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Abstract. We propose a method to remotely verify the authenticity of
Optically Variable Devices (OVDs), often referred to as “holograms”,
in identity documents. Our method processes video clips captured with
smartphones under common lighting conditions, and is evaluated on two
public datasets: MIDV-HOLO and MIDV-2020. Thanks to a weakly-
supervised training, we optimize a feature extraction and decision pipeline
which achieves a new leading performance on MIDV-HOLO, while main-
taining a high recall on documents from MIDV-2020 used as attack sam-
ples. It is also the first method, to date, to effectively address the photo
replacement attack task, and can be trained on either genuine samples,
attack samples, or both for increased performance. By enabling to verify
OVD shapes and dynamics with very little supervision, this work opens
the way towards the use of massive amounts of unlabeled data to build ro-
bust remote identity document verification systems on commodity smart-
phones. Code is available at https://github.com/EPITAResearchLab/
pouliquen.24.icdarl

Keywords: Know Your Consumer (KYC) - Identity Documents - Holo-
gram Verification - Weakly Supervised Learning - Contrastive Loss

1 Introduction

Often called KYC (Know Your Customer), remotely verifying the authenticity
of identity documents is a critical point for building online trust. This is an
increasingly regulated process which relies on identity documents, among other
proofs, to establish the link between an online identity and a real state-backed
one. This linking usually requires checking that the document is original and
was not altered. The photography of the bearer is of paramount importance
here to ensure that the user of a remote system is the intended one. Optically
variable devices (OVDs), commonly referred to as “holograms” and illustrated
in Figure [2| are powerful tools to secure physical documents in line with the
recommendation of the EU council [14], among others. Built using elaborated
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Fig. 1. Proposed approach overview, involving 1) the weakly supervised TRAINING
with a specific data selection strategy over the trainset; 2) the INFERENCE pipeline
extracting optimized features used afterward to compute the final “Original/Attack”
decision based on a thresholding of pairwise distances. The DECISION illustrates how
the threshold is calibrated over the validation part of the train set.

and undisclosed optical techniques, these devices exhibit rich visual behaviors
when viewing and/or illuminating conditions (angle, light color, etc.) change.
They are embedded in a wide spectrum of sensitive elements, i.e. not only identity
documents but also banknotes or tamper-proof labels (e.g. for medical drugs),
and contribute to ensure: 1. Integrity: they cannot be removed without altering
their properties, making tampering very challenging; 2. Authenticity: they are
very difficult to forge, making the creation of fraudulent documents equally hard.

Despite the widespread use of holograms, automating their remote verifica-
tion in the context of an automatic enrollment, whether it is to open an account
in an online bank or to contract a loan, poses many challenges. Indeed, such
visual objects were primarily designed for manual inspection, sometimes using
special tools like magnifiers or dedicated light sources. As a result, automated re-
mote validation is limited in many aspects: acquisition is often performed using
commodity smartphones under uncontrolled ambient light to capture macro-
scopic and visible patterns, while following simple interactive scenarios. Never-
theless, verifying holographic devices from a video is possible to some extent,
and many recent works and datasets contributed to this effort.

While, in the general forgery detection literature, several approaches try to
detect falsification clues , others follow the opposite (yet complementary)
direction of checking whether clues of authenticity and integrity are present .
This work contributes to the latter: we propose a method to control the presence
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Fig. 2. In MIDV Holo dataset, documents are captured in different places involving
various backgrounds and lightning conditions (left). Document quads are annotated
on all images allowing rectifications (center). Additionally, we propose to define a re-
gion of interest containing part of the face and the holograms in charge of securing
it (right). Extracted Regions of Interest (ROIs) from sampled labeled as ”Originals”
(below) contain more or less visible holographic content. Identities (names and faces)
are synthetic.

of some holographic content at specific positions of a document (e.g. photography
area), and address the problem of photography replacement, which was intro-
duced in MIDV-Holo but not yet addressed (to our knowledge). After a de-
tailed review of related approaches and datasets (Section, we introduce our key
contribution: a new method to detect and validate holographic content, whose
feature extraction is trained in a weakly-supervised fashion (i.e., not requiring
a precise labeling of each video frame with the particular visual appearance of
a hologram), and which outperforms the original approach on public datasets
(Section . For practical reasons, we also propose an updated experimental
protocol which specifies, among others, training, validation and test sets for the
MIDV-Holo dataset, as well as a public, open-source reimplementation of the
approach proposed in the original MIDV-Holo publication [18], with systematic
optimization of the calibration of the decision function (Section@. Our approach
(illustrated in Figure [1|) is carefully evaluated on several public datasets, over
several runs, and an ablation study is conducted to challenge the benefits of every
aspect of our method (Section [5)). The code to reproduce our results is publicly
available at https://github.com/EPITAResearchlLab/pouliquen.24.icdar.
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2 Related works

Optically Variable Devices (OVDs) are often built using polarized inks or diffrac-
tion grating — a network of microscopic reflective structures engraved in the
thickness of some transparent layer. We refer the reader to the MIDV-Holo pub-
lication [18] for a concise introduction on the optical design of these objects.
These OVDs exhibit continuous, sometimes rapid, transitions among a virtu-
ally infinite set of visual states when changing the relative positions of the light
source(s), the camera and the document. We can consider such space of visual
appearances as a sort of manifold which we navigate by changing visualization
conditions. Such model is valuable to identify the 3 fundamental visual features
an automated method can check:

1. Appearance Conformity: Can a particular visual appearance (shape and
color) be generated by a genuine OVD? — This can be viewed as assessing
how far a particular sample (usually an image) is from the real manifold
of a given hologram, and use a distance threshold as verification criterion.
Implementing this control enables to detect attacks with no hologram or
with a different hologram shape but, if used alone, would be tricked by
simple static copies of the expected hologram.

2. Appearance Coverage: How well do a particular set of visual appearances
(usually captured as a video) matches the set of possible ones? — This can be
viewed as measuring how well the samples obtained cover the real manifold
of a given hologram. Implementing this control enables to detect attacks
with static holograms but, if used without control of state conformity, would
be tricked by any random holographic layer. Approaches checking only color
distributions are vulnerable to this attack.

3. Transitions Validity: Are the transitions between observed visual appear-
ances consistent with expected ones? — This can be viewed as checking
whether samples obtained describe valid paths on the real manifold of a
given hologram. Implementing this control enables to detect attacks with
imperfect hologram imitations or rapid swapping of static holograms. The
low frame rates utilized in current real remote authentication applications
present a significant challenge that has not been adequately explored in the
research literature.

Early approaches like the one of Hartl et al. [2] identified a discrete set of
visual appearances to check for during a manual inspection of identity docu-
ments. Expected visual states were acquired and validated using a robotic arm
with controlled light. While lacking automated verification, this approach pro-
posed a practical protocol to assist a human operator during its work to validate
1. visual state conformity thanks to visual comparison, and 2. visual behavior
completeness by checking every expected visual state is seen.

The work of Chapel et al. [17] proposes a way to automate the verification
of visual states conformity thanks to a learned classifier based on local binary
patterns (LBP) features. However, training this system requires to label each
video frame with target class (visual state), which is both too expensive for
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real application in our experience, and also challenging because of the frequent
“mixing” of visual shapes in real OVDs. Furthermore, robustness of the static
feature extractor may be a concern when background are not constant like in
the case of face photos: a learned feature extractor seems necessary here.

To overcome the need for labeled frames when training a visual state clas-
sifier, some approaches relaxed the control on visual state conformity to focus
instead on the validation of visual behavior completeness. The work of Kada et
al. [15] opened an interesting direction by restating the problem as a seman-
tic segmentation problem where images of documents captured as a video are
first carefully registered, then a pixel-level classification is performed to predict
whether a particular region belongs to a hologram. Such prediction is mainly
based on statistics on the distribution of pixel color values. While the final seg-
mentation map may be used as some visual appearance clue, this method does
not check whether inter-pixel behavior is consistent, nor visual appearance con-
formity for a particular frame, and lacks a global decision stage.

A major step was made thanks to the work of Koliaskina et al. [18]. The
authors not only reuse the same idea of semantic segmentation (also based on a
static, handcrafted feature extraction) to produce a map of pixels which exhibit
some “holographic behavior”, but also provide a global decision stage based on a
variance threshold and a first public dataset, MIDV-Holo, containing document
with holographic contents along with several presentation attacks, as illustrated
in Figure[2| While validated on full-size documents, the approach was not tested
on the particular case of the face photo region, and was not evaluated against the
photo replacement attack. Furthermore, as detailed in Section [d] this milestone
publication required us to reimplement the proposed approach and specify train-
ing, validation and test splits to conduct a fair comparison with our proposed
approach.

Another family of approaches tackled the problem of learning a useful em-
bedding space, thanks to which it may be possible to both check visual state
conformity and visual behavior completeness. A first example is the work of
Soukup et al. |4] targeting hologram verification on banknotes. Their approach
extract representations from video frames using a Convolutional Neural Network
(CNN) trained with a supervised classification task. Target classes represent dif-
ferent visual appearances, and were captured using a LED ring that illuminated
the hologram in various directions to automate the annotation process. Because
of the changing nature of the background for some OVDs in identity documents
(such as in the area of the face picture), such approach may need an important
amount of training data to be applied in our context, which makes it impractical
since it requires physical access to real documents.

Finally, a last related work is the one of Ay et al. |12] which proposed to
train a Generative Adversarial Network (GAN) to capture the visual properties
of some hologram. While the generative properties of such approach are very
attractive, successfully training such architecture to model thin holograms on
non-constant backgrounds like face pictures is a great challenge, as the network
may more easily capture and generate facial feature which cover a larger pro-
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portion of the area of interest. Furthermore, as final decision is performed using
the discriminator network, a proper calibration would require attack samples.
Another limitation of using the discriminator is that, despite the rich represen-
tation learned, this approach is limited to controlling the visual state conformity
of isolated frames, and cannot check visual behavior completeness as differences
between visual states cannot be measured.

Looking at these existing works, we can sketch out desirable features an
automated verification method should provide, which our proposed approach
tends to incorporate:

1. Tt should be based on a learned representation which can be tied to a par-
ticular OVD, in order to be able to capture both visual appearance and
behavior information, as opposed to handcrafted, static, pixel-based feature
extraction techniques.

2. Such representation should be learned in a weakly supervised way to avoid
requiring manual labelling of existing frames, or physical access to a large
amount of original documents and presentation attacks.

3. The learning objective should be able to guide the training even in the
presence of non-constant backgrounds and thin holographic objects, like in
the case of the face picture area.

3 Contrastive Learning of Hologram Representation

This section introduces our key contribution, summarized in Figure [} a new
method to detect and validate holographic content, whose representation (fea-
ture extraction) is trained in a weakly-supervised fashion; i.e. it only requires
a single label (“original” or “attack”, as per MIDV-Holo [18] terminology) for
each video clip. For this purpose, we use a particular kind of contrastive loss
which enables the training to be driven by intrinsic data properties. This relies
on certain assumptions about the video clips, such as their ability to capture
varied perspectives of the document. It also involves various transformations to
enhance the data. The resulting representation can be shown to effectively focus
on hologram regions, and can be used to assess both appearance consistency and
coverage in a final decision stage considering as many video frames as necessary.

3.1 Learning Objective

To avoid the need for assigning labels to every video frame of the training set,
we employ a contrastive learning objective which enables us to drive model
training using intrinsic data properties (described in the next subsection). More
specifically, we use a triplet loss [1] defined on a minibatch of N elements as

N
1
‘C(aapv TL) = 5 Zli(ai,pivni)a li(a’hp’ia nl) = max (d(a17pl) - d(aia nl) + m,O)

N
(1)
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where a; is the projected representation of an anchor sample whose distance
from the representation of a positive (similar) sample p; is minimized, while the
distance to the representation of a negative (dissimilar) sample n; is maximized.
Each of these representations are computed from augmented inputs to improve
training. An extra margin term m = 1 is used to enforce a minimal distance to
negative samples. We use d(z;,y;) = ||zt — y;||2 as distance function, and train
using an AdamW optimizer [8] with default PyTorch parameters.

3.2 Triplet Sample Selection Strategy

The selection of the samples which constitute the triplets is the cornerstone
of our approach. It is guided by weak labels provided at the video clip level,
i.e. “original” or “attack”, which exhibit different properties in the MIDV-Holo
dataset. In the case of video clips labeled as “originals”, we assume the visual ap-
pearance of the hologram throughout a major part of the recording. Conversely,
for video clips labeled as “attacks”, we assume that there will be no change in its
visual appearance. This requires to remove cases of “photo replacement” attacks
from our training set, as they exhibit the behavior of the real hologram except at
the position of the replaced face picture. These assumptions led to the following
selection process, illustrated in Figure

— Original: Given that the document is always moving in the videos of the
dataset (at 5 frames per second), we assume that the hologram is changing.
Thus, frame ¢ and frame ¢ 4+ 1 are expected to contain two different visual
states of the hologram. The anchor and the positive samples are generated
from the same frame t with different augmentations. Frame ¢ + 1, with aug-
mentation, is used as the negative sample.

— Attack: In the case of an attack, we know that all the frames from a same
video contain the exact same visual state of the hologram. Therefore, we take
uniformly selected frames from this video as anchor and positive sample. For
the negative sample, we select a uniformly selected frame from another video
with the same identity.

In both cases, the anchor, positive, and negative frames all represent the same
identity (face picture). Consequently, the network aims to minimize the distance
between the embeddings of two frames depicting the same visual state of a holo-
gram while maximizing the difference between a frame showing the same face
but with different hologram states. The assumption that the viewpoint contin-
uously changes is generally valid in the MIDV-Holo dataset and can be easily
enforced in a real industrial scenario. This is because a document detection stage
is typically required during capture to localize, classify, and rectify documents,
providing indications about the camera pose relative to the document.

3.3 Augmentations

To diversify anchor, positive, and negative samples (initially resized to 256 px),
we apply transformations with specified probabilities: — Rotation, horizontal or
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Fig. 3. Frame sampling strategy for building triplets [A]nchor/[P]ositive/[N]egative
from original and attack videos. Each original triplet is sampled from a unique original
video (A and P at ¢, N at ¢t + 1). Each attack triplet is sampled from 2 different videos
of a same identity with A and P, both belonging to a common video, and N belonging
to a different one. All samples are transformed with uniformly selected augmentations.

vertical mirroring (p = 0.5) applied equally to anchor, positive and negative
samples. — Crop by a random 80% ROI, resized to 224 px (p = 1). — Gaussian
blur (p = 0.4, kernel: 3 < kernel < 11, 2 < ¢ < 10). — Color jittering (p = 0.4,
0.7 < brightness < 1.3, 0.9 < contrast < 1.1, 0.95 < saturation < 1.05). Images
are then normalized to ImageNet’s mean and standard deviation.

3.4 Qualitative Validation: Feature Attribution Maps

We employed the Integrated Gradients method by Sundararajan et al. [5], imple-
mented in Captum [10], to identify the focal elements of our approach. The re-
sults, illustrated in Figure[d] showcase the efficacy of our weakly supervised train-
ing method. Specifically, the model (mobilevit,,s) trained using this approach
assigns significant importance to the hologram area. This stands in stark con-
trast to the same network architecture trained exclusively on ImageNet, which
lacks a similar level of focus on the hologram. This observation underscores the
value of our training strategy in guiding the model’s attention towards pertinent
features.

3.5 Final Decision Stage

Finally, thanks to the representation produced by the feature extraction net-
work, learned in a weakly-supervised manner as previously presented, we can
extract and compare vector representations for each frame of a video clip to
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Fig. 4. Integrated Gradients |5| visualizes a training sample, emphasizing our method’s
effectiveness in directing the network’s attention towards the hologram. In contrast, the
ImageNet-trained model lacks this focused attribution to the hologram, highlighting
the significance of our training approach.

control. Subsequently, we compute pairwise cosine similarity between the rep-
resentations of the frames. We consider two scenarios: analyzing the full video
(more resource-intensive but theoretically more reliable), or adopting the in-
cremental cumulative mode introduced in the original MIDV-Holo publication.
This last mode deems a video clip as original as soon as it meets the acceptable
criterion. By computing the mean of these differences, it becomes possible to
obtain an indicator of the expected visual behaviors’ coverage. We use a single
threshold calibrated on the validation set to make the final decision on accept-
ing the video clip as original or triggering an alert for a potential attack. It is
important to note that this approach does not directly inspect each individual
visual appearance of the hologram. However, as the representation is trained to
project non-hologram content to the same representation, such content tends to
be constant while frames containing hologram content, on the other hand, typ-
ically exhibit variability. This results in a simultaneous control of Appearance
Conformity and Appearance Coverage.

4 Extensions to MIDV-Holo

This section introduces extensions to the original MIDV-Holo dataset and eval-
uation protocol that we needed to benchmark our contribution. To compare
the performance of our proposed approach with the MIDV-Holo baseline, we
re-implemented and open-sourced the latter for the “no tracking” mode, i.e.,
without the frame alignment preliminary stage. Then, we propose an improved
protocol enabling cross-validation to cope with the variance we observe in exper-
imental results. This requires to revise the metrics used and to ways to separate
training, validation, and test sets, over several runs.

4.1 Reproduction of the MIDV-Holo Baseline Approach

The authors of the original MIDV-Holo publication introduced a baseline
approach for semantic segmentation of video frames, identifying pixels within a
holographic area and computing their ratio as a proxy to verify the hologram’s
shape, resulting in a binary decision: — negative: the video clip is deemed to
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Table 1. Reproduction of Table 1 from the original MIDV-Holo [18] publication, com-
paring ROC AUC values in “no tracking” mode between our re-implementation and
the original, validating its accuracy.

Sthresh 30 40 50
hthresh 0.01| 0.02| 0.03| 0.01| 0.02| 0.03| 0.01| 0.02| 0.03
Original MIDV-Holo |18][0.795(0.825(0.832(0.828(0.841(0.832(0.847|0.838(0.807
Our re-implementation |0.838]0.846|0.844|0.855|0.844(0.831|0.857(0.826|0.790

contain the expected hologram, considered “original”; — positive: no hologram is
found, raising an alert for a potential “attack”. No public implementation of this
baseline approach existed, so we created a public, open-source re-implementation
following the authors’ guidance. We evaluated our approach using the same con-
ditions and metrics outlined in Table[I]before integrating it into our experiments.

The baseline approach, originally calibrated and tested on the entire MIDV-
Holo dataset without clear separation between calibration and test sets, relied
on three parameters: Stnresh, Pthresh and 7. Our implementation differs from
the original in two notable aspects: 1. resizing images to 1123 x 709 pixels and
2. imposing a minimum buffer of five frames before returning a result, compared
to the original’s theoretical requirement of two frames. We recalculated Table 1
of the original paper for the “no tracking” mode and observed nearly identical
performance in terms of ROC AUC as reported in Table Specifically, we
identified the same optimal threshold configuration (Sinresh = 50 and Aghresh =
0.01) across values of the T parameter.

4.2 Enabling Cross-Validation on MIDV-Holo

While being an important contribution with a first public dataset with “holo-
grams” in identity documents, MIDV-Holo still contain little data: 700 video
clips which can be broken down as follows: — 2 types of documents, equally
shared: identity card-like and passport-like, — 10 model variants for each type,
also equally shared, — 5 “identities”, i.e., fake holder for each model variant, and
— 3 originals and 4 presentation attacks (actual video clips) for each “identity”.
These presentation attacks can either contain static content, in the case of the
“copy without holo” (no hologram at all), “pseudo holo copy” (static imitation
using an image editor), and “photo holo copy” (photocopy of the document) at-
tacks; or dynamic content as in the case of the “photo replacement” attack where
an original document is physically altered to change the face picture. In this lat-
ter case, no hologram is visible over the face picture, but it is still present on the
rest of the document. All original document variants exhibit the same hologram,
with a small translation between identity card and passport documents.
Because we need to be able to compare methods trained and calibrated on this
dataset and reduce variance in the experiments, we propose to specify training,
validation and test sets for 5 different splits. The process for generating such
splits is illustrated in Figure |5, and aims at challenging the generalization to
new identities rather than the generalization to new documents. Therefore, all
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Fig. 5. Proposed split over the MIDV-Holo dataset (64% train, 16% validation and
20% test). MIDV-Holo “Vanilla” refers to the part tackled in the original paper. “Photo
replacement” attacks are exclusively used for testing in our experiments.

identities in the train, validation, and test sets are distinct, while the document
models (i.e. identity cards, passports) are common across the different sets. We
proceed as follows: we stratify the dataset by document model (20 cases), then for
each document model, we select 1 out of 5 identity for testing, the 4 remaining
ones being used for training, except for 1 document every 5 items where an
identity is kept for validation instead of training. All video clips for the selected
identities go into the same target subset for a given split. This results in the
following data partition: 64% training, 16% validation and 20% test. No identity
can be present in two subsets for a given split. The “photo replacement” attack
case is handled specially as we never use the corresponding samples for training
or validation, and only use them for testing.

A last modification to the original protocol is that we use the Fy.ore (har-
monic mean of Precision and Recall) as the final metric, while MIDV-Holo au-
thors preferred to report Recall values for a false positive rate close to 10%.
Reporting ROC curves computed on the test set would be possible, but would
only give a hint about the expected performance in production while hiding
calibration uncertainty. In order to avoid an extra level of complexity during
the training of a learned feature extractor (to favor Recall over Precision), we
encourage the use of a simpler metric which provides a total ordering.

5 Experiments and Results

This section proposes an experimental evaluation of our proposed approach (de-
scribed in Section [3)) compared to the MIDV-Holo baseline , along with an
ablation study. Contrary to the MIDV-Holo original experiment applied to the
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whole rectified documents (see reproduced results in Table , our experiments
exclusively focus on the critical region of the document containing the face pic-
ture of the bearer. We believe it is important to be able to leverage prior knowl-
edge about the documents controlled, and challenged this idea by cropping reg-
istered document image to a particular region of interest for each document
model, as illustrated in Figure

5.1 Experimental Protocol

Our experiments utilized three publicly available datasets. Initially, both our
proposed method and the MIDV-Holo baseline were trained and calibrated using
the MIDV-Holo “Vanilla” training and validation sets, as defined in the preceding
section. Subsequently, they were assessed on three distinct test sets from the
MIDV series to gauge their generalization capabilities:

— MIDV-Holo “Vanilla” (120 test videos) originally introduced in [18], se-
lecting only test set elements as defined in Section 4.2

— MIDV-Holo “Photo Replacement” (20 test videos) is a specific subset
of MIDV-Holo, and represents a distinct task from the “Vanilla” set, as it
was not addressed in the original paper. While the complete set comprises
100 videos, our experiments solely involve the 20 test videos at each run, as
our approach does not entail training on this dataset.

— MIDV 2020 “Clips” (1000 videos, test only): To assess the method’s gen-
eralization to various document types, we utilized images from the “Clips”
category of the MIDV 2020 [13] dataset. Following document rectification,
similar Regions of Interest (ROIs) were extracted as for MIDV-Holo. As clips
were sampled at 10 frames per second (fps), we dropped one frame out of
two to match the frame rate of MIDV-Holo (5 fps).

It’s important to note that the MIDV-Holo dataset features a single form of
holographic layer, consistent across all 20 document models, with minor trans-
lations between identity-card-like and passport-like models. Consequently, our
system effectively trains to detect and validate this specific holographic device.

We compared several variants of the approach. For the feature extraction
stage, we tested the following models, all implemented using the timm library [9]:
resnetyg 3], mobilevit,,s |11] and mobilenetsmanos [6]. By default, all experi-
ments utilized models initialized with weights pretrained on ImageNet. Regard-
ing the global binary decision stage, we considered the following strategies as
mentioned in Section [3.5]:

— Whole video: Decision made using all video frames. It is a greedy strategy
which prevents any eventual bias related to frame selection or video duration.

— Cumulative: This strategy, utilized by MIDV-Holo [18], involves iteratively
updating a cumulative metric over the sequence. If the metric surpasses a
predefined threshold, the video is deemed original, potentially leading to an
early stop. Otherwise, if the threshold is not met by the sequence’s end, the
video is classified as attack.
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Table 2. Comparison of results between the MIDV-Holo baseline (reimplemented by
us) and our proposed method. Metrics (Fscore or Recall for attacks-only datasets) are
presented across three distinct test datasets, for 2 decision strategies: Whole video
and Cumulative. Both methods utilize exclusively our proposed MIDV-Holo “Vanilla”
train/validation sets for training and calibration. * denotes the original MIDV-Holo
configuration (applied on full rectified documents), albeit using train-validation and
test splits. “MIDV-Holo ROI* and our method both focus on the same ROI.

Test dataset —

MIDV-HOLO
“Vanilla”
(120 mixed vids)

MIDV-HOLO
“Photo repl.”
(20 attack vids)

MIDV 2020
“Clips”
(1k attack vids)

Decision Mothod T Metric = |Fyeore (%) Recall (%) Recall (%)
Whole video MIDV-Holo ROI 80 + 3 63 + 10 92 + 2
OUR - mobilevityzs 90 £ 2 87 £ 14 93+ 6
MIDV-Holo FULL DOC *|77 + 1 27 + 12 84+ 5
Cumulative |MIDV-Holo ROI 82+ 4 66 + 10 93+ 0
OUR - mobilevit,zs 86 + 5 84 + 11 94 + 4
Perfectly random 50 50 50
Dummy |Always positive (attack) |67 100 100
Always negative (original) [0 0 0

For our weakly supervised approach, network features are trained on the
train set, the best epoch is selected based on the validation set, and the deci-
sion threshold is calibrated on the validation set. Calibration involves selecting
the best Fycore for both the whole video and cumulative decision strategies. For
the MIDV-Holo baseline reproduction, parameters are calibrated on the union
of training and validation sets. Each operation is repeated 5 times with differ-
ent train/validation/test splits, utilizing various random seeds for generation to
mitigate potential biases. Results presented in Tables|2| and |3|represent averages
and standard deviations across these 5 runs.

5.2 Results and Ablation Study

Table [2] presents the outcomes achieved with the various configurations. For
brevity, only the result for the best feature extraction architecture is reported
here. The final rows of the table serve as a baseline, indicating the performance
metrics for completely random and constant decision processes. Notably, the
constant prediction of attacks reaches an F .o of 67% on MIDV-Holo “Vanilla”,
setting a lower bound for acceptable results.

These first results show the superiority of our proposed approach on MIDV-
Holo test sets for both decision strategies. While achieving similar performance to
the baseline on the MIDV 2020 test set, the consistently high scores may suggest
a bias towards predicting attacks, contrasting with our method’s robustness
shown in the mixed dataset.

Finally, we conducted an ablation study to challenge the benefits of various
aspects of our method. Table [3] summarizes the results, with the second row
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being the reference for our non-ablated approach (Augmentations, Contrastive,
Full train set). The ablated components are described here below.

Data Augmentation: What is the impact of data augmentations? The triplet
loss, along with our sampling strategy, essentially relies on augmentations. The
difference in performance between the first two rows of Table 3| confirms that
this key component helps generalize across different datasets. Let’s note that
for “Originals” triplets, disabling augmentations nullifies the term d(a;,p;) in
Equation as a; and p; are equal.

Training Strategy: Is a contrastive loss competitive against direct decision
optimization? We trained a simple classifier under the same conditions (pre-
trained on ImageNet, same augmentations) to distinguish between original and
attack frames. Then, the evaluation was done at the video level based on the
average prediction for each frame, and the final outcome was calculated using
a threshold calibrated on the validation set, similar to other methods. Results
were surprisingly good on the MIDV-Holo ” Vanilla” test set but showed a signif-
icant drop on other datasets. This underscores that while MIDV-Holo is useful
as it’s the first academic one of its kind, it must be handled with care. It also
emphasizes the necessity of using multiple datasets to demonstrate the relevance
of each method. Furthermore, it must be noted that a binary classifier cannot
individually control the coverage of expected visual appearances of a hologram.

Training Set: Are attack samples required to train our approach? The proposed
method operates on the assumption that there are equal numbers of frauds and
origins. However, in a real-world scenario, it is challenging to access attack sam-
ples. Thus, it makes sense to study the impact of training only on original sam-
ples. For this specific experiment, during training, the best model was selected
based on a minimum validation loss criterion (over Originals only). However, the
final decision threshold calibration was computed on the extended validation set
(Originals and Attacks). Training only with MIDV-Holo “Vanilla” Originals re-
sults in slightly lower performance on the test set, but still remains better than
the MIDV-Holo baseline.

Model Architecture and Tuning: How important is the model architecture
and are pretrained weights sufficient? As our approach is not tied to a par-
ticular architecture, we trained and tested several lightweight ones that can
match industrial processing speed requirements. We also checked whether fine-
tuning actually improved performance, as pretrained weights can already exhibit
sensitivity to saturated colors present in holograms. Results show similar per-
formance for the architectures tested, with mobilevit,,s and mobilenetgmaiio.s
being slightly superior when trained on mixed samples and originals only, re-
spectively. Furthermore, the poor performance in the last row of Table [3| proves
that generic features do not provide an adequate representation for our problem.
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Table 3. Ablation study showing the contribution of 3 essential components of the
proposed method: 1) data augmentation, 2) contrastive learning strategy, 3) training
data. All configurations are tested on 3 different model architectures. * best configu-
ration with all the features enabled (reported in Table .

MIDV-Holo MIDV-Holo MIDV 2020
ABLATED ELEMENTS Test dataset — |“Vanilla” “Photo replace” |“Clips”
OF THE PIPELINE (120 mixed vids)|(20 fake vids) |(1k fake vids)
Data| Train | Training |Deci- Metric —|Fscore (%) Recall (%) Recall (%)
aug. |strategy| Dataset | sion |Archi |

mobilenetv3sso 88 + 3 93 +£8 92 + 5
On Contrast mobilevit zos * 90 + 2 87 + 14 93 + 6
(triplet MIDV»HO}O resnetl8 88 + 2 91+ 7 93+ 5
loss) “Vanilla” mobilenetv3sso 83+ 6 75 + 17 86 + 7
Off full train set mobilevit s 87 + 12 65 + 20 87+ 7
(Originals & resnetl8 88+ 6 81 + 13 83+5
. Attacks) mobilenetv3sso 89+ 3 77T+ 12 44+ 7
gﬁfiﬁi‘) \ngg’ mobilevitees 9443 85 + 11 59 + 4
resnetl8 922+1 76 + 10 76 + 14
On | Contrast Originals mobilenetv3sso 827 89 + 11 94 + 4
(triplet & mobilevit s 84 + 4 87 + 18 89 + 9
loss) only resnet18 83 + 2 84 + 13 87 + 8
mobilenetv3sso 73+ 6 81 +£ 15 61 £ 19
None (pretrained weights) mobilevitqs 67 £ 1 92 £ 10 82+ 7
resnetl8 TTET 76 £ 19 59 £ 16

6 Conclusion

We have presented a novel approach for verifying both Appearance Conformity
and Appearance Coverage of Optically Variable Devices (OVDs, or “holograms”)
in identity documents using video clips recorded from commodity smartphones.
This approach leverages a feature extraction network trained with a contrastive
loss, which can be specialized to a given hologram while requiring only video-level
annotations, rather than individual frame labels. Furthermore, we have demon-
strated that this approach can achieve attractive results using original video
samples alone, which are abundantly obtained in industrial pipelines. Thanks to
the separate calibration of its decision stage, our approach can be easily tuned
to specific security requirements.

The evaluation of this approach necessitated the introduction of several ex-
tensions to the original MIDV-Holo dataset and the reimplementation of the pro-
posed baseline. Our experiments have revealed the superiority of our approach
over the previous baseline and its robust generalization capabilities across both
the MIDV-Holo “Photo Replacement” and MIDV 2020 “Clips”.

Lastly, our ablation study has uncovered a significant insight: while the
MIDV-Holo “Vanilla” dataset yields intriguingly good results when tested with
a simple binary classifier trained at the frame level, its generalization to other
datasets is poor, as expected. This raises the question: “What does the binary
classifier actually learn?” for future investigation.
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