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ABSTRACT

Transferring the weights of a pre-trained model to assist an-

other task has become a crucial part of modern deep learning,

particularly in data-scarce scenarios. Pre-training refers to

the initial step of training models outside the current task

of interest, typically on another dataset. It can be done via

supervised models using human-annotated datasets or self-

supervised models trained on unlabeled datasets. In both

cases, many pre-trained models are available to fine-tune for

the task of interest. Interestingly, research has shown that

pre-trained models from ImageNet can be helpful for audio

tasks despite being trained on image datasets. Hence, it’s

unclear whether in-domain models would be advantageous

compared to competent out-domain models, such as convolu-

tional neural networks from ImageNet. Our experiments will

demonstrate the usefulness of in-domain models and datasets

for bird species recognition by leveraging VICReg, a recent

and powerful self-supervised method.

Index Terms— Species recognition, deep learning, self-

supervised learning, transfer learning

1. INTRODUCTION

Deep learning technology is the backbone of modern data

analysis in many research and application areas. One obstacle

in training performant deep neural networks is the scarcity of

human-annotated data for a specific task. This challenge has

led to intriguing approaches for training data-efficient deep

neural networks under the umbrella term of few-shot learning

[1]. Among them, transfer learning is one well-established

method [2], where the most ubiquitous form of this tech-

nique utilizes the pretrained parameters as a proxy to transfer

the already acquired knowledge from another task or dataset.

The pretrained model then requires a fine-tuning stage on a

downstream task of interest, potentially with limited human-

annotated data.

The result of transfer learning is often significantly su-

perior to training randomly initialized neural networks from

scratch on small to medium-sized annotated datasets. Ad-

ditionally, this approach saves a great deal of computation

power and time, which makes the deep learning technology
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accessible to a broader community. Surprisingly, transfer

learning works even if the pretraining scenario is not di-

rectly related to the downstream task, such as fine-tuning

the pretrained models from image classification for audio

tasks [3, 4]. However, as expected, the models pretrained on

large in-domain datasets related to a downstream task would

generally result in better fine-tuned models for that task [5].

The domain of tasks is strongly related to the type of

dataset used, and at a coarse level, it translates to whether we

are processing text, image, audio, genomic data, etc. Further-

more, each dataset is amenable to finer in- and out-domain

categorization based on its content. For example, within

the audio domain, the datasets for industrial sounds, music,

speech, and bird songs could be separate sub-domains that

share some properties inherent to the physics of sound. A

recent comprehensive study by Ghani et al. [5] compared

pretrained supervised models from large-scale general audio

datasets to the ones pretrained on bird sounds for few-shot

species recognition. Their findings suggest that transferring

in-domain supervised pretrained models were more suited

for this bioacoustics task. Such results motivate research

for other pretraining schemes to create general-purpose pre-

trained models within the bioacoustics domain, such as Self-

Supervised Learning (SSL).

Unsurprisingly, the unlabeled data in any domain is vastly

more than the costly human-annotated datasets. Luckily, SSL

can leverage these latent sources of information without hu-

man intervention, and current SSL pretraining methods sur-

pass the purely supervised training schemes [6]. SSL relies

on objective functions that do not require human-assigned tar-

gets, and they learn general domain knowledge via feature

embedding. Most self-supervised methods optimize a sim-

ilarity objective between differently augmented versions of

data points called views since they can be seen as different

views on the main content of the original data. As a result

of such formulation, these methods heavily depend on the in-

herent property of the augmentation functions, with the hope

that point-wise nullification of the dissimilarities caused by

them will produce an informative representation of some fun-

damental semantic contents of the dataset.

Some things can go wrong with such a learning scheme,

some of which are not intuitive or sufficiently comprehen-

sible. For example, SSL objective functions might merrily
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encourage distancing similar samples based on human judg-

ment/categorization. In a simplified form, this procedure is

as if each datum has a unique label and is contrasted against

all others except a noisy version of itself. Such formula-

tion will disregard regularities among the semantically related

samples, and it induces an optimization landscape with fun-

damental inconsistencies. The result is a phenomenon known

as representation collapse, where flexibility and lack of in-

ductive bias in large neural networks result in mapping all the

samples into fixed or non-informative features that achieve

low loss on a meaningless objective function. Hence, there

are usually costly and non-intuitive heuristics at work to pre-

vent the collapse of information, such as momentum-encoder

[7, 8], stop-gradient [9], very large batch sizes for contrastive

learning [10, 11], and uniform splitting into latent categories

[12, 13].

VICReg (Variance-Invariance-Covariance Regulariza-

tion) [14] is a recent SSL method by Bardes et al. that

prevents representation collapse in a more principled way.

It has a simple mean squared error term for encouraging

point-wise similarity between corresponding pairs of views

(invariance to augmentation). However, it does not explic-

itly force any specific pair of samples to be dissimilar. To

prevent collapse, VICReg leverages two regularization terms

that operate on individual embedding dimensions within each

augmented batch of views. The first term maintains the vari-

ance of each embedding dimension within the batch above a

threshold, which encourages the diversity of representation

but not explicit contrasting. Therefore, although we can’t

control it, the model is not forced to push semantically simi-

lar samples away. The second term decorrelates each pair of

different embedding dimensions within the batch to reduce

the information redundancy and covariation.

We found VICReg to produce good results even with

small batch sizes. Also, the hyper-parameters of the original

work on image tasks were satisfactory in our bioacoustics ex-

periments despite using different optimization settings, which

is a testimony to its ease of use and stability. Therefore, we

chose VICReg to investigate the utility of SSL bioacoustics

models. This experimental investigation is our contribution.

2. DATA

The SSL pretraining used the BirdCLEF2021 dataset from

Kaggle challenge [15], containing ∼ 63 k recordings of var-

ious lengths from the Xeno-Canto public repository of bird

sound recordings [16]. These recordings have a sampling

rate of 32 ksps (kilo samples per second). Also, the ESC-

50 dataset for environmental sound classification [17] was

used for adding background noise in the data augmentation

pipeline.

The downstream species classification task uses the West-

ern Mediterranean Wetland Birds (WMWB) dataset, kindly

published by Gómez-Gómez et al. [18]. It contains 5795

annotated audio excerpts of 20 endemic bird species of the

Aiguamolls de l’Empordà Natural Park and amounts to 201.6

minutes of audio. This dataset is also from Xeno-Canto, but

the vocalizations of interest are strongly (precisely) anno-

tated in their corresponding recordings. Such benchmarks

are much needed in the current state of the bioacoustics field

to assess the soundness of results and quality of the models

vividly. We resampled WMWB recordings to 44.1 ksps and

split them into 10% train, 10% validation, and 80% test sets.

The experiments also use a subsampled train mini-set

amounting to 10% of the train set (1% of total data) to assess

the performance in an extreme case of label scarcity. The

train and validation splits, especially the 1% train mini-set,

might be incomplete since we stratified the splits based on

species labels. Although this ensures the same relative por-

tions of classes in each set, it does not guarantee that all types

of test vocalizations from each species (calls and songs) are

in all sets.

3. METHODOLOGY

3.1. Model architecture

The ResNeXt-50 (32 × 4d) [19] model without the final clas-

sification layer is used as the backbone encoder, henceforth

denoted as fθ, and its output has 2048 dimensions. During

the SSL phase, a projection head denoted as hφ is required.

It simply projects the encoder output to a higher dimensional

feature space, ambiguously referred to as embedding space in

SSL nomenclature due to the lack of a better vocabulary to

discern the outputs of fθ and hφ. The hφ consists of two se-

quential blocks of Linear-BatchNorm-ReLU and ends with a

standalone linear layer. All three linear layers have 4096 di-

mensions. The hφ is dropped after the pretraining phase, and

we transfer the fθ for finetuning on the downstream task.

3.2. Pretraining step

We denote the unlabeled pretraining dataset of size N with

De = {xi}
N
i=1

, where each xi is a 1-second excerpt of au-

dio wave, randomly cropped from the full recordings of Bird-

CLEF2021 at each epoch e. An input batch of size n is de-

noted by X = {xi}
n
i=1

. The T denotes the data augmentation

and transformation pipeline, consisting of the following steps

in order:

• pitch shifting: shift steps on the scale of 12 steps per

octave were chosen randomly from the discrete range

of [-4, 4].

• background noise: adds a random recording from the

ESC-50 dataset [17] as background noise with a signal-

to-noise ratio (SNR) randomly chosen from the discrete

range of [1, 20].



• Short-Time Fourier-Transform (STFT): transforms

waveforms to time-frequency representation with an fft

size of 800 points (25 ms at 32 ksps) and a hop size of

320 (10 ms).

• time-stretching [20]: stretches/shrinks the STFT in

time without modifying pitch for a stretch rate ran-

domly chosen from the real interval of [0.9, 1.1].

• log compression: transforms the STFT values from

magnitude to decibel scale.

• min-max normalization: normalizes each data point

(not batch) to the real range [0, 1].

• time and frequency masking [20]: a random time

mask of a maximum of 8 frames and a frequency mask

of a maximum of 16 bins hide portions of the inputs.

We apply T twice on a batch of waveform input X to get

two augmented batches of spectrogram views X ′ and X ′′ in

Rn×F×T . The encoder maps the two views into Y ′ = fθ(X
′)

and Y ′′ = fθ(X
′′) in Rn×d′

, and the projection head takes

them to embedding space Z ′ = hφ(Y
′) and Z ′′ = hφ(Y

′′) in

Rn×d. The VICReg objective function consists of three terms

that operate on these two embeddings [14].

The first loss term is the invariance (to augmentation) cri-

terion between the corresponding pairs of embeddings from

the two views. It encourages the model to map semantically

similar samples closer to each other:

s(Z ′, Z ′′) =
1

n

n
∑

i=1

||z′i − z′′i ||
2

2
(1)

The second term is variance regularization. It is calculated

in each batch of views separately to prevent degenerate con-

stant embeddings. Using the standard deviation is necessary

to avoid embedding collapse since the gradient of variance

function for inputs close to the center is near zero [14]:

v(Z) =
1

d

d
∑

j=1

max(0, γ −
√

V ar(zj) + ǫ) (2)

where Z ∈ Rn×d is either batch of views (Z ′ and Z ′′), zj ∈
Rn and superscript j indexes the feature dimension, ǫ is a

small constant to avoid numerical instabilities, and γ is a con-

stant target value for the standard deviation. Following the

original work [14], we set ǫ = 0.0001 and γ = 1.

The third term is covariance regularization. It pushes the

covariances to zero to reduce redundancy in embedding di-

mensions by decorrelating them and preventing information

collapse [14]. The covariance matrix of embeddings is:

C(Z) =
1

n− 1

n
∑

i=1

(zi − z̄)(zi − z̄)T (3)

z̄ =
1

n

n
∑

i=1

zi (4)

and the loss for regularizing it is defined as:

c(Z) =
1

d

∑

i6=j

|C(Z)|2i,j (5)

The overall loss function is a weighted average of these

three terms:

ℓ(Z ′, Z ′′) = λs(Z ′, Z ′′)+µ[v(Z ′)+v(Z ′′)]+ν[c(Z ′)+c(Z ′′)]
(6)

we used λ = 25, µ = 25, and ν = 1, same as the [14].

The model was trained for 100 epochs using the SGD op-

timizer with a momentum of 0.9 and weight decay of 1e−4.

A learning rate scheduler linearly increased it from 1e−4 to

0.3 in 10 epochs and then reduced it with a cosine decay curve

to a minimum of 1e−4. The batch size was 192.

3.3. Species classification

The downstream task is to classify the 20 species from the

WMWB dataset [18] using limited labels. Three models were

compared in two scenarios, and all three are based on the

ResNeXt-50 (32 × 4d) [19] model after changing the classifi-

cation layer to a randomly initialized linear layer with 20 out-

puts. One model was randomly initialized and trained from

scratch. The second model initialized its encoder part with the

pretrained weights from the ImageNet classification task [21].

The third model used our SSL pretrained encoder as described

in section 3.2. All models were trained in two cases of 10%

and 1% labeled data. The two pretrained models were also

compared in linear probe condition [22]. It means freezing

the encoder and only training a classifier on top of the fixed

features to assess their adequacy for the downstream task.

All models were trained for 100 epochs using the Adam

optimizer. A learning rate scheduler linearly increased it from

1e−5 to 1e−3 in 10 epochs and then reduced it with a cosine

decay curve to a minimum of 1e−5. The data augmentation

was not used here and the waveforms were transformed into

spectrograms using the same STFT setup as section 3.2, log

compression, and min-max normalization. The experiments

were run five times to report the mean and standard deviation

of the results.

4. RESULTS

Table 1 shows the test results after using the train mini-set

(1% of the dataset). Table 2 is the same using the full train-

ing set. The test and validation sets were the same in both

cases. ImageNet pretrained models are strong baselines in

transfer learning, and it is challenging to outperform them sig-

nificantly. However, it is evident that SSL pretraining using

in-domain bioacoustics data far surpasses the ImageNet pre-

trained model. Also, notice: 1) ImageNet is more than 20

times bigger than the dataset we used (∼ 1.3 M), and 2) its

pretrained models are from supervised learning using human

annotation.



Table 1. Test results using train mini-set (1% of the WMWB

dataset). The code ’L’ means linear probe, where the encoder

is frozen and only the linear classifier gets trained. The code

’F’ means finetuned where the whole model is trained and op-

timized on the train set. There is no pretrained encoder in the

random initialization case, thus, we did not do a linear probe.

The mean and standard deviation are from five different runs.
Model accuracy top-3 accuracy f1-score precision recall

rand-init 54.3± 1.3 77.1± 1.1 45.5± 1.4 48.0± 1.7 44.9± 1.4
imgnet-L 33.8± 0.1 66.7± 0.2 23.1± 0.3 43.0± 0.4 20.5± 0.1
vicreg-L 52.3± 0.3 72.5± 0.3 34.2± 0.2 45.0± 1.7 32.1± 0.2
imgnet-F 59.5± 1.4 82.6± 0.6 50.8± 1.5 57.8± 1.3 49.8± 1.8
vicreg-F 77.3± 1.0 91.0± 0.5 70.7± 0.9 72.0± 1.1 70.4± 0.9

Table 2. Same as Table 1 but using the full train set (10% of

the WMWB dataset).

Model accuracy top-3 accuracy f1-score precision recall

rand-init 90.7± 0.3 97.9± 0.1 87.9± 0.6 88.2± 0.6 87.8± 0.6
imgnet-L 61.4± 0.2 85.0± 0.2 54.8± 0.2 60.7± 0.3 51.9± 0.4
vicreg-L 76.3± 0.3 94.4± 0.1 70.5± 0.3 72.3± 0.2 69.7± 0.3
imgnet-F 93.5± 0.4 98.6± 0.1 91.9± 0.4 92.1± 0.5 91.8± 0.3
vicreg-F 94.3± 0.4 99.0± 0.1 92.7± 0.6 92.6± 0.7 92.8± 0.5

5. CONCLUSION

This work showed the advantage of in-domain transfer learn-

ing via self-supervised pretraining compared to the main-

stream out-domain ImageNet supervised pretrained weights.

A successful application of SSL often requires a large amount

of data to produce adequate results. However, the experiments

showed that an in-domain SSL model for bird species recog-

nition is invaluable, even with much less data than today’s

standards. Hence, this is a promising result to motivate future

research in building larger SSL models for bioacoustics. It

will benefit the community for many bioacoustics tasks that

require feature extraction from audio recordings.

Reliable and competent pretrained models can stabilize

and unify parts of future works and make the results easier

to compare and reproduce. Also, adequate pretrained mod-

els will save computational resources and make a performant

data analysis pipeline accessible to a broader audience. Fur-

thermore, this procedure will reduce development time since

finetuning a robust model is much less challenging than build-

ing one from scratch. The latter requires numerous trials and

errors to create a satisfying model.
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