
Towards an Approach to Pattern-based
Domain-Specific Requirements Engineering

Tatiana Chuprina, Daniel Méndez(1,2), Vivek Nigam
(1)fortiss GmbH

Munich, Germany
(2)Blekinge Institute of Technology

Karlskrona, Sweden

Marina Reich(3,4), Andreas Schweiger(3)
(3)Airbus Defence and Space GmbH

Manching, Germany
(4)Technische University of Chemnitz

Chemnitz, Germany

Abstract—Requirements specification patterns have received
much attention as they promise to guide the structured speci-
fication of natural language requirements. By using them, the
intention is to reduce quality problems related to requirements
artifacts. Patterns may need to vary in their syntax (e.g. domain
details/ parameter incorporation) and semantics according to the
particularities of the application domain. However, pattern-based
approaches, such as EARS, are designed domain-independently
to facilitate their wide adoption across several domains. Little
is yet known about how to adopt the principle idea of pattern-
based requirements engineering to cover domain-specificity in
requirements engineering and, ideally, integrate requirements
engineering activities into quality assurance tasks. In this
paper, we propose the Pattern-based Domain-specific Requirements
Engineering Approach for the specification of functional and
performance requirements in a holistic manner. This approach
emerges from an academia-industry collaboration and is our first
attempt to frame an approach which allows for analyzing domain
knowledge and incorporating it into the requirements engineering
process enabling automated checks for requirements quality
assurance and computer-aided support for system verification.
Our contribution is two-fold: First, we present a solution to
pattern-based domain-specific requirements engineering and its
exemplary integration into quality assurance techniques. Second,
we showcase a proof of concept using a tool implementation for
the domain of flight controllers for Unmanned Aerial Vehicles.
Both shall allow us to outline next steps in our research agenda
and foster discussions in this direction.

Index Terms—Domain-Specific Requirements, Re-usable
Pattern-based Requirements, System Compliance, Defect-based
Testing, Unmanned Aerial Vehicle (UAV)

I. INTRODUCTION

The Naming the Pain in Requirements Engineering initiative
(NaPiRE)1 constitutes a large-scale survey research initiative
to understand which practices industry practitioners use in
requirements engineering (RE) and which problems they
experience [23]. Based on recent results [21], the most rated
issues include “Underspecified Requirements” and “Weak
Domain Knowledge” [21], [23]. The latter rating strengthens
our confidence in the value of an appropriate exploration of
domain knowledge and its incorporation into the RE process
as this is expected to improve the requirements’ quality.

Pattern-based approaches, such as EARS [20], are well
perceived in the RE community as a remedy for unstructured

1See www.napire.org, last access 29/10/2019.

and imprecisely specified textual requirements. Moreover,
such patterns are easy in application. Despite of all their
merits, however, these patterns are domain-independent and an
integration of domain specificity is not in their scope.

The main objective of this research is to investigate how
domain knowledge can be incorporated into the requirements
specification for improving requirements engineering process.
In our current research efforts, we have focused on exploring
how such patterns can improve the requirements’ quality,
while considering domain-specific aspects. Additionally, since
RE is part of the overall systems development process and
interconnected to all other stages (e.g., system design decisions
are driven by requirements, system verification is related to
valid requirements), we consider the impact of the domain
knowledge not only on the RE process, but also on their
propagation to the other development stages, such as system
verification.

In this paper we summarize the related work (Section II)
and propose an Approach to Pattern-based Domain-Specific
RE to further close existing gaps. One particular challenge
we focus on is the verification of requirements with a par-
ticular focus on performance requirements, i.e. requirements
which describe the continuous input data space. The idea is
to integrate defect-based testing for the verification of the
system compliance according to performance requirements. In
Section IV, we further contribute an example for the domain
of flight controllers for Unmanned Aerial Vehicles (UAVs):
we implemented first parts of our approach in the Model-
Based Engineering tool AutoFOCUS3 [6] to show as a running
example the Take-off Performance DSR; and we demonstrate,
in Section IV-A, how domain knowledge can be incorporated
into the requirements for integration into quality assurance
techniques. In Section IV-B, we then demonstrate how our
approach supports system verification process, in particular,
using defect-based testing techniques for system compliance
of UAV controllers. We close with a conclusion along with a
future work in Section V.

ar
X

iv
:2

40
4.

17
33

8v
1

 [
cs

.S
E

]
 2

6
A

pr
 2

02
4

www.napire.org

II. RELATED WORK

There exists a broad and elaborate body of knowledge for
handling requirements quality issues and their causes as well
as for improving or automating RE-related activities such
as quality assurance or verification. Related work can be
categorized into the following groups and will be discussed
in the following paragraphs: (1) Natural language processing
(NLP), (2) Pattern-based approaches including boilerplates, (3)
Model-based approaches including domain-specific languages
(DSL), and (4) Formal specifications.

Natural language processing (NLP) [35] aims at extracting
the semantics of natural language for automated processing.
Related techniques cope with the analysis of natural language
available as text or speech. Those techniques applied are
checking for, e.g., subjective language, vague pronouns or
negative words. Requirements that contain such findings, are
then considered to be potentially problematic. An introduction
into using NLP for requirements quality assurance is summa-
rized in previvous work [9], [10]. However, NLP allows for
the check of a small subset of requirements quality properties
only, such as unambiguities or consistencies in text. Exemplary
valuable contributions are given by the authors in [7], [11], [16],
[37], [38]. These approaches, however, do not cover yet the
following aspects: (1) Aspects such as adequacy or pertinence
cannot be tackled due to the focus on text, (2) NLP does not
take into account domain knowledge provided in non-textual
form such as figures, tables and symbols, and (3) NLP does
not integrate the analyzed requirements into the verification
of functional and performance requirements. Our approach
intends to close those contemporary gaps.

Pattern-based approaches include controlled natural lan-
guage (CNL) techniques. These approaches aim at controlling
the requirements quality such as ambiguity or consistency. CNL
operates with predefined rules to formalize and to structure
textual requirements; for instance, boilerplates [28] are created
based on frequent or appropriate patterns. EARS [20] patterns
and their extensions such as EARS-CTRL [18], Parametrized
Safety Requirements templates [4], and Adv-EARS [19] are
prominent examples for providing templates to the engineer for
gathering the requirements. Though some approaches propose
to structure behavior requirements in tables, e.g., for defining
a state automaton in a table view [13], [34], the following
aspects are not in scope of existing pattern-based approaches:
(1) Related approaches are applicable to functional requirements
only, rather than to performance requirements, (2) they do not
incorporate domain knowledge using figures, and (3) they do
not cover requirements quality characteristics such as adequacy
or pertinence. Also here we intend to close existing gaps with
our contributions.

Model-based approaches aim at capturing requirements
graphically, e.g., by applying UML/SysML [26], [27] or
BPMN [25]. The MIRA framework [33] is an example
for a holistic model-based approach which considers quality
assurance for functional requirements and an integration into a
seamless development process. Model-based approaches also

incorporate domain knowledge for a specific purpose [24]. A
domain model can support domain-specific modeling, as a
domain model is capturing the concepts, terminology (defined
by an ontology), scope, and features of the domain [22].
This domain model can then be utilized for modeling e.g.
a specific use case, requirement for a system or desired
system behaviour in this domain [31]. We can include Domain-
Specific Languages (DSL) for RE model-based approaches,
and graphical (e.g., Arcadia/Capella [1]) or textual DSL
for modeling requirements [24], because there is no strict
distinction between them. Our DSRs elements also can be
referred to DSL. However, when comparing existing approaches
to our objectives, these approaches have several shortcomings:
(1) Automated requirements quality assurance is not yet a
prime objective of such approaches, (2) the integration of such
approaches with defect-based testing is not supported, and (3)
performance requirements are not taken into account. This is
in scope of our contributions.

Formal specification offers precise logical definition (e.g.,
using temporal logic formulae), which copes with requirement
quality issues such as ambiguity. Well-known techniques are
Z [14] and B [2] and their extensions Event-B [3] and Z++ [17],
respectively. Other approaches propose logical patterns by ap-
plying formal specifications, e.g., Specification Pattern System
(SPS) [12] or Real-time Specification Patterns [15]. However,
formal specifications still suffer from the following limitations:
(1) Requirements quality properties such as adequacy or
pertinence are not covered, and (2) domain knowledge for
RE is not exploited explicitly. Finally, also here we contribute
to further closing existing gaps in literature.

III. APPROACH

Inspired by our industry partner’s project that aimed to
analyze the reusable nature of UAV controller requirements,
we developed an Approach to Pattern-based Domain-Specific
RE that can be used for requirements specification, requirements
quality assurance and system compliance phases in a holistic
manner. Moreover, our approach supports automation of the
work-flow. The approach is based on the idea to collect descrip-
tive data of the considered domain (domain knowledge) and
incorporate them into graphical representation of requirements
(in short, a picture with appended meta-data), so that such
approach can control quality of the requirements and support
integration the RE with a system verification process (here
with defect-based testing techniques).

We analyzed the given requirements for quadcopter con-
trollers which are typically used by control engineers (CEers).
We discovered that CEers use graphical representations of
the requirements along with textual specifications, because
presenting requirements graphically is more informative way
for explaining system design, than describing it with sentences
of text. Indeed, as we describe in Section IV-A, the domain
knowledge can be intuitively represented by a simple picture
of the desired performance of the quadcopter controller.

Because of requirements repetition from project to project
for the same kind of system (e.g. a basic drone should perform

...

.......
Mode Meta-Data

.......

...

.......
Mode DSR

.......

DSR

+ DSR Type

+ Graphical Element (Meta-Data)

+ Table Element (Meta-Data)

+ Quality Check (Meta-Data)

+ Verify (Meta-Data)

Take-Off Performance DSR

+ DSR Type

+ Graphical Element (Take-Off Meta-Data)

+ Table Element (Take-Off Meta-Data)

+ Quality Check (Take-Off Meta-Data)

+ Verify (Take-Off Meta-Data)

Meta-Data

+ DSR Type

+ parameters [...]

+ get (parameters [])

Take-Off Meta-Data

+ DSR Type

+ parameters [...]

+ get (parameters [])

DSR Type
<<Collection>>

+ Mode DSR

+ Performance Error DSR

+ Take-off Performance DSR

+ Step Altitude DSR

+ Hover DSR

+ Trajectory Following DSR

+ Landing DSR

 Stationary DSR

instantiates

instantiates

Fig. 1: an Approach to Pattern-based Domain-Specific RE

take-off or landing maneuvers), the graphical representation
of the requirements can be considered as graphical patterns.
Comparing to EARS [20] domain-independent textual patterns,
we see an advantage of our approach in graphical pattern-
based presentation of requirements with domain knowledge
incorporation. These patterns were recently introduced in a
short paper [30] and called Domain-Specific Requirements
(DSRs).

We identified that DSRs for UAV Controller include eight
patterns: (1) Mode DSR, specifying the UAV modes and
transitions; (2) Performance Error DSR, specifying the per-
formance error when transiting from one mode to another;
(3) Take-off DSR and (4) Step Altitude DSR, specifying the
performance of take-off UAV maneuvers; (5) Hover DSR, (6)
Trajectory Following DSR, (7) Landing DSR, (8) Stationary
DSR, these four DSRs as well as Take-Off DSR describe
performance modes of the UAV. Figure 1 presents meta-model
of DSR collection for UAV Controller we propose in this paper.
DSR-elements are model elements such as, figures and tables,
resembling usual (textual) requirements of the domain.

Such pattern representations are known to be informative and
serve for better understanding, explanation of requirements [32]
improving the communication process between stakeholders
within system life-cycle. However, differently from usual
textual requirements containing figures, the (meta-)data in
DSRs have precise meaning, thus enabling semi-automated
quality checks. Figures help visualize the key aspects of a
requirement, such as, variables and parameters. Tables are
then used to specify the properties of these aspects, such as,
variable ranges. Further in this paper, we present example with
take-off maneuver of UAV to demonstrate this. Figure 2 shows
"Take-off DSR" with the graphical element of the take-off
maneuver, table elements for structuring the requirement and
domain-specific parameters, which describes possible scenarios
of the take-off maneuver of UAV.

IV. TAKE-OFF PERFORMANCE DSR

We illustrate DSRs with a Take-Off performance requirement
for UAV controllers. The Take-Off Performance DSR specifies
the control performance of the UAV while carrying out a
take-off maneuver. Its elements use the figure and the tables

Fig. 2: Take-Off Performance DSR Prototype in AutoFOCUS3.

presented on Figure 2. The idea is that the take-off maneuver
illustrates graphically the key parameters relevant for this
requirement. Then the exact bounds for these values are
established by using the remaining DSR elements. The values
in the tables (DSR elements) are not to be taken too seriously,
but serve only for illustrative purpose. Take-Off Performance
DSR is composed by four DSR elements:

Take-Off Maneuver DSR Element: This element is a figure
illustrating the main maneuver parameters. An instance of this
DSR element is depicted on the left side of Figure 2. It is a
commonly used illustration by control engineers to describe
the takes-off movement of UAV and the performance criteria.
Therefore, it naturally incorporating domain knowledge. The
take-off maneuver consists of: taking off from an initial position
point; specified rotation angles about the axis (x, y, z) of the
UAV: pitch (Θ), yaw (Ψ) and roll (Φ); moving upwards to
the designated height h; two UAV performance variables: the
overshoot (∆hov) and the horizontal deviation (∆(x, y)).

Take-Off Starting and Final Conditions DSR Element:
The second DSR element is a table for specifying the ranges
of the UAV parameters (Θ,Ψ,Φ and h) in initial and final
position points. The values in the Figure 2 specify, for example,
that the UAV can take-off to a height between 2 or 3 meters
when starting from any surface with inclination (Θ) of at most
20 degrees.

Horizontal Deviation DSR Element is a table for specifying
the performance of the UAV take-off maneuver in terms of the
maximal horizontal deviation (∆(x, y)) (depicted as Horizontal
Error on Figure 2) in any direction from the take-off point
at times after starting the take-off maneuver. A special entry
always indicates the global property that shall be satisfied at all
times by the take-off maneuver. For example, at all times the
horizontal deviation shall be not greater than 2 meters. Also,
in the table a particular time steps of take-off maneuver can be
specified, e.g., 3 seconds [s] after the system became airborne,
the horizontal deviation shall not be greater than 0.1 meter.

Altitude Deviation DSR Element is a table for specifying
the performance of the UAV take-off maneuver in terms of
the maximum admissible altitude error (∆hov) at different
times after reaching the target height. As with the Horizontal
Deviation DSR Element, the table also contains the entry
always.

Notice that the time steps for the Horizontal and Altitude
Deviation DSRs may differ and not be limited in number.

Organizing DSRs in this way has some advantages. It
incorporates naturally the domain-specific terminology by
means of figures and tables as opposed to more sophisticated
machinery, such as formal specifications. Moreover, such a
DSR enables the semi-automated methods for requirement
quality assurance and system compliance, as the meaning of
the values can be inferred from the meta-data (domain-specific
parameters). The explanation goes in Sections IV-A and IV-B.

A. Domain-Specific Defects

This Section proposes a set of Domain-Specific Defects (DSDs)
for Take-off Performance DSR described in Section IV. The
data in red illustrate Domain-Specific Defects presented as
Table I.

In our research we took the requirement quality characteris-
tics proposed in [36] as a base set for DSR quality assurance.

We first argue that the DSRs do not suffer from the defects
Unintelligibility, Unstructured Textual Requirements, Invisible
Dependencies Between Items. Below we present a list of the
Domain-specific defects and respective to these defects quality
characteristics (QC) in format [defect-QC].

• Unintelligibility - Measurability: defect indicates that a
requirement is bad-defined and, consequently, not prepared
for the evaluation process. The use of domain knowledge
in DSR, incorporated into the DSR elements support
the precision necessary for evaluation. For example, the
Take-off Performance DSR uses well-established terms
for control engineers, such as pitch,roll and yaw angles.

• Unstructured Textual Requirements - Good Struc-
turing: defect indicates the problem of a bad-structured
textual requirement, where the structural links among
DSR elements are not highlighted. The DSR elements
in Take-Off Performance DSRs proposed have a logical
connection. For example, the Take-Off Maneuver DSR
element illustrates the parameters used by the Take-Off
Starting and Final Conditions DSR Element and Altitude
Error DSR Element.

• Invisible Dependencies Between Items - Traceability:
The same argument can be used for this defect. The

TABLE I: EXAMPLE OF DOMAIN-SPECIFIC DEFECTS FOR TAKE-
OFF STARTING AND FINAL CONDITIONS DSR ELEMENT.

Initial Final Unitmin max min max
Theta (Θ) 0 95 0 0 Degree

Psi (Ψ) 320-360 360 0 360 Degree
Phi (Φ) 0.001 – 0 0 –

Height (h) – – -1 2 Meter

dependencies are explicit in the construction of DSRs,
through the incorporation of domain knowledge within
requirements (DSR-Elements).

• Omission - Completeness: The Take-Off Performance
DSR suffers from Omission if it does not contain the data
in its Table DSR Elements. For example, missing values
for the initial conditions of the Take-Off maneuver in
the table Take-Off Performance DSR Element, however
the domain-specific parameters for these conditions are
presented at a pictured Take-Off Maneuver DSR Element
(Psi, Theta, Phi, ∆(x, y) horizontal or ∆h_ov vertical
deviations).

• Imprecise - Unambiguity: The Take-Off Performance
DSR provides a template-based table view, which struc-
tures the given data of requirements into the certain
format: [Parameter] = [Value] [Unit]. This helps to
avoid Imprecise information defect, such as parameters
are declared in an imprecise way: initial Ψ is from 0 to
320 or 360, or without unit: ψ=[0;320-360] [-].

• Contradiction - Consistency: If every parameter and its
unit are not defined consistently w.r.t UAV domain and
related DSR Elements, then we can conclude that DSR
defected,e.g., Φ=0,001[-] and Θ=[0;20][degree].

• Incorrect Domain Laws Description - Adequacy: The
incorporation of domain-specific knowledge in DSRs is
valuable in defining precisely these defects. For the Take-
Off Performance DSR, it is defective if one specifies
unrealistic parameters without rationale. According to
domain rules, UAV cannot take-off from inclination Θ =
95 degree or take-off attitude cannot be negative.

• Superfluous - Pertinence: Take-Off Performance DSR
will be defective if it specifies variables which are out of
its domain-specific set, e.g., landing point(x,y,h) = (0,0,0),
which is not a relevant parameter for taking-off UAV
maneuver.

We apply static analysis methods for requirements quality
checks comparing predefined domain-specific data baseline
with the data incorporated in Take-Off Performance DSR.
This comparison can be performed by setting predefined
constraints for data in DSRs, e.g., constraint: "allowed range
for inclination parameter Θ ∈ [0;20]". Such approach was
proposed by [5] and allows automation of the quality checks.

B. DSRs Integration with Defect-based Testing

The verification of performance requirements, such as, for UAV
controllers described above, is challenging because there are
infinitely many test cases to consider (instead of precise values,
the take-off parameters (i.e.Θ, Ψ, h) are the allowed ranges).

To address this challenge, defect-based testing (DBT) ap-
proaches have been successfully deployed [29].

The overall DBT approach is to build test-cases so that to
maximize the chance of triggering a defect. For example, when
testing the logic of a software, one tests its corner cases, e.g.,
by applying Boundary Value Analysis [8].

In this research, we review the definition of the DBT
artifacts and explain how these are instantiated for our approach
continuing with the example of Take-Off Performance DSR:

• Specification: The specification represents properties
that shall be tested. These have to be verified for the
implementation. Our DSRs contain these specifications
by design. For example, the Take-Off Performance DSR
contains the initial conditions for the take-off maneuver
and maximum horizontal deviation at a given elapsed
time.

• Implementation Model: The implementation represents
the system under test. It is an executable software design
of the system under development. For UAV controller
development, the implementation model is developed in
Matlab/ Simulink. This model is assumed to reflect as
close as possible the actual UAV to be developed;

• Environment Model: If the system interacts with its
environment, the environment model can be provided. For
UAV controller development, the implementation model
incorporates the environment model, namely, in the flight
dynamics model. The environment, Quadcopter Dynamic
Modeling and Simulation package (Quad-Sim)23 was used
for our simulation;

• Failure Model: A failure is the observed difference
between actual and intended behavior. This model is used
to determine which test-cases have a greater chance to
find a defect in the actual UAV implementation (and not
the simulation model). For the Take-Off Maneuver DSR,
the failure model is how close the UAV does not comply
with the altitude and horizontal errors.

We now put these components together to generate test-cases
using DBT methodology on the Take-Off Performance DSR:

(1) Input Space Partitioning: We partition the input space,
namely, the values for the initial yaw(Ψ), pitch(Θ) (we elide Φ
for simplicity) and intended height(h), specified in the Take-Off
Performance DSR:

Θ ∈ [0, 6] Θ ∈]6, 12] Θ ∈]12, 20]
Ψ ∈ [0, 120] Ψ ∈]120, 240] Ψ ∈]240, 360]
h ∈ [0, 1] h ∈]1, 2] h ∈]2, 3]

(2) Generate Random Take-Off Scenarios: For each parti-
tion Pj , we generate n random take-off scenarios, S1, . . . , Sn,
by randomly generating values for Θ,Ψ, h that belong to the
partition,e.g. Θ = 7.4,Ψ = 101, h = 2.3m.

In our use case we specified 2 test-cases for every partition.
The greater the number of scenarios generated, the greater is
the effort and the greater are the chances for finding a defect.

Note that the number of take-off scenarios(n) and the gran-
ularity of the partitions depend on the available computational
power and the desired level of precision.

(3) Run Take-Off Simulations: Using the implementa-
tion/environment model, we carry out one simulation for each
generated take-off scenario, Si. The output is a simulated
take-off maneuver, Ξi.

2git repository:https://github.com/dch33/Quad-Sim
3https://www.mathworks.com/matlabcentral/fileexchange/48053-quad-sim

Fig. 3: Illustration of Defect-Values for Partitions.

(4) Compute Failure Model:
For our example, we generate test-cases that maximize the

chance of finding defects on the admissible horizontal deviation.
(For the altitude deviation is similar.)

∆(x, y) is the horizontal deviation in the Take-Off Perfor-
mance DSR. For each simulated take-off maneuver, Ξi for the
scenario Si, we compute the maximum horizontal deviation,
max(Ξi). Afterwards, we compute for Si its defect-value as
follows:

dfb(Si) =

{
∞ if max(Ξi) > ∆(x, y)

1
∆(x,y)−max(Ξi)

otherwise

Intuitively, the greater the defect-value, the greater is the chance
for the scenario Si that generated Ξ to trigger a defect for the
actual UAV.

(5) Consolidate Defect-Values for Partitions: Let
dfb(S1), . . . , dfb(Sn) be the defect-values of the scenarios
generated for the partition Pj in step (2). The defect-value of
the partition Pj , dfb(Pj) is equal to dfb(S1) + · · ·+ dfb(Sn).

Figure 3 is an illustration of an output of the procedure
(1) − (5) as a heat map, where defect-based points inverted
to by 1 and presented in color (the darker color, the more
chance of triggering the defect). Such output presentation
supports prioritization of the test-case scenarios, and indicates
the partition-candidate for more precise testing.

V. CONCLUSION AND FUTURE WORK

In this paper we present our first attempts towards an
Approach to Pattern-based Domain-Specific RE illustrating
the concept for performance requirements with Take-off DSR.
Using this example, we demonstrate how our holistic approach
integrates domain-specific requirements specification, computer-
aided quality assurance techniques and system verification
techniques, such as defect-based testing. Providing Take-off
performance DSR, we explain how domain knowledge can
be incorporated in performance requirements specification
to improve quality of requirements and to support system
verification process.

https://github.com/dch33/Quad-Sim
https://www.mathworks.com/matlabcentral/fileexchange/48053-quad-sim

A further most interesting and challenging question is related
to non-functional requirements, i.e., how our approach can be
applied to requirements specifications which describe such
system aspects as safety and security.

Furthermore, our initial results (as well as those of upcoming)
require an evaluation at practice. Therefore, the next stage of the
research can be an empirical study for validating our approach
and publishing the achieved results. Finally, the approach
requires an investigation on scalability by applying it for other
domains, e.g., self-driving cars (AI-based systems domain).

Therefore, we believe that our Approach to Pattern-based
Domain-Specific RE can be helpful and poses actual and
interesting questions for the community. Acknowledgements.
Our research is a part of the global research funded by DAAD,
in cooperation with Institute of Flight System Dynamics (FSD)
at Technical University of Munich (TUM), Germany and
Federal University of Paraíba, Brasil. Also we thank PhD
student Daniel Morais for the support in this research.

REFERENCES

[1] Arcadia / Capella, a field-proven modeling solution for system and
software architecture engineering (presented by Thales). II

[2] J. Abrial and J. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 2005. II

[3] J.-R. Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, New York, NY, USA, 1st edition, 2010. II

[4] P. O. Antonino, M. Trapp, P. F. C. Barbosa, and L. Sousa. The
parameterized safety requirements templates. 2015 IEEE/ACM 8th
International Symposium on Software and Systems Traceability, pages
29–35, 2015. II

[5] V. Aravantinos and S. Kanav. Tool support for live formal verification.
In 2017 ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS), pages 145–155, Sep.
2017. IV-A

[6] V. Aravantinos, S. Voss, S. Teufl, F. Hölzl, and B. Schätz. AutoFOCUS 3:
Tooling concepts for seamless, model-based development of embedded
systems. In Proc. 8th Int. MODELS Workshop Model-based Archit.
Cyber-physical Embed. Syst. (ACES-MB ’15), pages 19–26, 2015. I

[7] F. Chantree, B. Nuseibeh, A. de Roeck, and A. Willis. Identifying nocuous
ambiguities in natural language requirements. In 14th IEEE International
Requirements Engineering Conference (RE’06), pages 59–68, Sep. 2006.
II

[8] D. J. Coe. A review of boundary value analysis techniques. 2008. IV-B
[9] H. Femmer, D. Méndez, E. Juergens, M. Klose, I. Zimmer, and J. Zimmer.

Rapid requirements checks with requirements smells: Two case studies.
In Proceedings of the 1st International Workshop on Rapid Continuous
Software Engineering, RCoSE 2014, pages 10–19, New York, NY, USA,
2014. ACM. II

[10] H. Femmer, D. Méndez, S. Wagner, and S. Eder. Rapid quality assurance
with requirements smells. Journal of Systems and Software, 2016. II

[11] A. Ferrari and S. Gnesi. Using collective intelligence to detect pragmatic
ambiguities. In 2012 20th IEEE International Requirements Engineering
Conference (RE), pages 191–200, Sep. 2012. II

[12] P. Filipovikj, M. Nyberg, and G. Rodriguez-Navas. Reassessing the
pattern-based approach for formalizing requirements in the automotive
domain. In 2014 IEEE 22nd International Requirements Engineering
Conference (RE), 2014. II

[13] M. Herrmannsdoerfer, D. S. Konrad, and B. Berenbach. Tabular notations
for state machine-based specifications. 2008. II

[16] S. J. Körner and T. Brumm. Natural language specification improvement
with ontologies. Int. J. Semantic Computing, 2009. II

[14] S. S. . Joint Technical Committee ISO/IEC JTC 1, Information technology.
Information technology — z formal specification notation — syntax,
type system and semantics, 1996. II

[15] S. Konrad and B. H. C. Cheng. Real-time specification patterns.
In Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05. ACM. II

[17] K. Lano. Z++, an object-orientated extension to z. pages 151–172, 12
1990. II

[18] L. Lucio, S. Rahman, S. bin Abid, and A. Mavin. Ears-ctrl: Generating
controllers for dummies. In MODELS, 2017. II

[19] D. Majumdar, S. Sengupta, A. Kanjilal, and S. Bhattacharya. Adv-ears:
A formal requirements syntax for derivation of use case models. In
D. C. Wyld, M. Wozniak, N. Chaki, N. Meghanathan, and D. Nagamalai,
editors, Advances in Computing and Information Technology, pages
40–48. Springer Berlin Heidelberg, 2011. II

[20] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak. Easy approach
to requirements syntax (ears). In Proceedings of the 2009 17th IEEE
International Requirements Engineering Conference, RE, RE ’09, pages
317–322. IEEE Computer Society, 2009. I, II, III

[21] D. Méndez. Supporting requirements-engineering research that industry
needs: The napire initiative. IEEE Software, 35(1):112–116, 2018. I

[22] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4):316–344, dec
2005. II

[23] D. Méndez, S. Wagner, M. Kalinowski, M. Felderer, P. Mafra, A. Vetro,
T. Conte, M.-T. Christiansson, D. Greer, C. Lassenius, T. Männistö,
M. Nayebi, M. Oivo, B. Penzenstadler, D. Pfahl, R. Prikladnicki,
G. Ruhe, A. Schekelmann, S. Sen, and R. Wieringa. Naming the pain in
requirements engineering: Contemporary problems, causes, and effects
in practice. Empirical Software Engineering, 2016. I

[24] O. Olajubu. A textual domain specific language for requirement modelling.
2015. II

[25] OMG. Business process model and notation - version 2.0, 2001. II
[26] OMG. System modeling language (omg sysml). formal/17-05-01, May

2017. II
[27] OMG. Unified modeling language (omg uml). formal/17-12-05, 2017. II
[28] K. Pohl and C. Rupp. Requirements Engineering Fundamentals - A

Study Guide for the Certified Professional for Requirements Engineering
Exam: Foundation Level - IREB compliant. rockynook, 2011. II

[29] A. Pretschner. Defect-based testing, pages 141–163. 01 2017. IV-B
[30] M. Reich, T. Chuprina, and V. Nigam. Towards computer-aided software

requirements process. In Proceedings of the Workshops of the Software
Engineering Conference 2019, Stuttgart, Germany, February 19, 2019.,
pages 75–78, 2019. III

[31] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Software
Development: Technology, Engineering, Management. John Wiley &
Sons, Inc., 2006. II

[32] H. Störrle. How are conceptual models used in industrial software
development?: A descriptive survey. In Proceedings of the 21st
International Conference on Evaluation and Assessment in Software
Engineering, EASE’17. ACM, 2017. III

[33] S. Teufl, D. Mou, and D. Ratiu. MIRA: A tooling-framework to
experiment with model-based requirements engineering. In Proc. 21st

Int. Conf. Requirements Engineering (RE ’13). IEEE, 2013. II
[34] J. Thyssen and B. Hummel. Behavioral specification of reactive systems

using stream-based i/o tables. Software & Systems Modeling, 12(2), 2013.
II

[35] A. M. Turing. Computing machinery and intelligence. Mind, 59, 1950.
II

[36] A. van Lamsweerde. Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley Publishing, 1st edition,
2009. IV-A

[37] J. Winkler and A. Vogelsang. Automatic classification of requirements
based on convolutional neural networks. In 24th IEEE International
Requirements Engineering Conference, RE 2016, pages 39–45, 2016. II

[38] H. Yang, A. de Roeck, V. Gervasi, A. Willis, and B. Nuseibeh. Analysing
anaphoric ambiguity in natural language requirements. Requirements
Engineering, 2011. II

	Introduction
	Related Work
	Approach
	Take-Off Performance DSR
	Domain-Specific Defects
	DSRs Integration with Defect-based Testing

	Conclusion and Future Work
	References

