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Abstract

The sunflower equation describes the motion of the tip of a plant due to the auxin
transportation under the influence of gravity. This work proposes the fractional-
order generalization to this delay differential equation. The equation contains two
fractional orders and infinitely many equilibrium points. The coefficients in the
linearized equation near the equilibrium points are delay-dependent. We provide
a detailed stability analysis of each equilibrium point. We observed the following
bifurcation phenomena: stable for all the delay values, a single stable region in the
delayed interval, and a stability switch. We also observed a multi-scroll chaotic
attractor for some values of the parameters.
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1 Introduction

Mathematical analysis is the fundamental tool used to study complex Biological sys-
tems [1, 2]. These systems can be modeled using differential or difference equations.
If the “time” variable in these systems is continuous, then one can use the ordinary
or partial differential equation [3, 4]. Such equations may be improved by including
“time-delay,” which gives a better fit for the “system-memory” [5, 6]. The obvious
nonlocality of the Biological systems can be captured in the model with the help of
“fractional order derivative (FOD)” [7–9]. If the order of the derivative is a non-integer
(e.g., a positive real number or a complex number with a positive real part), then it
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is termed as FOD [10]. Nowadays, Mathematicians are working on derivatives whose
order depends on time or is distributed over some interval [11, 12].

In 1967, Israelsson and Johnsson [13] proposed a model explaining the helical
movements (circumnutations) of the apex of sunflower plants. The theory is about
the interplay between gravity and the growth hormone (auxin). The time delay arises
because the hormone takes some time to spread in the plant body (geotropic reaction
time for the hypocotyls). Somolinos [14] in 1978 carried out the rigorous mathematical
analysis of the sunflower equation. Oscillations in this equation are studied by Kulen-
ović and Ladas [15]. In this work, we generalize the sunflower equation to include the
fractional order derivatives. The system possesses infinitely many equilibrium points.
We provide the stability analysis of all these equilibrium points and discuss the pos-
sible types of bifurcations in detail. Furthermore, we present the chaotic solutions of
this system.

The rest of the paper is organized as below: Section 2 gives the details of the
sunflower equation and its fractional-order counterpart. In Section (3), we describe
the stability and bifurcation analysis of equilibrium points of the sunflower equation.
Chaos in the proposed model is studied in Section (4). Validation of results is done in
Section (5). Section (6) presents the conclusions.

2 The Sunflower Equation

The sunflower equation [13] described by (1) is a modeling nonlinear delay differen-
tial equation that defines the helical movement of the tip of a growing plant which
accumulates growth hormone (auxin).

τ

l
ẍ(t) + ẋ(t) =

−m

l
sin(x(t− τ)) (1)

where m, l and delay τ are positive numbers. Now, we generalize it to the fractional
order case as:

τ

l
D2αx(t) +Dαx(t) =

−m

l
sin(x(t− τ)), 0 < α ≤ 1. (2)

Here, Dα and D2α represent Caputo Fractional Derivatives [10, 16–19].
Note that x∗ is an equilibrium point of equation (2) if and only if sin(x∗) = 0 as

we have Dαx∗ = 0 and D2αx∗ = 0. So, equation (2) has infinitely many equilibrium
points given by x∗

1,n = 2nπ and x∗
2,n = (2n+ 1)π, n ∈ Z.

By taking a small perturbation near the equilibrium point and using Taylor’s
approximations we get the local linearization of equation (2) as

τ

l
D2αx(t) +Dαx(t) =

−m

l
x(t− τ), (3)

near the equilibrium point x∗
1,n and

τ

l
D2αx(t) +Dαx(t) =

m

l
x(t− τ), (4)
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near the equilibrium point x∗
2,n.

3 Stability Analysis

If we consider the non-delayed equation (3) then we get Dαx(t) =
−m

l
x(t) which

implies that the equilibrium point x∗
1,n is stable at τ = 0 [20]. Similarly, the equilibrium

point x∗
2,n is unstable at τ = 0 as the equation (4) gets reduced to Dαx(t) =

m

l
x(t).

3.1 Stability results for the equilibrium points x∗
1,n = 2nπ

Now, let us consider the equilibrium points x∗
1,n and τ > 0.

By using Laplace transform, the characteristic equation of (3) is:

τ

l
λ2α + λα +

m

l
exp(−λτ) = 0. (5)

We have change in stability only when the root λ = u+ iv of equation (5) crosses the
imaginary axis.
Therefore, by putting λ = iv, v > 0 in the equation (5), we get the boundary of the

stable region i.e.
τ

l
(iv)2α + (iv)α +

m

l
exp(−ivτ) = 0.

Separating the real and imaginary parts we get,

τ

l
v2α cos(απ) + vα cos

(απ
2

)
=

−m

l
cos(vτ) (6)

and
τ

l
v2α sin(απ) + vα sin

(απ
2

)
=

m

l
sin(vτ). (7)

Now, by squaring and adding equations (6) and (7), we get

l2v2α + τ2v4α + 2lv3ατ cos(
απ

2
)−m2 = 0 (8)

Since, l and m are positive numbers, we get only one positive root vα of equation
(8) given in the Data Set 1 available at https://drive.google.com/drive/folders/
1jOuemmKoSxZfzFSRlotf94YYp5nJI-iy?usp=sharing. By putting this value of v in
the equation (6), we get a critical value of delay τ∗ where we have change in stabil-
ity for the equilibrium point x∗

1,n. By Section (6) in [21], ∃ only one critical value of
delay τ∗. Since the coefficient in equation (5) depends on τ , the expression for τ∗ also
depends on τ , say τ∗ = g(τ) and is given in the above Data Set 1.
Now, note that if the curve g(τ) does not meet the line τ∗ = τ in the ττ∗plane then
x∗
1,n is asymptotically stable (cf. Figure (1)(a)). If it meets twice then x∗

1,n will gen-
erate stability switch (SS) as shown in Figure (1)(c). So, there exists τ1 and τ2 where
g(τ1) = τ1 and g(τ2) = τ2 such that when τ ∈ [0, τ1) then x∗

1,n is asymptotically sta-
ble, if τ ∈ (τ1, τ2) then x∗

1,n is unstable and if τ > τ2 again we get x∗
1,n asymptotically
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τ* = ց (τ)
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(a) x∗1,n is stable when there is no intersection
between g(τ) and τ
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(b) Curve that bifurcates the stable region from
the stability switch
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(c) Two intersections between g(τ) and τ
results the stability switch S-U-S
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(d) Single stable region since we have only one
intersection between g(τ) and τ

Fig. 1: Different behaviors of the critical curve τ∗ = g(τ) in the ττ∗ plane

stable (cf. Figure (1)(c)). If g(τ) cuts only once the line τ = τ∗ then we have a single
stable region (SSR) as given in Figure (1)(d). So, if τ1 is the only intersection point
where g(τ1) = τ1 then then x∗

1,n is asymptotically stable when τ < g(τ1) whereas
τ > g(τ1) implies that x∗

1,n is unstable.

3.2 Bifurcation analysis of x∗
1,n

• For α = 0.1, 0.2 and 0.3, we observed only two behaviors of x∗
1,n viz. Stable (Figure

(1)(a)) and stability switch (SS) (Figure (1)(c)). At the bifurcation of these two
behaviors, the curve τ∗ = τ becomes tangent to the curve τ∗ = g(τ) (cf. Figure
(1)(b)). The values of l and m (cf. Figure (2)) at such tangent form a curve in
lm−plane that bifurcates stable region with the stability switch.

• All the stability behaviors described in Figure (1) was given by α = 0.4.
In Figure (2)(d), the curve m = h2(l) separating the stable region from the stability
switch (SS) is obtained as described above.
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(a) Bifurcation curve in the lm−plane for α =
0.1
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(b) Bifurcation curve in the lm−plane for α =
0.2
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(c) Bifurcation curve in the lm−plane for α =
0.3

S
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m=h2(l)

m=h1(l)
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l
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(d) Bifurcation curve in the lm−plane for α =
0.4

Fig. 2: Bifurcation curves in the lm−plane for different values of α separating the
stable region (S), the stability switch (SS) and the single stable region (SSR)

If we take m > h2(l) then there are two intersections between g(τ) and τ which
results in SS region. The second intersection point goes away from the first as we
increase m further. At the another bifurcation m = h1(l) (see Figure (2)(d)), the
second intersection point → ∞ and vanishes.
Therefore, for m > h1(l), there is only one intersection between g(τ) and τ and we
get the SSR. This gives another bifurcation curve m = h1(l) separating SS from
SSR in the lm−plane.

• For 1/2 ≤ α < 1, we observed that the curve τ∗ = g(τ) and τ∗ = τ have only
one intersection (Figure (1)(d)). Thus, there is SSR for x∗

1,n and no bifurcation is
observed.
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(b) Unstable solution for
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(c) Periodic solution for
τ = 8
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(f) Chaotic attractor for
τ = 20

Fig. 3: Period doubling route to chaos for l = 14, m = 5.6 and α = 0.85

3.3 Stability results for the equilibrium points x∗
2,n = (2n+1)π

Note that the equilibrium points x∗
2,n are unstable at τ = 0. If we compare equation

(8) given in the paper [21] with the equation (4) we get a = 0, b =
m

l
so a1 =

m

l
and c =

τ

l
. Therefore, for any τ , l and m positive, we have a1 > 0 and c > 0. So, by

the Figure (17) and Figure (19) in [21], the equilibrium points x∗
2,n = (2n + 1)π are

unstable for all τ ≥ 0 and for any 0 < α ≤ 1.

4 Chaos in the Sunflower equation

If we take l = 14, m = 5.6 and α = 0.85 then we get the critical value τ1 = 5.16433
(Figure (1)(d)) where we have g(τ) = τ . So, if we take τ < τ1 we get stable solution
near x∗

1,n. The stable solution for τ = 4 with initial data x(t) = 6.9 and ẋ(t) = 2.5,
−τ < t ≤ 0 is shown in Figure (3)(a). We get the unstable solution for τ > τ1 as
shown in Figure (3)(b) with τ = 6.

If we further increase the delay τ e.g. τ = 8, we get a periodic solution with one
closed orbit (cf. Figure (3)(c)). For τ = 14 and τ = 15, we get two-cycle and four-
cycle, respectively, as shown in Figures (3)(d) and (3)(e). The period doubling leads
to chaos (3)(f). The infinite scroll chaotic attractor is given in Figure (4) for α = 1,
l = 14, m = 5.6 and τ = 20.
Note that, the fractional order systems do not have exactly periodic orbits [22].
However, we can have asymptotic-periodic orbits or limit cycles as observed in this
work.
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Fig. 4: Infinite scroll chaotic attractor

5 Examples

Example 5.1. Figure (2) shows that there is only one bifurcation curve in the
lm−plane separating the region S from SS for α = 0.1, 0.2, and 0.3.

So, if we take α = 0.3 and l = 3 with the initial data x(t) = 0.02 for t ∈ (−τ, 0]
near x∗

1,0 = 0 then along the bifurcation curve we get the critical value m = 5.3092.
If we take m = 1 < 5.3092 then the equilibrium point 0 is stable ∀τ ≥ 0. Figure (5)(a)
shows the stable solution for τ = 4.
Now, if we take m = 6 > 5.3092 then we are in the stability switch region. The two
critical values of τ are τ1 = 0.567501 and τ2 = 10.133 (see Figure (1)(c)) where
g(τ) = τ . If we take τ < 0.567501, we get stable solution near 0 (cf. Figure (5)(b) for
τ = 0.4), if we take 0.567501 < τ < 10.133 we get unstable solution near 0 (cf. Figure
(5)(c) for τ = 0.7) and if we take τ > 10.133 (cf. Figure (5)(d) for τ = 12) again we
get stable solution near 0.
Example 5.2. Figure (2)(d) shows that there are all the three types of behaviors viz.
S, SS and SSR for α = 0.4 in a neighborhood of the equilibrium points x∗

1,n.
So, if we fix l = 1 then along the curve m = h2(l) we get m = 2.95108 and

m = 7.16 along m = h1(l). We take initial data as x(t) = 0.0003 ∀t ∈ (−τ, 0] near
x∗
1,0 = 0.

Hence, if we take m = 1 < 2.95108, we get a stable solution near 0 for all τ > 0.
Figure (6)(a) shows stable solution near 0 for τ = 0.08 .
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for τ = 4 and m = 1
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Fig. 5: Figures of Example (5.1)
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(c) Unstable solution for
τ = 0.8
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12

0.1 0.2 0.3 0.4 0.5
t

-0.0001

0.0001

0.0002

0.0003

0.0004

x(t)

(e) Stable solution for τ =
0.01

0.1 0.2 0.3 0.4 0.5
t

-0.004

-0.002

0.002

0.004

x(t)

(f) Unstable solution for
τ = 0.03

Fig. 6: Figures of Example (5.2)

Now, if we take m = 3.2 ∈ (2.95108, 7.16), then it is in the stability switch region,
and we get τ1 = 0.616608 and τ2 = 10.733 given in the Figure (1)(c). So, we get
stable solution for τ ∈ [0, 0.616608), unstable solution for τ ∈ (0.616608, 10.733) and
again stable solution for τ > 10.733 near the equilibrium points x∗

1,n. The stable
solution near x∗

1,0 for τ = 0.4 is given in Figure (6)(b), unstable solution for τ = 0.8
in Figure (6)(c) and stable solution for τ = 12 in Figure (6)(d).

If m = 8 > 7.16 then we are in the SSR region from Figure (2)(d). So, we get
τ1 = 0.0173043 from Figure (1)(d) where g(τ) = τ . So, for τ < 0.0173043 we get stable
solutions (cf. Figure (6)(e) with τ = 0.01) and for τ > 0.0173043 we get unstable
solutions (cf. Figure (6)(f) with τ = 0.03) near the equilibrium points x∗

1,n.
Example 5.3. Let us now consider the case for 1/2 ≤ α < 1. From Subsection (3.2),
there is no any bifurcation for this case. We get only one critical value τ1 (see Figure
(1)(d)) where g(τ) = τ such that 0 < τ < τ1 gives stability of x∗

1,n.
So, if we fix α = 0.9, l = 1 and m = 1.5 with the initial data x(t) = 0.02, ẋ(t) = 0.1
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rium point π

Fig. 7: Figures of Example (5.3) and Example (5.4)

for −τ < t ≤ 0 then we get a critical value τ1 = 1.03915 such that for τ < τ1 we get
stable solution near x∗

1,n (cf. Figure (7)(a) for τ = 1). For τ > τ1, we get unstable
solution (cf. Figure (7)(b) for τ = 3).
Example 5.4. The equilibrium points x∗

2,n are unstable for all τ ≥ 0 and 0 < α < 1
(Section (3.3)). So, if we fix l = 5, m = 2, τ = 2.8 and α = 0.3 with the initial
condition x(t) = 3.17 for 2.8 < t ≤ 0 then the equilibrium point π is unstable as shown
in Figure (7)(c).

6 Conclusions

Fractional order generalizations of the classical equations are useful in improving the
models. The resulting models are more realistic than their classical counterparts. We
generalized the sunflower equation to include two fractional order derivatives. The
stability analysis of the equilibrium points is provided by linearizing the equations
near the respective equilibrium and using the theory developed in the literature. For
the fractional order 0 < α < 0.4, we observed the stable solutions for all the delay
parameters and the stability switches for some parameters l and m. For 1/2 ≤ α ≤ 1,
we observed a single stable region where the existence of the critical value τ1 of the
delay bifurcates the stable behavior from the unstable one. The fractional order α = 0.4
shows richer dynamics. We observe all the three bifurcation behaviors described above.
The interesting observation is chaos at some parameter sets. The chaotic attractor
generated has many scrolls because of the involvement of the sine function in the
model.
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