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Abstract—The performance bounds of near-field sensing are
studied for circular arrays, focusing on the impact of bandwidth
and array size. The closed-form Cramér-Rao bounds (CRBs) for
angle and distance estimation are derived, revealing the scaling
laws of the CRBs with bandwidth and array size. Contrary
to expectations, enlarging array size does not always enhance
sensing performance. Furthermore, the asymptotic CRBs are
analyzed under different conditions, unveiling that the derived
expressions include the existing results as special cases. Finally,
the derived expressions are validated through numerical results.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) has played a critical
role in wireless sensing systems [1] and has also been regarded
as a key enabling technology for integrating wireless sensing
functionalities into the mobile communication networks [2].
The current fifth-generation (5G) wireless network is based
on the massive MIMO concept, which was first introduced
by Marzetta in 2010 [3]. A typical 5G massive MIMO base
station (BS) would be equipped with 64 antennas. Looking
forward to the sixth-generation (6G) era in the 2030s, the
new concepts of extremely large-scale MIMO (XL-MIMO)
and extremely large-aperture antenna array (ELAA), which
may include hundreds or even thousands of antennas, have
been proposed and received growing attention [4], [5]. This
will not only increase the aperture size of antenna arrays but
also bring about fundamental changes to the electromagnetic
properties of wireless signals [6]. In particular, as the array
aperture grows, the near-field region around BSs can be greatly
expanded. Such expansion can be more significant in the high-
frequency bands, such as millimeter wave and terahertz bands.
Generally speaking, in the near-field region, the spherical-wave
propagation of wireless signals is dominant, which is funda-
mentally different from the planar-wave propagation observed
in far-field scenarios. Therefore, it is crucial to reevaluate the
wireless sensing performance from a near-field perspective.

There are two key factors determining wireless sensing
performance: bandwidth and array size. In conventional far-
field sensing, these factors are primarily associated with the
resolution of distance and angle estimation, respectively [7].
However, in near-field sensing, the array size not only affects
the resolution of angle estimation but also impacts distance
estimation due to spherical-wave propagation, thus alleviating
the stringent requirement on bandwidth. This unique advantage
motivates extensive studies on near-field sensing performance
in narrowband systems, disregarding the influence of band-
width [8]–[11]. Additionally, while most existing studies focus

on uniform linear arrays (ULAs), the effective array aperture
of ULAs significantly diminishes near the edges, which can
severely impair sensing performance at large incident and
departure angles. Circular arrays have been proven to be
a promising solution to address this challenge due to their
isotropic radiation properties [12], [13].

Against the above background, this paper studies the joint
impact of bandwidth and array size on near-field sensing
performance with circular arrays. The analysis is based on
the widely exploited Cramér-Rao bound (CRB) framework
[8]–[11] and the most popular orthogonal frequency-division
multiplexing (OFDM) wideband signaling method [14]. Based
on these preconditions, we derive closed-form expressions for
the CRBs of angle and distance estimation, which unveil the
joint effects of bandwidth and array size on near-field sensing
performance. We further explore the asymptotic behavior of
these CRBs under various scenarios to elucidate the connec-
tions between our new findings and existing literature. Finally,
numerical results are provided to validate the analytical results.

II. SYSTEM MODEL

We study near-field sensing in a legacy wideband OFDM
system with an N -antenna base station (BS). The BS carries
out mono-static sensing for a point target located within the
near-field region of the BS. We assume a shared uniform
circular array (UCA) for transmitting and receiving at the BS
through the use of circulators and the perfect self-interference
cancellation through the full-duplex techniques.

A. Transmit Signal Model

Consider an OFDM frame with L OFDM symbols. Let
fc denote the carrier frequency, M denote the number of
subcarriers, Ts denote the elementary duration of an OFDM
symbol, and Tcp denote the duration of the cyclic prefix (CP).
Consequently, the subcarrier spacing, the overall bandwidth,
and the overall symbol duration of the OFDM system are
∆f = 1

Ts
, B = M∆f , and Ttot = Ts + Tcp, respectively.

Then, the baseband transmit signal over an OFDM frame can
be expressed as [14]

x̄(t) =
1√
M

L−1∑
l=0

M−1∑
m=0

xl,me
j2πδm∆ftrect

(
t− lTtot
Ttot

)
, (1)

where xl,m ∈ CN×1 denotes the data signal on the m-th
subcarriers in the l-th OFDM sysmbol, rect(t) denotes the
rectangular function which has a value of 1 if t ∈ [0, 1]
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Fig. 1: Geometry of the considered system.

and 0 otherwise, and δm = 2m−M+1
2 . The covariance matrix

of signal xl,m is defined as Rm = E[xl,mxH
l,m] ⪰ 0. In

this paper, we consider the average power constraint for each
subcarrier, which is given by tr(Rm) ≤ P, with P being the
transmit power budget for a single subcarrier.

B. Receive Signal Model

We consider a two-dimensional coordinate system for the
near-field sensing system, as illustrated in Fig. 1. The origin
of the coordinate system is put into the center of the UCA at
the BS. For the target, let r and θ denote its distance from the
origin and the angle with respect to the x-axis. Then, the coor-
dinate of the target can be expressed as r = [r cos θ, r sin θ]T .
Let d denote the antenna spacing of the UCA at the BS. The
radius of the UCA is thus given by R = Nd

2π , which satisfies
R ≤ r. In this case, the coordinate sn of the n-th antenna can
be expressed as sn = [R cosψn, R sinψn]

T , where ψn = 2πn
N .

The near-field propagation distance of the signal from the n-th
antenna to the target is given by [6]

rn = ∥r− sn∥ =
√
r2 +R2 − 2rR cos(θ − ψn). (2)

Given the propagation distance, the round-trip propagation
delay τn,i of the echo signal from the n-th antenna to the i-th
antenna at the BS is τn,i = (rn + ri)/c, where c denotes the
speed of light. Let x̄n(t) = [x̄(t)]n denote the baseband signals
transmitted by the n-th antenna of the UCA. The duration of
CP is assumed to be larger than the largest round-trip delay of
the target. Then, the noiseless continuous-time baseband echo
signal received at the i-th antenna at the UCA is given by [15]

yi(t) =

N∑
n=1

βx̄n(t− τn,i)e
−j2πfcτn,i (3)

where β is a complex channel gain including the round-trip
pathloss and radar cross section. Then, sampling si(t) at time
t = lTtot + Tcp + k Ts

M for k = 0, . . . ,M − 1 and omitting the
constant terms yields the following discrete-time signal model
in the l-th OFDM symbol after removing CP [14]:

yl,i[k] =
1√
M

N∑
n=1

M−1∑
m=0

βxl,m,ne
j2πδm∆f( kTs

M −τn,i)e−j2πfcτn,i

=
1√
M

N∑
n=1

M−1∑
m=0

βxl,m,ne
−j2πfmτn,iej2π

mk
M , (4)

where xl,m,n denotes the n-th entry of vector xl,m and fm =
fc+δm∆f is the frequency of the m-th subcarrier. The receive
signal vector yl[k] = [yl,1[k], . . . , yl,N [k]]T is thus given by

yl[k] =
1√
M

M−1∑
m=0

βa∗m(r, θ)aHm(r, θ)xl,me
j2πmk

M , (5)

where a(r, θ) ∈ CN×1 is known as the near-field array
response vector at frequency fm and is given by

am(r, θ) =
[
e−jkmr1 , . . . , e−jkmrN

]H
, (6)

with km = 2πfm
c denoting the wavenumber. Then, the noisy

signal received on the m-th subcarrier in the l-th OFDM
symbol can be obtained by DFT as follows

yl,m =DFT(yl[k])m + zl,m

=βa∗m(r, θ)aHm(r, θ)xl,m + zl,m, (7)

where zl,m denote the additive white Gaussian noise with each
entry obeying CN (0, σ2). Aggregating yl,m over L OFDM
symbols yields

Ym = [y1,m, . . . ,yL,m] = βAm(r, θ)Xm + Zm, (8)

where Am(r, θ) = a∗m(r, θ)aHm(r, θ), Xm = [x1,m, . . . ,
xL,m], and Zm = [z1,m, . . . , zL,m]. In the mono-static sensing
setup, the data signal Xm is known at the BS. Therefore, the
problem for near-field sensing is to estimate the remaining
unknown parameters, i.e., complex channel gain β, distance
r, and angle θ, related to the targets from the receive signals
{Ym}M−1

m=0 in (8) based on the knowledge of Xm. We focus
primarily on the estimation of r and θ, i.e., the location
information of the target.

III. PERFORMANCE BOUNDS AND ANALYSIS

In this section, the performance bounds for angle and dis-
tance estimation are characterized and analyzed. In particular,
the most popular CRB is considered, which provides a tight
lower bound of mean-squared error for unbiased estimators
under some general and mild conditions [8]–[11].

A. Cramér-Rao Bound

We now derive the CRBs for estimating r and θ from the
signals {Ym}M−1

m=0 . To this end, we first stack the signals
{Ym}M−1

m=0 a single vector as follows:

y =


vec(βA0(r, θ)X0)

...
vec(βAM−1(r, θ)XM−1)


︸ ︷︷ ︸

u

+


vec(Z0)

...
vec(ZM−1)

 . (9)

Following the results in [11], we define vectors uθ = ∂u
∂θ and

ur = ∂u
∂r , and the following matrix

Q =

∥uθ∥2 sin2 Ω Re{uHΦu}
∥u∥2

Re{uHΦu}
∥u∥2 ∥ur∥2 sin2 Θ

 , (10)



where sin2 Ω = 1 − |uH
θ u|2

∥uθ∥2∥u∥2 , sin2 Θ = 1 − |uH
r u|2

∥ur∥2∥u∥2 , and
Φ = uH

θ urI−uθu
H
r . Then, the CRBs for estimating θ and r

can be respectively calculated by [11]

CRBθ =
σ2∥ur∥2 sin2 Θ

2detQ
, CRBr =

σ2∥uθ∥2 sin2 Ω
2detQ

. (11)

It can be observed that the value of CRBs is determined by the
following intermediate parameters: u = ∥u∥2, uθ = ∥uθ∥2,
ur = ∥ur∥2, cθ = uH

θ u, cr = uH
r u, and η = uH

θ ur.
Specifically, the expression of u is given by

u =
∑M−1

m=0
∥vec(βAm(r, θ)Xm)∥2

(a)
≈

∑M−1

m=0
|β|2Ltr

(
Am(r, θ)RmAm(r, θ)H

)
, (12)

where (a) stems from the equality ∥vec(X)∥2 = tr(XXH)
and the approximation 1

LXmXH
m ≈ E[xl,mxH

l,m] = Rm. This
approximation is valid under the condition of a sufficiently
large value for L. Consequently, we assume that the accurate
equality of them holds true throughout this paper. Furthermore,
parameter u can be rewritten as a function of the beamforming
gain. In particular, given the transmit covariance matrix, the
beamforming gain at the target location on the m-th subcarrier
is Gm = aHm(r, θ)Rmam(r, θ). It is easy to prove that
0 ≤ Gm ≤ NP , where the maximum value is achieved
when Rm = P

N am(r, θ)aHm(r, θ). For brevity, we assume
G0 = · · · = GM−1 ≜ G. Thus, the parameter u can be
rewritten as

u ≈
M−1∑
m=0

|β|2LGtr
(
a∗m(r, θ)aTm(r, θ)

)
= |β|2LGNM. (13)

Furthermore, to calculate the intermediate parameters involv-
ing uθ and ur, we first define the following derivatives:

Ġθ,m ≜
∂Am(r, θ)

∂θ
= −2jkmΘAm(r, θ), (14)

Ġr,m ≜
∂Am(r, θ)

∂r
= −2jkmΥAm(r, θ), (15)

where Θ and Υ are diagonal matrices whose n-th diagonal
entries are [Θ]n,n = ∂rn

∂θ and [Υ]n,n = ∂rn
∂r , respectively.

Then, uθ and ur can be reformulated as

ui =


vec(βĠi,0X0)

...

vec(βĠi,M−1XM−1)

 ,∀i ∈ {θ, r}. (16)

Then, following the similar process as (12), the expressions
of the intermediate parameter uθ is given by

uθ =
∑M−1

m=0
4|β|2Lk2mtr

(
ΘAm(r, θ)RmAH

m(r, θ)ΘH
)

=4|β|2k20LGM̃ũθ, (17)

where k0 = 2π
c , M̃ =

∑M−1
m=0 f

2
m, and ũθ =

∑N
n=1

(
∂rn
∂θ

)2
.

Similarly, it can be shown that

ur = 4|β|2k20LGM̃ũr, cθ = −2j|β|2k0LGM̄c̃θ, (18)

cr = −2j|β|2k0LGM̄c̃r, η = 4|β|2k20LGM̃η̃, (19)
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where ũr =
∑N

n=1

(
∂rn
∂r

)2
, c̃θ =

∑N
n=1

∂rn
∂θ , c̃r =

∑N
n=1

∂rn
∂r ,

η̃ =
∑N

n=1
∂rn
∂θ

∂rn
∂r , and M̄ =

∑M−1
m=0 fm. To obtain the

closed-form expressions of the CRBs, we first derive the
following lemma.

Lemma 1. If N ≫ 1 and R ≤ r, the closed-form expressions
of ũθ, ũr, c̃θ, c̃r, η̃, M̃ , and M̄ can be derived as

ũθ =
R2N

2
, ũr = N − R2N

2r2
, c̃r = NK

( r
R

)
, c̃θ = 0,

η̃ = 0, M̃ =Mf2c +
M(M2 − 1)

12
∆f2, M̄ =Mfc, (20)

where K(α) is a transcendental function given by

K(α) =

∫ 2π

0

α− cosx

2π
√
1− 2α cosx+ α2

dx. (21)

Proof: Please refer to the Appendix.
Based on the results in Lemma 1, the closed-form ex-

pression of the intermediate parameters in (17)-(19) can be
obtained. By substituting them into (11), the closed-form
CRBs can be obtained, given in the following theorem.

Theorem 1. The closed-form CRBs achieved by UCAs when
R ≤ r are given by

CRBθ =
3σ2

ρLNMR2 (12f2c +B2 −∆f2)
, (22)

CRBr =
3σ22ρLNM

[
12f2c

(
1− R2

2r2 −K2
(
r
R

))
+ (B2 −∆f2)

(
1− R2

2r2

) ]
 , (23)

where ρ = k20|β|2G is related to the channel gain and
beamforming gain, R = Nd

2π is the radius (half of the aperture)
of the UCA, and B =M∆f is the signal bandwidth.

In Theorem 1, it can be observed that CRBr is inversely
proportional to the following function:

Ξ

(
R

r
,
B

fc

)
= 12

(
1− R2

2r2
−K2

( r
R

))
+
B2 −∆f2

f2c

(
1− R2

2r2

)
. (24)



The behavior of this function when M ≫ 1, i.e., B2−∆f2 ≈
B2 is illustrated in Fig. 2. From the closed-form expressions
of CRBs in Theorem 1 and the results in Fig. 2, we notice
the following (keeping in mind R ≤ r, N ≫ 1, and M ≫ 1).

• Robustness of UCA: CRBθ and CRBr achieved by
UCA is independent of the angle of the target θ. This is
fundamentally different from the conventional ULAs with
an angular-dependent performance [8]–[11]. Therefore,
UCAs can provide more stable performance than ULAs.

• Impact of Bandwidth: Both CRBθ and CRBr are
O(1/M) and decrease with both larger carrier frequency
fc and bandwidth B. Compared to CRBr, CRBθ is
less affected by the bandwidth B. This is because the
(12f2c + B2 − ∆f2) term in its denominator is mainly
affected by 12f2c unless B2 − ∆f2 has a comparable
value to 12f2c , which is impossible in practice. In contrast,
CRBr is significantly affected by the bandwidth B,
which will be detailed in the sequel.

• Impact of Array Size: CRBθ is O(1/N) and O(1/R2)
but is independent of r. This suggests that increasing the
array aperture is more advantageous for angle estimation
than increasing the number of antennas. If the antenna
spacing d remains constant, the radius R is proportional
to the number of antennas, where R = Nd

2π . In this
case, CRBθ is O(1/N3). On the contrary, CRBr is
O(1/N) but exhibits a more complex dependence R
and r, characterized by the function Ξ(Rr ,

B
fc
) in (24).

According to the results in Fig. 2, larger array apertures
or closer targets (i.e., a larger ratio of R/r) generally
enhance the performance of distance estimation with the
practical ratio B/fc less than 0.1. However, this trend
appears to reverse at ultra-high values of B/fc, exceeding
0.3, where larger apertures or closer targets may actually
degrade the performance of distance estimation. It is
important to note that such high values of B/fc are
generally uncommon in practice.

• Impact of Beamforming: Both CRBθ and CRBr are
O(1/G). Recall that the beamforming gain G varies
between 0 and NP , achieving its maximum when Rm =
P
N am(r, θ)aHm(r, θ),∀m. At this maximum, both CRBθ

and CRBr are reduced to O(1/N2). Moreover, if the
antenna spacing d remains constant, CRBθ can further
decrease to O(1/N4) under maximum G. However, at-
taining the maximum G necessitates prior knowledge
of r and θ, which is typically unavailable in practice.
As an alternative, isotropic beamforming provides a ro-
bust solution for unknown target locations, defined by
Rm = P

N IN ,∀m [16]. This method results in a constant
beamforming gain of G = P , independent of N .

• Origins of Performance Gain: In the considered system,
the total number of observations for target sensing is
LMN , where L, M , and N denote the number of
observations collected across the time, frequency, and
space domains, respectively. Recall that with fixed G,
R, and B, both CRBθ and CRBr are O(1/N) and
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(
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.

O(1/M). This suggests that when the array aperture and
signal bandwidth remain constant, the performance gain
from adding more antennas and subcarriers stems solely
from the increase in the total number of observations,
rather than changing the near-field and wideband effects.
Conversely, modifications to the array aperture or signal
bandwidth directly impact these effects, thereby funda-
mentally altering sensing performance.

B. Asymptotic CRBs
In this subsection, we dive further into the asymptotic

behavior of CRBs to obtain more insights. Based on the
Theorem 1, it is easy to prove the following corollaries.

Corollary 1. As r → ∞, the asymptotic CRBr satisfies

lim
r→∞

CRBr =
3σ2

2ρLNM (B2 −∆f2)
. (25)

Proof: As r → ∞, we have limr→∞
R
2r2 = 0 and

lim
r→∞

K
( r
R

)
= lim

α→∞
K (α) =

∫ 2π

0

1

2π
dx = 1. (26)

By substituting these two limits into (23), the expression in
(25) can be obtained.

Corollary 2. As M → 1, the asymptotic CRBr satisfies

lim
M→1

CRBr =
σ2

8ρLNf2c
(
1− R2

2r2 −K2
(
r
R

)) . (27)

Proof: As M → 1, we have B = ∆f , thus B2−∆f2 = 0.
Substituting this result into (23) yields (27).

Corollary 3. As r → ∞ and M → 1, the asymptotic CRBr

satisfies
lim

r→∞,M→1
CRBr = ∞. (28)

Proof: The above results can be readily obtained accord-
ing to Corollaries 1 and 2.

According to Corollary 2, in the single-carrier system, the
CRBr is inversely proportional to the following function:

Φ

(
R

r

)
= 1− R2

2r2
−K2

( r
R

)
, (29)

The behavior of this function is illustrated in Fig. 3. From the
asymptotic CRBs in Corollaries 1-3 and the results in Fig. 3,
we notice the following additional insights.
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Fig. 4: CRBs versus the number of subcarriers under the conditions
of the fixed bandwidth of B = 500 MHz and the fixed subcarrier
spacing of 1 MHz, respectively.

• Corollary 1 presents CRBr in far-field systems, where
r → ∞. In far-field systems, when the number of
observations LNM remains constant, CRBr is merely
related to the bandwidth B. This finding aligns with
previous research on far-field sensing [7].

• Corollary 2 describes CRBr in single-carrier systems.
According to the results in Fig. 3, a larger array aperture
or a closer target (i.e., a larger ratio of R/r) can always
lead to a better performance of distance estimation. This
result is consistent with the existing studies on single-
carrier near-field sensing [8]–[11].

• Corollary 3 explores CRBr in single-carrier far-field
systems. In this scenario, we have CRBr = ∞. This sug-
gests an unbounded estimation error, rendering distance
estimation infeasible under these conditions.

IV. NUMERICAL RESULTS

In this section, numerical results are provided to validate the
analytical results. Unless otherwise specified, we set r = 20
m, θ = 90◦, fc = 30 GHz, B = 10 MHz, L = 256, M = 256,
N = 256, R = 0.5 m, and |β|2P

σ2 = 0 dB.
Fig. 4 examines the influence of bandwidth on sensing

performance under two different conditions: fixed bandwidth
and fixed subcarrier spacing. In the case of fixed bandwidth,
increasing the number of subcarriers only leads to more ob-
servation samples. Conversely, in the fixed subcarrier spacing
scenario, increasing the number of subcarriers also expands
the bandwidth. From Fig. 4(a), it can be observed that for
angle estimation, increasing bandwidth has a marginal effect
on its accuracy unless the bandwidth is extremely large, e.g.,
when M ≥ 105 with 1 MHz subcarrier spacing. In this
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Fig. 5: CRBs versus the number of antennas under the conditions of
the fixed aperture of R = 0.5 m and the fixed antenna spacing of
d = c

2fc
, respectively.

case, the bandwidth is B = 105 × 1 MHz = 100 GHz.
This bandwidth is much larger than the carrier frequency fc,
which is impossible. Therefore, in practice system setup with
B ≪ fc, bandwidth has negligible impact on angle estimation.
Furthermore, for distance estimation, bandwidth has a much
more significant impact, leading to a faster decrease in CRB.
Furthermore, it reveals that the near-field gain in distance
estimation is substantial when the bandwidth is small, but
becomes negligible when the bandwidth is extremely large.

Fig. 5 explores the impact of array size on sensing per-
formance with either fixed aperture or fixed antenna spacing
under different beamforming (BF) strategies. For fixed aper-
ture, more antennas only lead to more observation samples.
For fixed antenna spacing, more antennas also enlarge the
array aperture, thus enhancing the near-field effect. It can
be observed that the CRBs for angle and distance estimation
exhibit similar trends as the number of antennas N increases.
First, both angle and distance estimation derive greater benefits
from larger array apertures rather than merely increasing
the number of antennas. Second, both metrics significantly
improve with appropriate beamforming optimization.

Fig. 6 explores the effect of target distance on the accuracy
of distance estimation across different aperture and band-
width configurations. There are two key observations. First,
the accuracy of distance estimation approaches the far-field
bound more rapidly with larger bandwidths, indicating that a
larger bandwidth diminishes the extent of the near-field effect.
Second, when the target distance is relatively moderate (e.g.,
r ≤ 60 m), expanding the array aperture (without the addition
of more antennas) is more advantageous than increasing the
bandwidth, without incurring additional hardware costs or
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using more spectrum resources.

V. CONCLUSION

This paper studied the joint impact of bandwidth and array
size on near-field sensing with circular arrays based on the
CRB framework. The developed results suggested a highly
coupled relationship between bandwidth and array size for the
sensing performance. The developed results also included the
existing results as special cases, providing a more accurate
model for performance evaluation in practice.

APPENDIX

For UCAs, partial derivatives of the propagation distance
rn with respect to r and θ are given by

∂rn
∂θ

=
rR sin(θ − 2πn

N )√
r2 +R2 − 2rR cos(θ − 2πn

N )
, (30)

∂rn
∂r

=
r −R cos(θ − 2πn

N )√
r2 +R2 − 2rR cos(θ − 2πn

N )
. (31)

By defining δ = 2π
N , the parameter ũθ can be derived as

ũθ =

N∑
n=1

(
∂rn
∂θ

)2

=

N∑
n=1

r2R2 sin2(θ − 2πn
N )

r2 +R2 − 2rR cos(θ − 2πn
N )

=
r2R2

δ

N∑
n=1

sin2(θ − nδ)

r2 +R2 − 2rR cos(θ − nδ)
δ

(a)
≈ r2R2N

2π

∫ 2π

0

sin2 x

r2 +R2 − 2rR cosx
dx

=
r2R2N

2π

(∫ π

0

sin2 x

r2 +R2 − 2rR cosx
dx

+

∫ π

0

sin2 x

r2 +R2 + 2rR cosx
dx

)
(b)
=
R2N

2
, (32)

where approximation (a) is obtained based on δ ≪ 1 when
N ≫ 1 and step (b) is derived based on the integral formula
[17, Eq. (3.613.3)] when R ≤ r. Similarly, the remaining
parameters can be derived as follows:

ũr = N − 1

r2
ũθ ≈ N − R2N

2r2
, (33)

c̃θ ≈
∫ 2π

0

rRN sinx

2π
√
r2 +R2 − 2rRs cosx

dx
(c)
= 0, (34)

c̃r ≈
∫ 2π

0

N(r −R cosx)

2π
√
r2 +R2 − 2rR cosx

dx = NK
( r
R

)
, (35)

η̃ ≈
∫ 2π

0

rRN(R sinx cosx− r sinx)

2π(r2 +R2 − 2rR cosx)
dx

(d)
= 0, (36)

where steps (c) and (d) are obtained according to the symme-
try property of the functions and function K(α) is given by

K(α) =

∫ 2π

0

α− cosx

2π
√
1− 2α cosx+ α2

dx. (37)

It can be proved that the function K(α) is a transcendental
function that does not have a closed-form expression. More-
over, recall fm = fc+δm∆f , with δm = 2m−M+1

2 . Thus, the
parameters of M̃ and M̄ can be derived as follows

M̃ =
∑M−1

m=0
f2m =Mf2c +

M(M2 − 1)

12
∆f2, (38)

M̄ =
∑M−1

m=0
fm =Mfc. (39)

The proof of Lemma 1 is thus completed.
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