eq. (1) has been confirmed. Unfortunately, the
scaling of v−1 in Eq. (1) leads to divergence for small v.
However, as stated in [13], applying the Kayanuma for-
mula [30] provides an asymptotic expression in the small
v regime

nKayanuma ∼ 1

2
−

√
v

4πJ
,

which does not diverge. This formula is derived under the
approximation that the noise is sufficiently large. This
result converges asymptotically to 1/2 as v approaches
zero, which is consistent with the numerical simulation.
However, in the other region this formula is not valid.
Therefore, for small v, a more precise approximate solu-
tion is required.
The analytical derivation of the transition probabil-

ity in the noise-induced Landau–Zener model has been
done in previous studies [30, 31]. However, the noise
considered in these analyses is a different types of noise,
expressed as γ̃(t). Here, γ̃(t) represents Gaussian noise

with γ̃(t) = 0 and γ̃(t)γ̃(t′) = W̃ 2e−Γ|t−t′|. It may
not be feasible to directly apply Gaussian white noise
to derive these approximate solutions. This is because
the study [30] assumes a large noise in the last and
the system considered in [31] does not cover all cases.
The research [14] analytically derives the defect den-
sity introduced the noise γ̃(t) in the nearest-neighbor
interaction term by using the result from [31]. In ad-
dition, the work [15] has established anti-KZM scaling
in fully connected models. Other studies have explored
systems under various perturbations, such as a recycling
term [32, 33], a time-dependent simple harmonic oscilla-
tor [34–37], and a dissipative thermal bath [38–44].
This research aims to analytically derive the defect

density and to reproduce the anti-KZM in the one-
dimensional transverse field Ising model with Gaussian
white noise in the transverse field term. In addition,
we derive a more precise scaling than the previously pro-
posed anti-KZM scaling in previously unexplored regions.
To this end, we first perform an analytical derivation of
the transition probabilities from the ground state in the
Landau–Zener model with Gaussian white noise. Second,
by applying approximate solutions of the Landau–Zener
model to the transverse field Ising model, we find the
anti-KZM scaling. Finally, we examine the correlation
between the optimized driving speed vopt with respect

to the parameterW 2, which represents the magnitude of
the noise. While the scaling of vopt with W 2 is already

known to be vopt ∝ W
4

3 in the small W 2 regime from
numerical calculations [12, 13], our research extends this
analysis to the unexplored regime of large W 2.
In Sec. II, we calculate the transition probability of

the Landau–Zener model with Gaussian white noise. In
Sec. III, we apply the formula discussed in Sec. II to the
transverse field ising chain with Gaussian white noise in
the adiabatic limit to determine the scaling of the defect
density. Section IV is dedicated to a discussion on the
parameters that minimize the defect density. Section V
is the conclusion.

II. THE LANDAU–ZENER MODEL WITH

GAUSSIAN WHITE NOISE

In the natural units, consider the following two-level
Hamiltonian system

HLZ+noise(t) = H0(t) +Hnoise(t), (2)

H0(t) =
vt

2
σz + Jσx, Hnoise(t) = γ(t)σz .

Here, γ(t) represents Gaussian white noise satisfying

γ(t) = 0 and γ(t)γ(t′) = W 2δ(t − t′), where W 2 and
J are constants with an energy dimension. The quan-
tities with an overline indicate that they are ensemble-
averaged. The driving speed v has dimensions of the
square of the energy. The term H0(t) corresponds to
a Landau–Zener-type Hamiltonian. It has already been
well analyzed, and the time-evolution operator is ob-
tained with the parabolic cylinder functions.
The expectation value of a time-independent and

noise-independent observable P at an arbitrary time t
can be expressed as

〈

P (t)
〉

= Tr
[

ρ(t)P
]

= Tr
[

U(t, ti)ρ(ti)U †(t, ti)P
]

, (3)

where the density matrix ρ(t) and the time-evolution op-
erator U(t, ti) include contributions of noise. ti is an
initial time and U(ti, ti) = 1. The noise-averaged density

matrix ρ(t) follows the master equation

d

dt
ρ(t) = −i

[

H0(t), ρ(t)
]

+
1

2
W 2

[[

σz , ρ(t)
]

, σz
]

.

This equation is verified in [13] by Novikov’s theorem [45]
and by the other derivations [28, 29]. Employing the
dimensionless parameters: the time parameter τ =

√
vt,

the adiabatic parameter κ = J2/v, and the noise strength
parameter λ = W 2/J , the master equation is expressed
as

d

dτ
ρ(τ) = −i

[

H0(τ), ρ(τ)
]

+
λ

2

√
κ
[[

σz , ρ(τ)
]

, σz
]

,(4)

H0(τ) =
τ

2
σz +

√
κσx.
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At an initial time τi chosen to be the infinite past,
we set the initial condition as the ground state ρ(τi) =
|↑〉 〈↑|. Here, σz |↑〉 = |↑〉. To determine the probability
of maintaining |↑〉 〈↑|, which corresponds to the transition
probability, we define P = |↑〉 〈↑| in Eq. (3). We solve the

time evolution equation for ρ(τ) up to the final time τf by
the master equation Eq. (4) and calculate the transition

probability
〈

P (τf )
〉

. The first term on the right-hand

side of Eq. (4) represents the unitary term. If only this
term is considered, analytical solutions for the density
matrix ρ(τ) at any time are obtained with the parabolic

cylinder functions. It is known that
〈

P (τf )
〉

= e−2πκ.

As the parameter κ increases, the transition probability
decreases. The second term in Eq. (4), the dissipation
term, accounts for the interaction with noise. The pres-
ence of this term leads to an increase in the transition
probability as κ increases. The master equation Eq. (4)
exhibits explicit time dependence solely through H0. If
the initial time is the infinite past and the final time is
the infinite future, the shift of the time τ of H0 does not
depend on the transition probability at the final time.
In this study, we consider the case where the noise is

sufficiently small, i.e., λ ≪ 1. We divide κ into three
distinct regions: (i) the small region (κ ≪ 1), (ii) the
medium region (1 ≪ κ ≪ 1

λ), and (iii) the large region

( 1λ ≪ κ). In the regions (i) and (ii), we employ perturba-
tion approximation up to the first order with respect to
λ in Sec. II A. On the other hand, in the regions (ii) and
(iii), we employ the adiabatic approximation in Sec. II B.
By connecting the approximations, we derive the globally
effective approximation in Sec. II C.
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FIG. 1. A schematic diagram illustrating the domains of κ:
(i), (ii), and (iii). Over each region, the corresponding ap-
proximation methods are indicated.

A. First-order perturbation for noise

In this subsection, we consider (i) the small region
(κ ≪ 1) and (ii) the medium region (1 ≪ κ ≪ 1/λ).
In these regions, we analytically approximate the solu-
tion up to the first order with respect to λ.

The Hamiltonian H0(τ) is referred to as the Landau–
Zener model, and the time-evolution operator for H0(τ)
is expressed as

U0(τ, τi) =

(

f(τ, τi) −g∗(τ, τi)
g(τ, τi) f∗(τ, τi)

)

, (5)

f (τ, τi) =e
−πκ/2Diκ

(

e−
π
4
iτi

)

D−iκ

(

e
π
4
iτ
)

+ e−πκ/2
√
κD−iκ−1

(

e
π
4
iτi

)√
κDiκ−1

(

e−
π
4
iτ
)

,

g (τ, τi) =e
−πκ/2e

π
4
iDiκ

(

e−
π
4
iτi

)√
κD−iκ−1

(

e
π
4
iτ
)

− e−πκ/2e
π
4
i
√
κD−iκ−1

(

e
π
4
iτi

)

Diκ

(

e−
π
4
iτ
)

.

We set the initial condition as U(τi, τi) = 1. Moving to
the interaction picture

ρ̃(τ) =U †
0 (τ, τi)ρ(τ)U0(τ, τi),

σ̃z(τ, τi) =U
†
0 (τ, τi)σzU0(τ, τi),

the transition probability
〈

P (τ)
〉

and the time-evolution

equation for ρ̃(τ) are given by

〈

P (τ)
〉

= Tr
[

U0(τ, τi)ρ̃(τ)U
†
0 (τ, τi)P

]

,

d

dτ
ρ̃(τ) =

1

2
λ
√
κ
[

σ̃z(τ, τi),
[

ρ̃(τ), σ̃z(τ, τi)
]]

. (6)

By integrating Eq. (6) with respect to τ , the transition
probability up to the first order in λ is given by

〈

P (τf )
〉

= 〈↑|U0(τf , τi)ρ̃(τf )U
†
0 (τf , τi) |↑〉

= 〈↑|U0(τf , τi)ρ(τi)U
†
0 (τf , τi) |↑〉+

∫ τf

τi

dτ 〈↑|U0(τf , τi)
λ
√
κ

2
[σ̃z(τ, τi), [ρ(τi), σ̃z(τ, τi)]]U

†
0 (τf , τi) |↑〉+O

(

λ2
)

.

Substituting the specific form of U0 and taking the limits as τi → −∞ and τf → ∞, the expression can be represented
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as

〈

P (τf )
〉

= e−2πκ+4λ
√
κ

∫ ∞

−∞
dτ

(

|X(τ)|2 + 2e−2πκ

1− e−2πκ
(Re(X(τ)))

2
+

2e−πκ

1− e−2πκ
Re (X(τ))Y (τ)

)

+O
(

λ2
)

, (7)

X(τ) =κe−
πκ
2 D−iκ−1(e

iπ
4 τ)Diκ−1(−e−

iπ
4 τ),

Y (τ) =
κ

2
e−

πκ
2

(

|D−iκ−1(e
iπ
4 τ)|2 + |Diκ−1(−e−

iπ
4 τ)|2

)

.

The formulas used in the derivation are given in Ap-
pendix A. Both |X(τ)| and |Y (τ)| do not exceed 1. We

derive ρ̃(τ) by evolving using Eq. (6) from the initial time

τi, and obtain
〈

P (τf )
〉

, which includes contributions up

to the infinite order of λ. Eq. (6) does not have an analyt-
ical solution and is therefore computed numerically. On
the other hand, the approximate solution up to the first
order of λ is derived by calculating Eq. (7). While the
analytical solutions for transition probability at arbitrary
times are not derived, this subsection focuses on deriv-
ing an approximate solution at the final time. These two
numerical plots are illustrated in Fig. 2. According to
Fig. 2, the transition probability approaches the results
of numerical simulations and first-order approximations
when κ is small. As κ increases beyond this point, the
accuracy of the approximation deteriorates due to the
failure of the condition λκ≪ 1.

FIG. 2. Comparison between numerical results obtained
from solving the time evolution through the master equation
Eq. (6) and the first-order approximation of λ Eq. (7). The
solid lines (Numerical) represent the numerical results. The
dashed lines (first order) represent the first-order approxima-
tion. Both simulations cover a time interval from τi = −200
to τf = 200, with λ set to 10−3 and κ set to 100, 10, and 1.

We seek the approximate solution for Eq. (7) in the
regions (i) and (ii). First, we begin the region (i): small
κ. When κ = 0, both X(τ) and Y (τ) equal zero, lead-
ing to the dominance of the first term of the right-hand
side in Eq. (7). Consequently, we can approximate the
expression as

〈

P (τf )
〉

(i)∼ e−2πκ.

This is strongly suppressed where κ ≫ 1, and it only
holds significance in regions where κ is small.

Second, consider the region (ii): medium κ. Given the
condition κ≫ 1, dropping terms proportional to e−πκ is
an effective approximation. Under this approximation,
only the term with |X(τ)|2 in Eq. (7) contributes. Thus,
the transition probability at the final time can be approx-
imated as

〈

P (τf )
〉

∼4λ
√
κe−πκκ2

×
∫ ∞

−∞
dτ

∣

∣

∣D−iκ−1(e
iπ
4 τ)D−iκ−1(−e

iπ
4 τ)

∣

∣

∣

2

.

Ignoring the term of O(κ−2) and O(e−πκ),
〈

P (τf )
〉

is

approximated as

〈

P (τf )
〉

(ii)∼ 2πλκ. (8)

The detailed derivation is conducted in Appendix B and
C. It is evident that Eq. (8) becomes zero when κ = 0.

Therefore, effective solutions in the region where κ
is small are dominant only within the region, and con-
versely, effective solutions in the region where κ is large
are dominant only within the region. Hence, the tran-
sition probability in both regions (i) and (ii) can be ap-
proximated as the sum of effective solutions,

〈

P (τf )
〉

(i),(ii)∼ e−2πκ + 2πλκ. (9)

The first term on the right-hand side represents the tran-
sition probability of the Landau–Zener model in the ab-
sence of noise. The second term corresponds to the influ-
ence of the noise. Despite being a transition probability,
the right-hand side diverges as κ → ∞ due to the noise
effect. This approximate solution is valid only in the re-
gion where λκ ≪ 1, and it is not allowed to take the limit
of κ approaching infinity. This is confirmed by the com-
parison between numerical and approximate solutions in
Fig. 2. As κ increases, the influence of higher-order con-
tributions of λ becomes significant, leading to a deterio-
ration in the accuracy of the first-order approximation.
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B. Adiabatic approximation

In the regions (ii) and (iii), that is κ≫ 1, the adiabatic
approximation is employed as [33]. The equations of the

components of the density matrix ρ(τ), derived from the
master equation Eq. (4), are

ρ(τ) =

(

ρ11(τ) ρ12(τ)
ρ21(τ) ρ22(τ)

)

,

d

dτ
|ρ(τ)〉〉 = d

dτ
(ρ11(τ) ρ12(τ) ρ21(τ) ρ22(τ))

T

=







0 i
√
κ −i√κ 0

i
√
κ −i τ2 − λ

√
κ 0 −i√κ

−i√κ 0 i τ2 − λ
√
κ i

√
κ

0 −i√κ i
√
κ 0













ρ11(τ)
ρ12(τ)
ρ21(τ)
ρ22(τ)






.

The term O(λ2) is neglected in the following analysis in
this subsection. Let z(τ) = τ

4
√
κ
. The time evolution

with this Liouvillian is calculated by using the adiabatic
approximation [46]. The specific calculations are detailed
in Appendix D. The eigenvalues of the Liouvillian are

χ1(τ) =0,

χ2(τ) =− λ

z2(τ) + 1

√
κ,

χ3(τ) =− 2z2(τ) + 1

2z2(τ) + 2
λ
√
κ− 2i

√

z2(τ) + 1
√
κ,

χ4(τ) =− 2z2(τ) + 1

2z2(τ) + 2
λ
√
κ+ 2i

√

z2(τ) + 1
√
κ.

The Liouvillian is diagonalized with 4× 4 matrix S(τ) as

S(τ)







χ1(τ) 0 0 0
0 χ2(τ) 0 0
0 0 χ3(τ) 0
0 0 0 χ4(τ)






S−1(τ).

The adiabatic basis is defined as |ρ̃(τ)〉〉 = S−1(τ)|ρ(τ)〉〉.
In this adiabatic basis, the master equation takes

d

dτ
|ρ̃(τ)〉〉 ∼







χ1(τ) 0 0 0
0 χ2(τ) 0 0
0 0 χ3(τ) 0
0 0 0 χ4(τ)






|ρ̃(τ)〉〉.

The approximation is referred adiabatic approximation
and is effective in the region where κ≫ 1. Using the ini-
tial conditions ρ11(τi) = 1, ρ12(τi) = ρ21(τi) = ρ22(τi) =
0 and the conditions τi → −∞ and τf → ∞, transition
probability is approximated as

〈

P (τf )
〉

(ii),(iii)∼ 1

2
(1− exp (−4πλκ)). (10)

This is the approximate solution when κ≫ 1.

C. Approximate solution for the transition

probability

Connecting the approximation Eq. (9) derived in the
regions (i) and (ii) with the approximation Eq. (10) de-
rived in the regions (ii) and (iii), the effective transition
probability in the regions (i), (ii), and (iii) is expressed
as

〈

P (τf )
〉

all∼ pnon-ad(κ) + pad(λ, κ), (11)

pnon-ad(κ) = e−2πκ,

pad(λ, κ) =
1

2
(1− exp (−4πλκ)).

This coincides with Eq. (9) to the first-order perturba-
tion of λ. Fig. 3 displays the numerical result obtained
from solving the master equation Eq. (6) and the approx-
imation solutions Eq. (11).

FIG. 3. Plots of the transition probabilities at τf against κ.
The blue line (Numerical) represents the numerical simulation
of Eq. (6) over the time span from τi = −200 to τf = 200. The
yellow dashed line (Non-adiabatic) represents pnon-ad, while
the red dashed line (Adiabatic) represents pad, with λ = 10−3.
The gray dot line represents 1/2.

It becomes apparent that the non-adiabatic approxi-
mation solution is effective in the small κ region, while
the adiabatic approximation solution is effective in the
large κ region. We illustrate the comparison between the
numerically derived transition probability and pnon-ad +
pad in the κ ∼ 1 domain in Fig. 4.
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FIG. 4. Plots of the transition probabilities at τf against κ,
focusing around κ = 1. The blue line (Numerical) represents
the numerical simulation of Eq. (6) over the time interval
from τi = −200 to τf = 200. The green dashed line (Non-
adiabatic+Adiabatic) represents pnon-ad+pad, with λ = 10−3.

While we have not found a precise solution near κ ∼
1, it is confirmed that Eq. (11) does not significantly
deviate from the numerical results. The behavior of the
transition probability in the regime where κ is sufficiently
large is provided in Appendix E.

III. TRANSVERSE FIELD ISING CHAIN WITH

GAUSSIAN WHITE NOISE

In Sec. II, We have considered a system involving the
two-level Landau–Zener model with Gaussian white noise
to analyze transition probability. In this section, we ex-
tend this theoretical framework to apply it to the trans-
verse field Ising model following the approach [3]. The
Hamiltonian is described as

HIC(t) = −1

2

N
∑

j=1

((

vt

2
+ γ(t)

)

σz
j + Jσx

j σ
x
j+1

)

.(12)

Here, a periodic boundary condition σa
N+1 = σa

1 is im-
posed. We consider a sufficiently large number of spins
N , corresponding to a thermodynamic limit. For sim-
plicity, we assume N is an even number. In the adia-
batic regime, where κ is large, we seek the defect density
and verify its scaling. Taking the initial state as the
ground state of this Hamiltonian, the state evolves under
this Hamiltonian HIC. The initial state at initial time
τi ∼ −∞ consists of spin-down particles |ψ(τi)〉 = |↓〉⊗N

j ,

where σz
j |↓〉j = − |↓〉j . The ground state at the final

time τf ∼ ∞ consists of spin-up particles |↑〉⊗N
j . The

defect density corresponds to the density of spin-down
particles at the final time. The aim is to derive ana-
lytically the defect density at the final time. Here, we
introduce the spinless fermion operator ĉj and perform
the Jordan-Wigner transformation as

σz
j = 1− 2ĉ†j ĉj , σx

j =
(

ĉ†j + ĉj

)

∏

l<j

(−σz
l ).

The operators ĉj satisfy the anticommutation relations

{ĉj, ĉ†k} = δjk and {ĉj , ĉk} = {ĉ†j, ĉ†k} = 0. When op-

erating
∏N

j=1 σ
z
j on the initial state, the eigenvalue is 1.

It indicates ĉj follows the anti-periodic boundary condi-
tions ĉN+1 = −ĉ1 [3]. Therefore, performing the Fourier
transform of the operator ĉj , we obtain

ĉj =
1√
N
e−iπ

4

∑

q

e−iqj ĉq,

where q = ±(2n − 1)π/N, n ∈ 1, · · · , N/2. Using the
operators ĉq, the Hamiltonian Eq. (12) can be expressed
as

HIC(t) =
∑

q>0

(ĉ†q ĉ−q)(hq(t) + hnoise(t))

(

ĉq
ĉ†−q

)

, (13)

where

hq(t) =

(

vt

2
+ J cos q

)

σz + J sin qσx,

hnoise(t) = γ(t)σz .

We define the states as |↑〉q = ĉ†q ĉ
†
−q |0〉q and |↓〉q = |0〉q,

where |0〉q represents the normalized vacuum state for

mode q, satisfying ĉq |0〉q = ĉ−q |0〉q = 0. The ground

state at infinite past for mode q is obtained by |↑〉⊗q>0
q

from Eq. (13). Since the Hamiltonian is separable into
sums for each mode q and the total sum of q remains
conserved, the density operator at any time t can be de-
composed as

ρ̂(t) =
⊗

q>0

ρ̂q(t).

Here, ρ̂q is a density operator constructed only from |↑〉q
and |↓〉q. For the initial conditions in mode q, we select

the pure state of the ground state |↑〉q 〈↑|. The density

operator ρ̂q(t) is represented in matrix form as

ρq(t) =

(

q 〈↑| ρ̂q(t) |↑〉q q 〈↑| ρ̂q(t) |↓〉q
q 〈↓| ρ̂q(t) |↑〉q q 〈↓| ρ̂q(t) |↓〉q

)

.

The density matrix ρq(t) evolves under the Hamiltonian
hq(t) + hnoise(t). The transition probability in mode q
at time t is expressed using the time evolution operator
Uq(t, ti) and the noise-averaged density matrix ρq(t) as

〈

Pq(t)
〉

=Tr
[

ρq(t)Pq

]

=Tr
[

Uq(t, ti)ρq(ti)U
†
q (t, ti)Pq

]

,

where Pq = diag(1, 0), which corresponds to |↑〉q 〈↑|.
Similar to Sec. II, the noise-averaged density matrix ρq(t)
satisfies the master equation

d

dt
ρq(t) = −i

[

hq(t), ρq(t)
]

+
1

2
W 2

[[

σz, ρq(t)
]

, σz
]

.
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The differences with Eq. (2) involve a time shift in hq(t)
compared to H0(t), and the modification of the coupling
term from J in H0(t) to J sin q in hq(t). Considering
the initial and final times extending to the infinite past
and future, the time shift in hq(t) can be neglected. The
dimensionless master equation is expressed as

d

dτ
ρq(τ) = −i

[

h̃q(τ), ρq(τ)
]

+
λ

2

√
κ
[[

σz, ρq(τ)
]

, σz
]

,

h̃q(τ) =
τ

2
σz +

√
κqσ

x,

κq = κ sin2 q.

This master equation is similar to Eq. (4). The parameter
κq satisfies the conditions κπ

2
= κ and κq ≤ κ = J2/v.

In the vicinity of q ∼ 0, π, the energy gap diminishes,
indicating the non-adiabatic regime. Whereas elsewhere,
a significant energy gap prevails, indicating the adiabatic
domain.

Subsequently, we consider the adiabatic regime. Using
the transition probability of q mode, we calculate the
defect density. As the state |↑〉q denotes a two-particle
state, the expected defects number is twice the transition
probability. Consequently, the expected defects number
at the final time τf can be expressed as

〈N (τf )〉 = 2
∑

q>0

∣

∣

∣

〈

Pq(τf )
〉∣

∣

∣

2

.

In the thermodynamic limit, the normalized expectation
value of defects can be approximated as

n(τf ) =
〈N (τf )〉
N

→
∫ π

0

dq

π

∣

∣

∣

〈

Pq(τf )
〉∣

∣

∣

2

, (14)

where
∑

q>0 →
∫ π

0
dq
2π is used. By using the result of the

Landau-Zener model, we obtain the transition probabil-
ity at final time τf ∼ ∞ as

∣

∣

∣

〈

Pq(τf )
〉∣

∣

∣

2

∼ lnon-ad(q) + lad(q), (15)

lnon-ad(q) = e−2πκq ,

lad(q) =
1

2

(

1− exp
(

−4πλ
√
κ
√
κq

))

.

We present plots showing both the numerical results and
the approximate solution Eq. (15) in Fig. 5. The Nu-
merical result converges to lnon−ad(q) when q is close to
0 or π, while it converges to lad(q) elsewhere. There-
fore, Eq. (15) provides an approximate solution and its
integration yields an approximation of the defect.

FIG. 5. Plots of the transition probability
∣

∣

∣

〈

Pq(τf )
〉∣

∣

∣

2

against

q. The blue line (Numerical) represents the numerical simula-
tion of Eq. (6) over the time span from τi = −200 to τf = 200.
The yellow dashed line (Non-adiabatic) represents lnon-ad(q),
while the red dashed line (Adiabatic) represents lad(q), with
λ = 10−3.

Using Eq. (15), the defect density n(λ, κ) can be ap-
proximated as

n∞-order(λ, κ) =nKZM(κ) + nnoise(λ, κ),

nKZM(κ) =

∫ π

0

dq

π
lnon-ad(q) =

∫ π

0

dq

π
e−2πκ sin2 q

∼ 2

∫ ∞

0

dq

π
e−2πκq2 =

1

π
√
2κ
, (16)

nnoise(λ, κ) =

∫ π

0

dq

π
lad(q)

=

∫ π

0

dq

π

(

1

2
− 1

2
exp (−4πλκ| sin q|)

)

=
1

2
− 1

2
I0(4πλκ) +

1

2
L0(4πλκ)

Here, the condition κ ≫ 1 is used in the calculation
of Eq. (16). Consequently, the approximate solution
n∞-order is valid only in the regime κ ≫ 1. I0(z) is the
modified Bessel function of the first kind and L0(z) is
the modified Struve function [47]. nKZM(κ) represents
the defect density in the absence of noise and corre-
sponds with the result from the QKZM. nnoise denotes
the contribution due to the influence of Gaussian white
noise. n∞-order includes contributions up to infinite order
with respect to λ. By using the asymptotic conditions of
I0(z) and L0(z), n

∞-order → 1/2 can be verified when
λκ → ∞. This implies that the system asymptotically
approaches the infinite-temperature state as the noise be-
comes large. In contrast, when λκ ≪ 1, using the prop-

erties I0(z) = 1 + z2

4 + O(z4) and L0(z) =
2z
π + O(z3),

we can further refine the expression

n∞-order(λ, κ) ∼ 1

π
√
2κ

+ 4λκ =: n1st(λ, κ). (17)

The second term in n1st is proportional to W 2 ∝ λ,
which is expected from computational researches [12, 13].
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Eq. (17) demonstrates the successful reproduction of the
anti-KZM scaling. In the absence of Gaussian white
noise, a larger κ, i.e., a smaller v, leads to a smaller defect
density as expected by QKZM. However, when Gaussian
white noise is induced, the defect density increases in the
region where κ is large. The second term diverges as
κ → ∞, which is due to neglecting higher-order contri-
butions of λκ. Incorporating these higher-order λ con-
tributions improves the accuracy of the approximation.
The approximate solution including contributions up to
the second order with respect to λ is given by

n∞-order(λ, κ) ∼ 1

π
√
2κ

+ 4λκ− 2π2λ2κ2

=: n2nd(λ, κ). (18)

The results of the defect density n obtained numeri-
cally, along with n∞-order, n1st, and n2nd are compared
in Fig. 6. The spin number N is chosen to be a large,
specifically N = 100. λ is smaller in the upper figure.

(a) λ = 10−3

100 101 102

κ

10−1

2 × 10−1

3 × 10−1

4 × 10−1

De
fe

ct
 d

en
sit

y

Numerical(N=100)
∞-order
First-order
Second-order
KZ

(b) λ = 5× 10−3

100 101

κ

2 × 10−1

3 × 10−1

4 × 10−1

De
fe

ct
 d

en
sit

y

Numerical (N=100)
∞-order
First-order
Second-order
KZ

FIG. 6. Plots of the defect density against κ. The upper (a)
corresponds to λ = 10−3, while the lower (b) corresponds to
λ = 5× 10−3. The blue solid lines (Numerical) represent the
numerical simulation of Eq. (6) over the time span τi = −200
to τf = 200, plotting the discrete sum in Eq. (14) with N =
100. The green dashed lines (∞-order) represent n∞-order, the
yellow dashed lines (First-order) represent n1st, and the red
dot lines (Second-order) represent n2nd. The pink solid lines
(KZ) represent nKZM.

It has been verified that n∞-order closely matches the
defect density n in the region where κ is large, which
is adiabatic region. In the region where κ is small, the
approximation used to perform the integration for de-
riving nKZM becomes less effective, and n∞-order is not
a suitable approximation. Both n1st and n2nd serve as
approximate solutions to n∞-order when κ is small. It
is observed that the region where the approximation is
effective for n2nd is larger than that for n1st. Hence,
we have successfully obtained a new scaling n2nd. As
λ increases, the κ which represents the location of the
minimum becomes smaller and the validity of n1st in its
neighborhood becomes worse. The behavior of the de-
fect density in the regime where κ is sufficiently large is
provided in Appendix E.

IV. THE DERIVATION OF THE

OPTIMIZATION PARAMETER

Let vopt denote the value at which the defect density
n attains its minimum. The previous studies [12, 13]
numerically seek the minimum of the defect density n
and obtain the scaling of vopt with respect to W 2 ∝ λ.
We seek the approximation of vopt through the critical

point. As defined by κ1stmin = (27π2λ2)−
1

3 , the derivative
is obtained by

d

dκ
n1st

∣

∣

∣

∣

κ=κ1st

min

= − 1

π(2κ1stmin)
3

2

+ 4λ = 0. (19)

The critical point of n1st is κ = κ1stmin, where n
1st attains

its minimum value. Since κ = J2/v, vopt for n
1st is given

by

v1stopt/J
2 = (27π2λ2)

1

3 .

Therefore, similar to the previous study [13], we have

demonstrated v1stopt ∝ λ
2

3 ∝ W
4

3 . Next, we choose n2nd

as an approximate solution for the defect density n. The
critical point κ2nd cannot be determined analytically. We
make an assumption that κ2nd is close to κ1st. We de-
termine κ2nd as the perturbation from κ1stmin. Setting
κ2ndmin = κ1stmin(1 + ε), the derivative is expressed as

d

dκ
n2nd

∣

∣

∣

∣

κ=κ2nd

min

=− 1

π(2κ2ndmin)
3

2

+ 4λ− 4π2λ2κ2ndmin

=− 1

π(2κ1stmin)
3

2

(1 + ε)−
3

2 + 4λ− 4π2λ2κ1stmin(1 + ε).

Assuming ε to be sufficiently small, incorporating per-
turbations up to the first order in ε yields

d

dκ
n2nd

∣

∣

∣

∣

κ=κ2nd

min

∼ 3ε

2π(2κ1stmin)
3

2

− 4π2λ2κ1stmin(1 + ε).
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Here, Eq. (19) is utilized. For the right-hand side to be
zero, ε is represented as

ε =
1

3

(

π4λ

24

)
1

3

+O
(

λ
2

3

)

.

Thus, ignoring O
(

λ
4

3

)

, vopt for n
2nd is expressed as

v2ndopt /J
2 = (27π2λ2)

1

3 − 2

3
π2λ.

If selected n∞-order as an approximate solution for the de-
fect density, vopt is obtained by finding numerically the
minimum value as v varies. This is denoted as v∞-order

opt .
By solving Eq. (6) and calculating the discrete sum in
Eq. (14), the minimum values are obtained numerically
for vopt. vopt, v

∞-order
opt , v1stopt, and v

2nd
opt against λ are plot-

ted respectively in Fig. 7.

FIG. 7. Plots of vopt against λ. The blue line (Numerical)
represents the numerical simulation of Eq. (6) over the time
span τi = −200 to τf = 200, plotting the discrete sum in
Eq. (14), with N = 100. The green dashed line (∞-order)
represents v∞-order

opt , the yellow dashed line (First-order) rep-
resents v1stopt, and the red dot line (Second-order) represents

v2ndopt .

It can be confirmed that v∞-order
opt serves as an approx-

imation of vopt. Since v2ndopt approaches the numerical

results more closely than v1stopt, we suggest that v2ndopt is

more effective. The relative deviation of v2ndopt over v1stopt is
expressed as

v2ndopt

v1stopt

∼ 1−
(

π4λ

24 × 33

)
1

3

=: 1− ζ(λ).

Let the defect density in each optimized v be nopt, which
corresponds to the minimum value of n. The relative
deviation is expressed as

n2nd
opt

n1st
opt

∼ 1−
(

π4λ

210 × 33

)
1

3

=: 1− ξ(λ).

The magnitude of ζ and ξ indicates the effectiveness of
the approximation of v1stopt and n

1st
opt respectively. If both

parameters are sufficiently small compared to 1, v1stopt and

n1st
opt can be considered effective. For example, when λ =

10−3, ζ ≈ 0.061 and ξ ≈ 0.015. When λ = 5 × 10−3,
ζ ≈ 0.10 and ξ ≈ 0.026. We see that as λ increases, ζ
and ξ increase. This leads to a loss of validity of the first-
order approximation in the regime of large λ. However,
if λ & 0.01, approximation formulas break down. This is
because, as λ increases, the critical point of κ decreases
and the approximation utilized to perform the integration
in Eq. (16) becomes less effective near the critical point.

V. CONCLUSION

Under the approximation of a small noise, λ ≪ 1,
we analytically derived the transition probability of the
Landau–Zener model with Gaussian white noise. We con-
sidered three κ regions: (i) small, (ii) medium, and (iii)
large. For the regions (i) and (ii), we solved a mas-
ter equation under a first-order approximation for λ.
This involved performing integrals of products of spe-
cial functions, and the feasibility of these integrals de-
pends strongly on the system. Hence, it is anticipated
that this method may not be applied to other systems.
However, by selecting parameters that asymptotically ap-
proach those of the system we addressed, we suggested
that other systems may converge to the solutions ob-
tained in this research. For the regions (ii) and (iii),
we employed an adiabatic approximation method, which
is considered to be useful in various other systems.
Applying the analysis of the Landau–Zener model, we

analytically derived the defect density in the transverse
field Ising model with Gaussian white noise. The re-
sults reveal that in the regime where κ ≪ 1/λ, the anti-
KZM scaling previously known through numerical com-
putations [12, 13] is effective. Furthermore, the optimal
parameter vopt follows the same scaling as the anti-KZM
previously known. On the other hand, in the region
where 1/λ ≪ κ, a new scaling was found. It can be
argued that to minimize the defect density, it is desirable
to choose vopt smaller than the value obtained from anti-
KZM previously known in the noisy region. Furthermore,
we have achieved the capability to discuss the efficacy of
first-order perturbation.
While the effectiveness of the approximate solutions

for κ ∼ 1 has not been formally proven, they are
promising approximations by compared to numerical re-
sults. Therefore, further investigation is necessary to con-
firm the reason. Additionally, we aim at extending the
methodology employed in this study to other systems
such as XY chain models.
As an application to another system, we consider the

Schwinger mechanism [48–50], where electron-positron
pairs are expected to be generated when an electric field
is applied to a vacuum. Since the time evolution of this
system is related to the Landau–Zener system, we pro-
pose applying the methods of this research to derive the
number density of electron-positron pairs generated by
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an electric field, accounting for the influence of noise. It
is anticipated that, due to the induced noise, the num-
ber of generated electrons significantly increases as the
dynamically assited Schwinger mechanism [51].
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Appendix A: The derivation of the transition

probability with perturbation

We derive the first-order approximation solution
Eq. (7) for the perturbation. f(τf , τi) and g(τf , τi)
are components of the time evolution operator U0(τ, τi).
These are obtained analytically and are expressed as lin-
ear combinations of parabolic cylinder functions [47] as
Eq. (5). The transition probability is expressed up to
first order in λ as

〈

P (τf )
〉

=|f(τf , τi)|2 − 4λ
√
κ(|f(τf , τi)|2 − |g(τf , τi)|2)

∫ τf

τi

dτ |f(τ, τi)|2|g(τ, τi)|2

+ 4λ
√
κRe

(

f(τf , τi)g(τf , τi)

∫ ∞

−∞
dτ f∗(τ, τi)g

∗(τ, τi)(|f(τ, τi)|2 − |g(τ, τi)|2)
)

.

Using the equations for a positive value of τ

Diκ

(

e
3π
4
iτ
)

∼ e
i
4
τ2

e−
3π
4
κτ iκ +O(τ−1),

D−iκ

(

e
π
4
iτ
)

∼ e−
i
4
τ2

e
π
4
κτ−iκ +O(τ−1),

D−iκ−1

(

e
5π
4
iτ
)

∼
√
2π

Γ(iκ+ 1)
e

i
4
τ2

e−
π
4
κτ iκ +O(τ−1),

Diκ−1

(

e−
π
4
iτ
)

∼ O(τ−1),

|Γ(1 − ix)|2 = πx
sinh(πx) and limiting τi → −∞, τf → ∞,

the transition probability is obtained as

X̃(τ) =

√
2πκ

Γ(1 + iκ)
e−2πκDiκ(e

− iπ
4 τ)

√
κDiκ−1(e

− iπ
4 τ), Ỹ (τ) = e−

πκ
2

(

|Diκ(e
−i π

4 τ)|2 − |√κDiκ−1(e
−iπ

4 τ)|2
)

,

〈

P (τf )
〉

= e−2πκ + 4λ
√
κ

∫ ∞

−∞
dτ

(

1− 2e−2πκ

1− e−2πκ
e2πκ|X̃(τ)|2 +Re(X̃(τ))Ỹ (τ)

)

.

Using the formula
√
2π

Γ(ν+1)Dν(z) = e−
iπν
2 D−ν−1(−iz) +

e
iπν
2 D−ν−1(iz), we obtain Eq. (7).

Appendix B: The derivation of approximation with

perturbation

We demonstrate Eq. (8) in the region (ii) (1 ≪ κ≪ 1
λ).

The approximate solution for the transition probability

is approximated as

〈

P (τf )
〉

∼4λ
√
κe−πκκ2

×
∫ ∞

−∞
dτ

∣

∣

∣D−iκ−1(e
iπ
4 τ)D−iκ−1(−e

iπ
4 τ)

∣

∣

∣

2

.
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To perform this calculation, we utilize the following for-
mula [52]

D−ν(z)D−ν(−z)

=
2e

z2

2

Γ
(

ν + 1
2

)

∫ ∞

0

dy cos(2zy)e−2y2

1F1

(

1

2
, ν +

1

2
, y2

)

.

Here 1F1 denotes the confluent hypergeometric function.
By substituting z = ei

π
4 τ and ν = iκ + 1, and changing

the integration path to t = ei
π
4 y, we get

D−iκ−1(e
iπ
4 τ)D−iκ−1(−ei

π
4 τ)

=
2e−iπ

4 ei
τ2

2

Γ
(

iκ+ 3
2

)

∫ ∞

0

dt cos(2τt)e2it
2

1F1

(

1

2
, iκ+

3

2
,−it2

)

.

Therefore,
〈

P (τf )
〉

is approximated as

〈

P (τf )
〉

∼4λ
√
κe−πκκ2

∫ ∞

−∞
dτ

∣

∣

∣D−iκ−1(e
iπ
4 τ)D−iκ−1(−e

iπ
4 τ)

∣

∣

∣

2

=4λ
√
κe−πκκ2

∫ ∞

−∞
dτ

1
∣

∣Γ
(

iκ+ 3
2

)∣

∣

2

∫ ∞

0

dr (e2iτr + e−2iτr)e2ir
2

1F1

(

1

2
, iκ+

3

2
,−ir2

)

×
∫ ∞

0

ds (e2iτs + e−2iτs)e−2is2
1F1

(

1

2
,−iκ+ 3

2
, is2

)

.

We change the order of integration, performing the inte-
gration over τ first. Utilizing the conditions that r and s
are positive, we employ the formulas

∫∞
−∞ dτ e2iτ(r−s) =

πδ(r − s) and
∫∞
−∞ dτ e2iτ(r+s) = 0. Consequently, we

get

〈

P (τf )
〉

∼4λ
√
κ

2π
∣

∣Γ
(

iκ+ 3
2

)∣

∣

2 e
−πκκ2

×
∫ ∞

0

dr

∣

∣

∣

∣

1F1

(

1

2
, iκ+

3

2
,−ir2

)∣

∣

∣

∣

2

.

Note that this derivation is based on the assumption
of infinite time integration. Therefore, this relationship
cannot be applied in systems where the time span is fi-
nite. Furthermore, using the following formula

2π
∣

∣Γ
(

iκ+ 3
2

)∣

∣

2 e
−πκκ2 =

κ2

κ2 + 1
4

(

1 + e−2πκ
)

and the approximations e−2πκ ≪ 1 and κ2 ≫ 1
4 , the

transition probability is expressed as

〈

P (τf )
〉

∼ 4λ
√
κ

∫ ∞

0

dr

∣

∣

∣

∣

1F1

(

1

2
, iκ+

3

2
,−ir2

)∣

∣

∣

∣

2

.

By employing the variable transformation r =
√
κx, the

expression can be rewritten as

〈

P (τf )
〉

∼ 4λκ

∫ ∞

0

dx

∣

∣

∣

∣

1F1

(

1

2
, iκ+

3

2
,−iκx2

)∣

∣

∣

∣

2

.

Furthermore, when κ is large,

1F1

(

1

2
, iκ+

3

2
,−iκx2

)

∼ 1√
1 + x2

. (B1)

We confirm in Appendix C that the approximate formula
Eq. (B1) is effective when κ is large. Consequently, by
utilizing

∫ ∞

0

dt
1

1 + x2
=
π

2
,

we can demonstrate the validity of Eq. (8).

Appendix C: The approximation of the special

function

As stated in Appendix B, the approximation formula
Eq. (B1) is shown to be effective when κ is large. By the
properties of a confluent hypergeometric function [47]

d

dz
1F1(a, b, z) =

a

b
1F1(a+ 1, b+ 1, z)

and

1F1(a, b, z) =
b− a− z − 1

b
1F1(a+ 1, b+ 1, z)

+
a+ 1

b
1F1(a+ 2, b+ 1, z),

we get

d

dx

(√
1 + x1F1

(

1

2
, iκ+

3

2
,−iκx

))

=
3

4
√
1 + x(iκ+ 3

2 )
1F1

(

5

2
, iκ+

5

2
,−iκx

)

.

Integrating both sides with respect to x from 0 and using

1F1(a, b, 0) = 1 yield

1F1

(

1

2
, iκ+

3

2
,−iκx

)

=
1√
1 + x

(1 + Eκ(x)),
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Eκ(x) =
3

4(iκ+ 3
2 )

∫ x

0

dy√
1 + y

1F1

(

5

2
, iκ+

5

2
,−iκy

)

.

Therefore, the approximation Eq. (B1) is valid in the
regime E(x) ≪ 1. Fig. 8 plots the x-dependence of
|Eκ(x)|. It can be observed |Eκ(x)| ≪ 1 for large κ,
confirming the validity of the approximation Eq. (B1).

FIG. 8. Plots of |Eκ(x)| against x. As κ increases, it is
observed that this value becomes significantly smaller than 1
for any x.

Appendix D: Adiabatic approximation

In the regions (ii) and (iii) (1 ≪ κ), the effective-
ness of the adiabatic approximation is demonstrated.

Let |ρ(τ)〉〉 = (ρ11(τ) ρ12(τ) ρ21(τ) ρ22(τ))
T . The mas-

ter equation Eq. (4), is expressed as

|ρ̇(τ)〉〉 = L(τ)|ρ〉〉. (D1)

Here, L(τ) denotes the Liouvillian at time τ , which is
non-Hermitian. Diagonalizing L yields

L̃(τ) = S−1(τ)L(τ)S(τ)

Here, L̃(τ) = diag(χ1(τ), χ2(τ), χ3(τ), χ4(τ)). |χα(τ)〉〉
and 〈〈χ̂α(τ)| are the normalized right eigenvectors and
the normalized left eigenvectors of L(τ), satisfying

L(τ)|χα(τ)〉〉 =χα(τ)|χα(τ)〉〉,
〈〈χ̂α(τ)|L(τ) =〈〈χ̂α(τ)|χα(τ),

with α = 1, 2, 3, 4. When there is no degeneracy in the
eigenvalues of the Liouvillian, meaning χα 6= χβ, the
condition 〈〈χ̂α(τ)|χβ(τ)〉〉 = 0 is satisfied. Normalization
is performed such that 〈〈χ̂α(τ)|χβ(τ)〉〉 = δαβ . Expanding
the state in terms of the right eigenvectors as

|ρ(τ)〉〉 =
4

∑

β=1

cβ(τ)|χβ(τ)〉〉, (D2)

the master equation Eq. (D1) takes

4
∑

β=1

(ċβ(τ)|χβ(τ)〉〉 + cβ(τ)|χ̇β(τ)〉〉)

=
4

∑

β=1

cβ(τ)χβ(τ)|χβ(τ)〉〉.

Applying the left eigenvector 〈〈χ̂α(τ)| yields

ċα(τ) = χα(τ)cα(τ) −
4

∑

β=1

cα(τ)〈〈χα(τ)| ˙̂χβ(τ)〉〉.

Therefore, if 〈〈χ̂α(τ)|χ̇β(τ)〉〉 is sufficiently small, the
equation becomes closed for α, resulting in adiabatic
time evolution. 〈〈χα(τ)|χ̇β(τ)〉〉 has the dimension of fre-
quency. The relevant physical frequency scale is given by
the energy gap ωαβ(τ) = χα(τ) − χβ(τ). Therefore, the
adiabatic condition is given by [46]

lαβ ≪ rαβ , (D3)

lαβ = max
τ

|〈〈χ̂α(τ)|χ̇β(τ)〉〉|, rαβ = min
τ

|ωαβ(τ)|.

Here, rαβ = rβα. The Liouvillian under consideration is
given as

L(τ) =







0 i
√
κ −i√κ 0

i
√
κ −i τ2 − λ

√
κ 0 −i√κ

−i√κ 0 i τ2 − λ
√
κ i

√
κ

0 −i√κ i
√
κ 0






.

We calculate the eigenvalues and eigenvectors up to
the first order of perturbation with respect to λ. Let
z(τ) = τ

4
√
κ
. The term O(λ2) is neglected in the follow-

ing analysis in this subsection. The eigenvalues and right
eigenvectors of the Liouvillian are

χ1 =0,

χ2 =− λ

z2 + 1

√
κ,

χ3 =− 2z2 + 1

2z2 + 2
λ
√
κ− 2i

√

z2 + 1
√
κ,

χ4 =− 2z2 + 1

2z2 + 2
λ
√
κ+ 2i

√

z2 + 1
√
κ,

|χ1(τ)〉〉 =









1√
2

0
0
1√
2









,

|χ2(τ)〉〉 =















z√
2(z2+1)

1√
2(z2+1)

+ iλ z
√
z2+1

2
√
2(z2+1)2

1√
2(z2+1)

− iλ z
√
z2+1

2
√
2(z2+1)2

− z√
2(z2+1)















,
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|χ3(τ)〉〉 =















1
2
√
z2+1

+ iλ 4z2+1
16(z2+1)2

− 1
2

(

1 + z√
z2+1

)

+ iλ3z+
√
z2+1

16(z2+1)2

1
2

(

1− z√
z2+1

)

+ iλ3z−
√
z2+1

16(z2+1)2

− 1
2
√
z2+1

− iλ 4z2+1
16(z2+1)2















,

|χ4(τ)〉〉 =















1
2
√
z2+1

− iλ 4z2+1
16(z2+1)2

1
2

(

1− z√
z2+1

)

− iλ3z−
√
z2+1

16(z2+1)2

− 1
2

(

1 + z√
z2+1

)

− iλ3z+
√
z2+1

16(z2+1)2

− 1
2
√
z2+1

+ iλ 4z2+1
16(z2+1)2















.

Here, the tight eigenvectors are chosen such that they
satisfy lαβ = lβα up to the first order of λ. The eigenvec-
tor corresponding to the eigenvalue χ1 = 0 is indepen-
dent of the time τ and is considered to be the infinite-
temperature state. This state implies that both the prob-
ability of transitioning and the probability of not transi-
tioning are 1/2. The 4× 4 matrix S(τ) is defined as

S(τ) = (|χ1(τ)〉〉 |χ2(τ)〉〉 |χ3(τ)〉〉 |χ4(τ)〉〉).

Based on this, the inverse matrix S−1(τ) can also be
obtained as

S−1(τ) =







〈〈χ1(τ)|
〈〈χ2(τ)|
〈〈χ3(τ)|
〈〈χ4(τ)|






.

First, We verify the adiabatic condition Eq. (D3).
From l12(τ) = l13(τ) = l14(τ) = 0, the state |χ1(τ)〉
is adiabatic. By calculating other states, the follow-
ing results are obtained. Up to the first order of λ,
l23(τ) = l24(τ) = 1

4
√
2κ

and r23(τ) = r24(τ) = 2
√
κ,

as well as l34(τ) =
λ

50
√
5κ

and r34(τ) = 4
√
κ. Therefore,

the adiabatic condition is κ≫ 1.
Second, we calculate the transition probability ρ̃(τf )11

under the adiabatic approximation condition. From
Eq. (D2), the adiabatic basis is defined as

|ρ̃(τ)〉〉 = S−1(τ)|ρ(τ)〉〉 =
(

c1(τ) c2(τ) c3(τ) c4(τ)
)T
,

Under the adiabatic approximation, the differential equa-
tion is expressed as

ċα(τ) ∼ χα(τ)cα(τ).

Therefore, cα(τ) is given by

cα(τ) = cα(τi) exp

(∫ τ

τi

dτ ′χα(τ
′)

)

,

The initial condition is |ρ(τi)〉〉 = (1 0 0 0)T . In the
limit τi → −∞, the initial conditions in the adiabatic
basis are given by c1(τi) =

1√
2
, c2(τi) = − 1√

2
, c3(τi) =

c4(τi) = 0. When evolved up to time τ , the state can be
approximated in the original basis as

|ρ(τ)〉 ∼S(τ)











1√
2

− 1√
2
exp

(

−
∫ τ

τi
dτ ′ λ

√
κ

z2(τ ′)+1

)

0
0











=
1

2





















1− z(τ)√
z2(τ)+1

exp
(

−
∫ τ

τi
dτ ′ λ

√
κ

z2(τ ′)+1

)

−
(

1√
z2(τ)+1

+ iλ z(τ)

2(z2(τ)+1)
3

2

)

exp
(

−
∫ τ

τi
dτ ′ λ

√
κ

z2(τ ′)+1

)

−
(

1√
z2(τ)+1

− iλ z(τ)

2(z2(τ)+1)
3

2

)

exp
(

−
∫ τ

τi
dτ ′ λ

√
κ

z2(τ ′)+1

)

1 + z(τ)√
z2(τ)+1

exp
(

−
∫ τ

τi
dτ ′ λ

√
κ

z2(τ ′)+1

)

.





















The normalization and Hermiticity conditions of the den-
sity matrix are verified. Thus, the state at the final time
is determined by substituting τi ∼ −∞, τf ∼ ∞, result-

ing in

|ρ(τf )〉 ∼









1
2 (1− exp (−4πλκ))

0
0

1
2 (1 + exp (−4πλκ))









.
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Therefore, under the adiabatic approximation, ρ(τf )11 is
given by

ρ11(τf ) ∼
1

2
(1− exp (−4πλκ)) .

Appendix E: The comparisons with the Kayanuma

formula

We first compute the transition probability in the
regime where κ is sufficiently large (λκ ≫ 1). Next, we
verify the defect density within the transverse-field Ising
model under the condition of large κ. Our approximate
solutions of the transition probability and the defect den-
sity are compared with those derived from the Kayanuma
formula, which is effective in large λ.
First, we verify the behavior of the transition prob-

ability in the regime where κ is sufficiently large. the
approximate solution Eq. (11) approaches 1

2 as κ → ∞,
similar to the Kayanuma formula [30]

〈

P (τf )
〉

∼ pKayanuma(κ) =
1

2
(1− exp (−4πκ)).

The comparison between pKayanuma and pnon-ad + pad is
shown in Fig. 9. In the regime where κ is large, all cases
asymptotically approach 1/2. However, since we are con-
sidering regions where λ is small, the pKayanuma failed to
reproduce the behavior of the numerical results.

FIG. 9. Plots of the transition probabilities at τf against κ.
The blue line (Numerical) represents the numerical simulation
of Eq. (6) over the time span from τi = −200 to τf = 200.
The green dashed line (Non-adiabatic+Adiabatic) represents
pnon-ad + pad, while the red dashed line (Kayanuma formula)
represents pKayanuma, with λ = 10−3. The gray dashed line
represents 1/2.

Next, We verify the defect density. The approximate
solutions of Eq. (17) and Eq. (18) break down in the
region where κ is large. In previous research [13], the
following scaling for n in the regime of sufficiently large
κ was proposed.

nKayanuma(κ) ∼ 1

2
− 1

4π
√
κ

On the other hand, by employing the asymptotic formu-
las of the functions I0(z) and L0(z), the expression can
be reduced to the following by neglecting O(4πλκ)−2

nreciprocal(λ, κ) ∼ nKZM(κ) +
1

2
− 1

4π2λκ
.

We were able to confirm through Fig. 10 that this scaling
yields the closer result to the numerical one than that of
Kayanuma formula.

FIG. 10. Plots of the defect density against κ, focusing around
κ ≫ 1. The blue solid line (Numerical) represents the numer-
ical simulation of Eq. (6) over the time span τi = −200 to
τf = 200, plotting the discrete sum in Eq. (14), with N =
100. The green dashed line (∞-order) represents n∞-order,
the yellow dashed line (Reciprocal) represents nreciprocal, and
the pink dashed line (Kayanuma) represents nKayanuma , with
λ = 5× 10−3. The gray dot line represents 1/2.
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[32] B. Dóra, M. Heyl, and R. Moessner, Nat. commun. 10,

2254 (2019).
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